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1 Eigenvalue problems
An eigenvalue λ ∈ C of a matrix A ∈ Cn×n is a value for which the equations
Av = vλ and w∗A = λw∗ have nontrivial solutions (the eigenvectors w∗ and
v). Together, (λ, v) forms an eigenpair and (λ, v, w∗) forms an eigentriple.
An eigenvector is a basis for a one-dimensional invariant subspace: that is,
A maps anything multiple of v to some other multiple of v. More generally,
a matrix V ∈ Cn×m spans an invariant subspace if AV = V L for some
L ∈ Cn×m.

Associated with any square A, we can write a matrix Q whose columns
form an orthonormal basis for nested invariant subspaces of A; that is, the
first k columns of Q form a k-dimensional invariant subspace of A. This
structure of nested invariant subspaces gives us that

AQ = QT,

where T is an upper triangular matrix. The factorization

A = QTQ∗

is a Schur factorization. Most of next week will be devoted to methods to
compute Schur factorizations (or parts of Schur factorizations). The Schur
factorization is nearly as versatile as, and is far more numerically stable than,
the Jordan canonical form

AV = V J.

where J is a block diagonal matrices with Jordan blocks of the form

Jλ =


λ 1

. . . . . .
λ 1

λ

 .

The algebraic multiplicity of an eigenvalue λ is the number of times it
appears on the diagonal of the Jordan form, or the number of times the fac-
tor z − λ divides the characteristic polynomial det(A − zI). The geometric
multiplicity is given by the number of Jordan blocks associated to λ, or by
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the dimension of the null space of (A− λI). In general, there is exactly one
eigenvector of A for each Jordan block, and the eigenvectors form a basis
iff A is diagonalizable – that is, if A has only 1-by-1 Jordan blocks and all
geometric and algebraic multiplicities match. The diagonalizable matrices
form a dense set in Cn×n, a fact which is often convenient in proofs (since an
argument for the diagonalizable case together with a continuity argument of-
ten yields a general solution). This fact also explains part of why the Jordan
canonical form is annoying for numerical work: if every matrix is an arbitrar-
ily small perturbation of something diagonalizable, then the Jordan form is
discontinuous as a function of A! Even among the diagonalizable matrices,
though, the eigenvector decomposition is often overrated for computational
purposes. Poor conditioning of the eigenvector basis can make diagonaliza-
tion a numerically unstable business, and most computations that are naively
formulated in terms of an eigenvector basis can equally well be formulated
in terms of Schur basis.

In generalized eigenvalue problems, we ask for nontrivial solutions to

(A− λB)v = 0.

There are also nonlinear eigenvalue problems, which show up in my research
but which we will not talk about in class. In addition to these variants on
the eigenvalue problem, there are also many different factors that affect the
how we choose algorithms. Is the problem...

1. nonsymmetric or symmetric?

2. standard or generalized?

3. to find all eigenvalues or just a few?

4. to compute eigenvectors, invariant subspaces, or just eigenvalues?

For different answers to these questions, there are different “best” choices
of algorithm. For the next week or two, we will focus specifically on the
problem of computing eigenpairs, invariant subspaces, and Schur forms for
nonsymmetric matrices. We will only briefly touch on the special case of the
symmetric problem, which has so much more mathematical structure that it
is treated almost entirely differently from the nonsymmetric case.
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1.1 The 2-by-2 case: some illustrative examples
Many of the salient features that occur in general eigenvalue problems can
be illustrated with the 2-by-2 matrix

A =

[
a b
c d

]
.

Finding an eigenvalue is equivalent to finding a root of the characteristic
polynomial:

p(z) = det(A− zI) = (a− z)(d− z)− bc

= z2 − (a+ d)z + (ad− bc).

If the roots of the characteristic polynomial are λ1 and λ2, then we have

p(z) = (z − λ1)(z − λ2)

= z2 − (λ1 + λ2)z + λ1λ2.

We recognize the second coefficient in the characteristic polynomial as minus
the trace a + d = λ1 + λ2. The constant coefficient is the determinant
ad − bc = λ1λ2. Both these coefficients can be seen as functions of the
eigenvalues, but both can be computed efficiently without referring to the
eigenvalues explicitly.

Now suppose we choose some fixed λ ∈ C and look at the 2-by-2 matrices
for which λ is an eigenvalue. If we just want λ to be an eigenvalue, we
must satisfy one scalar equation: p(λ) = 0. To find matrices for which λ is
a double eigenvalue, we must satisfy the additional constraint a + d = 2λ.
And there is only one 2-by-2 matrix for which λ is a double eigenvalue with
geometric multiplicity 2: A = λI. Put differently, the set of 2-by-2 matrices
for which λ is an eigenvalue has codimension 1 (i.e. it is described by one
scalar constraint); the set of 2-by-2 matrices for which λ is an eigenvalue with
algebraic multiplicity 2 has codimension 2; and the set of 2-by-2 matrices for
which λ is an eigenvalue with geometric multiplicity 2 has codimension 3.

More generally, we can say that among general complex n-by-n matri-
ces, the existence of some multiple eigenvalue is a codimension 1 phenomena
(somewhat rare in general); and the existence of an eigenvalue with geomet-
ric multiplicity greater than 1 is a codimension 3 phenomena (very rare in
general). Of course, things change if we consider structured matrices. For
example, in symmetric matrices the algebraic and geometric multiplicities of
all eigenvalues are the same.
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1.2 The symmetric case
In general, a real matrix can have complex eigenvalues (though in conjugate
pairs), and it may or may not have a basis of eigenvectors. In the case of
real symmetric matrices (A = AT ), we have much more structure: namely,

• All the eigenvalues are real.

• There is a complete orthonormal basis of eigenvectors.

To see the former, observe that if (v, λ) is an eigenpair and ∥v∥ = 1 then

λ = v∗Av = ¯v∗Av = λ̄,

which implies that λ is real. To see that eigenvectors associated with different
eigenvalues must be orthogonal, note that if (v, λ) and (u, µ) are eigenpairs
with λ ̸= µ, then

v∗Au =

{
(Av)∗u = λv · u
v∗(Au) = µv · u

and the only way for these to be the same is if v ·u = 0. Combining these two
facts about the symmetric eigenvalue problem, we usually write the standard
decomposition

A = QΛQT

where Q is an orthogonal matrix of eigenvalues and Λ is the corresponding
diagonal matrix of eigenvalues.

We often use symmetric matrices to represent quadratic forms, and this
is one reason why symmetric eigenvalue problems are so common. If A =
QΛQT , then we can define w = QTv to get the expression

v∗Av =
n∑

i=1

w2
i λi.

If ∥v∥2 = 1 (implying ∥w∥2 = 1), then we can see v∗Av is a weighted average
of the eigenvalues of A. Hence, the minimum or maximum of v∗Av over all
unit length vectors gives the largest and smallest of the eigenvalues of A;
and, more generally, the eigenvalues are stationary points of v∗Av subject
to the constraint ∥v∥2 = 1. Sometimes we prefer to work with all nonzero
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vectors rather than vectors with unit length, and hence define the Rayleigh
quotient

ρA(v) =
v∗Av

v∗v
;

this ratio plays a central role in the theory of the symmetric eigenproblem.

2 Why eigenvalues?
I spend a lot of time thinking about eigenvalue problems. In part, this is
because I look for problems that can be solved via eigenvalues. But I might
have fewer things to keep me out of trouble if there weren’t so many places
where eigenvalue analysis is useful! The purpose of this lecture is to tell you
about a few applications of eigenvalue analysis, or perhaps to remind you of
some applications that you’ve seen in the past.

2.1 Nonlinear equation solving
The eigenvalues of a matrix are the roots of the characteristic polynomial

p(z) = det(zI − A).

One way to compute eigenvalues, then, is to form the characteristic polyno-
mial and run a root-finding routine on it. In practice, this is a terrible idea,
if only because the root-finding problem is often far more sensitive than the
original eigenvalue problem. But even if sensitivity were not an issue, finding
all the roots of a polynomial seems like a nontrivial undertaking. Iterations
like Newton’s method, for example, only converge locally. In fact, the roots
command in MATLAB computes the roots of a polynomial by finding the
eigenvalues of a corresponding companion matrix with the polynomial coef-
ficients on the first row, ones on the first subdiagonal, and zeros elsewhere:

C =


cd−1 cd−2 . . . c1 c0
1 0 . . . 0 0
0 1 . . . 0 0
... ... . . . ... ...
0 0 . . . 1 0

 .

The characteristic polynomial for this matrix is precisely

det(zI − C) = zd + cd−1z
d−1 + . . .+ c1z + c0.
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There are some problems that connect to polynomial root finding, and
thus to eigenvalue problems, in surprising ways. For example, the problem of
finding “optimal” rules for computing integrals numerically (sometimes called
Gaussian quadrature rules) boils down to finding the roots of orthogonal
polynomials, which can in turn be converted into an eigenvalue problem; see,
for example, “Calculation of Gauss Quadrature Rules” by Golub and Welsch
(Mathematics of Computation, vol 23, 1969).

More generally, eigenvalue problems are one of the few examples I have of
a nonlinear equation where I can find all solutions in polynomial time! Thus,
if I have a hard nonlinear equation to solve, it is very tempting to try to
massage it into an eigenvalue problem, or to approximate it by an eigenvalue
problem.

2.2 Optimization
As we noted before, the symmetric eigenvalue problem has an interpretation
in terms of optimization of a quadratic form over unit length vectors. More
generally, one can look at generalized eigenvalue problems in terms of op-
timization of a ratio of quadratic forms. We now discuss some applications
where this interpretation is useful.

Recall that the matrix 2-norm is defined as

∥A∥2 = max
x ̸=0

∥Ax∥
∥x∥

= max
∥x∥=1

∥Ax∥.

Taking squares and using the monotonicity of the map z → z2 for non-
negative arguments, we have

∥A∥22 = max
∥x∥2=1

∥Ax∥2 = max
xT x=1

xTATAx.

The x that solves this constrained optimization problem must be a stationary
point for the augmented Lagrangian function

L(x, λ) = xTATAx− λ(xTx− 1),

i.e.

∇xL(x, λ) = 2(ATAx− λx) = 0

∇λL(x, λ) = xTx− 1 = 0.
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These equations say that x is an eigenvector of ATA with eigenvalue λ. The
largest eigenvalue of ATA is therefore ∥A∥22.

More generally, if H is any Hermitian matrix, the Rayleigh quotient

ρH(v) =
v∗Hv

v∗v

has stationary points exactly when v is an eigenvector of H. Optimizing the
Rayleigh quotient is therefore example of a non-convex global optimization
problem that I know how to solve in polynomial time. Such examples are
rare, and so it is tempting to try to massage other nonconvex optimization
problems so that they look like Rayleigh quotient optimization, too.

To give an example of a nonconvex optimization that can be usefully
approximated using Rayleigh quotients, consider the superficially unrelated
problem of graph bisection. Given an undirected graph G with vertices V
and edges E ⊂ V × V , we want to find a partition of the nodes into two
equal-size sets such that few edges go between the sets. That is, we want to
write V as a disjoint union V = V1 ∪V2, |V1| = |V2|, such that the number of
edges cut |E ∩ (V1 ×V2)| is minimized. Another way to write the same thing
is to label each node i in the graph with xi ∈ {+1,−1}, and define V1 to be
all the nodes with label +1, V2 to be all the nodes with label −1. Then the
condition that the two sets are the same size is equivalent to∑

i

xi = 0,

and the number of edges cut is
1

4

∑
(i,j)∈E

(xi − xj)
2

We can rewrite the constraint more concisely as eTx = 0, where e is the
vector of all ones; as for the number of edges cut, this is

edges cut = 1

4
xTLx

where the graph Laplacian L has the node degrees on the diagonal and −1
in off-diagonal entry (i, j) iff there is an edge from i to j.

Unsurprisingly, the binary quadratic programming problem

minimize xTLx s.t. eTx = 0 and x ∈ {+1,−1}n
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is NP-hard, and we know of no efficient algorithms that are guaranteed to
work for this problem in general. On the other hand, we can relax the problem
to

minimize vTLv s.t. eTv = 0 and ∥v∥2 = n, v ∈ Rn,

and this problem is an eigenvalue problem: v is the eigenvector associated
with the smallest positive eigenvalue of L, and vTLv is n times the cor-
responding eigenvalue. Since the constraint in the first problem is strictly
stronger than the constraint in the second problem, nλ2(L) is in fact a lower
bound on the smallest possible cut size, and the sign pattern of v often pro-
vides a partition with a small cut size. This is the heart of spectral partitioning
methods.

2.3 Dynamics
Eigenvalue problems come naturally out of separation of variables methods,
and out of transform methods for the dynamics of discrete or continuous
linear time invariant systems, including examples from physics and from
probability theory. They allow us to analyze complicated high-dimensional
dynamics in terms of simpler, low-dimensional systems. We consider two ex-
amples: separation of variables for a free vibration problem, and convergence
of a discrete-time Markov chain.

2.3.1 Generalized eigenvalue problems and free vibrations

One of the standard methods for solving differential equations is separation
of variables. In this approach, we try to write special solutions as a product
of simpler functions, and then write the equations that those functions have
to satisfy. As an example, consider a differential equation that describes the
free vibrations of a mechanical system:

Mü+Ku = 0

Here M ∈ Rn×n is a symmetric positive definite mass matrix and K ∈ Rn×n is
a symmetric stiffness matrix (also usually positive definite, but not always).
We look for solutions to this system of the form

u(t) = u0 cos(ωt),
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where u0 is a fixed vector. To have a solution of this form, we must have

Ku0 − ω2Mu0 = 0,

i.e. (ω2, u0) is an eigenpair for a generalized eigenvalue problem. In fact, the
eigenvectors for this generalized eigenvalue problem form an M -orthonormal
basis for Rn, and so we can write every free vibration as a linear combination
of these simple “modal” solutions.

2.3.2 Markov chain convergence and the spectral gap

This high-level idea of using the eigenvalue decomposition to understand
dynamics is not limited to differential equations, nor to mechanical systems.
For example, a discrete-time Markov chain on n states is a random process
where the state Xk+1 is a random variable that depends only on the state
Xk. The transition matrix for the Markov chain is a matrix P where Pij is
the (fixed) probability of transitioning to state i from state j, i.e.

Pij = P{Xk+1 = j|Xk = i}.

Let π(k) ∈ Rn be the distribution vector at time k, i.e.

π
(k)
i = P{Xk = i}.

Then we have the recurrence relationship

(π(k+1))T = (π(k))TP.

In general, this means that

(π(k))T = (π(0))TP k.

Now, suppose the transition matrix P is diagonalizable, i.e. P = V ΛV −1.
Then

P k = V ΛV −1V ΛV −1 . . . V ΛV −1 = V Λ . . .ΛV −1 = V ΛkV −1,

and so
(π(k))T = (π(0))TV ΛkV −1.

An ergodic Markov chain has one eigenvalue at one, and all the other eigenval-
ues are less than one in modulus. In this case, the row eigenvector associated
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with the eigenvalue at one can be normalized so that the coefficients are all
positive and sum to 1. This normalized row eigenvector π(∗) represents the
stationary distribution to which the Markov chain eventually converges. To
compute the rate of convergence, one looks at

∥(π(k) − π(∗))T∥ = ∥(π(0) − π(∗))T (V Λ̃kV −1)∥ ≤ ∥(π(0) − π(∗))T∥κ(V )∥Λ̃∥k

where Λ = diag(1, λ2, λ3, . . .), |λi| ≥ |λi+1|, and Λ̃ = diag(0, λ2, λ3, . . .). In
most reasonable operator norms, |Λ̃|k = |λ2|k, and so a great deal of the
literature on convergence of Markov chains focuses on 1 − |λ2|, called the
spectral gap. But note that this bound does not depend on the eigenvalues
alone! The condition number of the eigenvector matrix also plays a role, and
if κ(V ) is very large, then it may take a long time indeed before anyone sees
the asymptotic behavior reflected by the spectral gap.

2.4 Deductions from eigenvalue distributions
In most of our examples so far, we have considered both the eigenvalues and
the eigenvectors. Now let us turn to a simple example where the distribution
of eigenvalues can be illuminating.

Let A be the adjacency matrix for a graph, i.e.

Aij =

{
1, if there is an edge from i to j

0, otherwise.

Then (Ak)ij is the number of paths of length k from node i to node j. In
particular, (Ak)ii is the number of cycles of length k that start and end at
node i, and trace(Ak) is the total number of length k cycles starting from
any node. Recalling that the trace of a matrix is the sum of the eigenvalues,
and that the eigenvalues of a matrix power are the power of the eigenvalues,
we have that

# paths of length k =
∑
i

λi(A)
k,

where λi(A) are the eigenvalues of A; and asymptotically, the number of
cycles of length k for very large k scales like λ1(A)

k, where λ1(A) is the
largest eigenvalue of the matrix A.

While the statement above deals only with eigenvalues and not with eigen-
vectors, we can actually say more if we include the eigenvector; namely, if
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the graph A is irreducible (i.e. there is a path from every state to every
other state), then the largest eigenvalue λ1(A) is a real, simple eigenvalue,
and asymptotically the number of paths from any node i to node j scales
like the (i, j) entry of the rank one matrix

λk
1vw

T

where v and w are the column and row eigenvectors of A corresponding to
the eigenvalue λ1, scaled so that wTv = 1.
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