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Figure 1: Picture of a linear least squares problem. The vector Ax is the clos-
est vector in R(A) to a target vector b in the Euclidean norm. Consequently,
the residual r = b− Ax is normal (orthogonal) to R(A).
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1 Least squares basics
A least squares problem involves minimization of a (squared) Euclidean norm
of some vector:

minimize 1

2
∥r∥2 s.t. r ∈ Ω.

In general, the derivative of the squared norm is given by

δ

(
1

2
∥r∥2

)
= ℜ⟨δr, r⟩;

we will usually assume least squares problems over the real numbers, in
which case we don’t have to worry about taking the real part. If we want to
minimize the Euclidean norm of r (in the real case), we need

⟨δr, r⟩ = 0 for all admissible δr;

that is, r is orthogonal (or normal) to any admissible variation δr at the
point. Here an “admissible” variation is just one that we could produce by
changing the system in an allowed way.

For example, consider A ∈ Rm×n with m > n and let r(x) = Ax−b. This
is a linear least squares problem. In this setting, the admissible variations
are δr = Aδx, and the first-order condition for a minimizer is

∀δx ∈ Rn, ⟨Aδx,Ax− b⟩ = 0.
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Using the standard inner product, this gives us

AT (Ax− b) = ATAx− AT b = 0,

which is sometimes known as the normal equations because the residual is
normal to all admissible variations (Figure 1).

The normal equations have a unique solution when A is full column rank.
The solution to the normal equations is

(ATA)−1AT b = A†b,

where A† = (ATA)−1A is the Moore-Penrose pseudoinverse of A. It is a
pseudoinverse because A†A = I, but P = AA† is not an identity. Instead, P
is a projector, i.e. P 2 = P . We say P is the orthogonal projector onto R(A).
Conceptually, it maps each point to the nearest point in the range space of
A. The projector I − P is the residual projector, for which R(A) is the null
space.

If you are not entirely happy with the variational calculus argument, there
is a more algebraic approach. We note that for x = A†b+ z we have

∥Ax− b∥2 = ∥Az − (I − P )b∥2

= ∥Az∥2 + ∥(I − P )b∥2

by the Pythagorean theorem (since Az ⊥ (I − AA†)b by the normal equa-
tions). When A is full rank, positive definiteness implies that ∥Az∥2 > 0 for
z ̸= 0; therefore, the minimizer happens at z = 0.

An alternate formulation for the normal equations for the linear least
squares problem is [

I A
AT 0

] [
r
x

]
=

[
b
0

]
where the first row in the system defines r = b−Ax and the second row gives
the normal condition AT r = 0. Partial Gaussian elimination on this alterna-
tive system gives the normal equations ATAx = AT b as a Schur complement
subsystem.

Nothing we have said is specific to the standard inner product. If M is
any symmetric positive definite matrix, there is an associated inner product

⟨x, y⟩M = yTMx,
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and we can write the normal equations in terms of this inner product:

ATM(Ax− b) = 0.

Similarly, we can generalize the alternative form of the least squares problem
to [

M−1 A
AT 0

] [
r̃
x

]
=

[
b
0

]
where r̃ = Mr is the scaled residual.

2 Minimum norm problems
So far, we have considered overdetermined problems. But it is also interesting
to consider minimum norm solutions to underdetermined problems:

minimize 1

2
∥x∥2 s.t. Ax = b

where A ∈ Rm×n and now m < n. In this case, using the method of Lagrange
multipliers, we have

L(x, λ) = 1

2
∥x∥2 + λT (Ax− b)

and the stationary equations are

0 = δL = δxT (x+ ATλ) + δλT (Ax− b)

for all δx and δλ. Alternately, in matrix form, we have[
I AT

A 0

] [
x
λ

]
=

[
0
b

]
.

Eliminating the x variable gives us (AAT )λ = b, and back-substitution yields

x = AT (AAT )−1b.

When A is short and wide rather than tall and skinny (and assuming it is
full row rank), we say that A† = AT (AAT )−1 is the Moore-Penrose pseudo-
inverse.
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3 Why least squares?
Why is the ordinary least squares problem interesting? There are at least
three natural responses.

1. Simplicity: The least squares problem is one of the simplest formu-
lations around for fitting linear models. The quadratic loss model is
easy to work with analytically; it is smooth; and it leads to a problem
whose solution is linear in the observation data.

2. Statistics: The least squares problem is the optimal approach to pa-
rameter estimation among linear unbiased estimators, assuming inde-
pendent Gaussian noise. The least squares problem is also the maxi-
mum likelihood estimator under these same hypotheses.

3. It’s a building block: Linear least squares are not the right formu-
lation for all regression problems — for example, they tend to lack ro-
bustness in the face of heavy-tailed, non-Gaussian random errors. But
even for these cases, ordinary least squares is a useful building block.
Because least squares problems are linear in the observation vector,
they are amenable to direct attack by linear algebra methods in a way
that other estimation methods are not. The tools we have available
for more complex fitting boil down to linear algebra subproblems at
the end of the day, so it is useful to learn how to work effectively with
linear least squares.

4 Least squares and statistical models
Consider the model

yi =
n∑

j=1

cjxij + ϵi

where the factors xij for example j are known, and the observations yi are
assumed to be an (unknown) combination of the factor values plus indepen-
dent noise terms ϵi with mean zero and variance σ2. In terms of a linear
system, we have

y = Xc+ ϵ.
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4.1 Gauss-Markov
A linear unbiased estimator for c is a linear combination of the observations
whose expected value is c; that is, we need a matrix M ∈ Rn×m such that

E[My] = MXc = c.

That is, M should be a pseudo-inverse of X. Clearly one choice of linear
unbiased estimator is ĉ = X†y. According to the Gauss-Markov theorem,
this is actually the best linear unbiased estimator, in the sense of miminizing
the variance. To see this, consider any other linear unbiased estimator. We
can always write such an estimator as

c̃ = (X† +D)y

where D ∈ Rn×m satisfies DX = 0. Then

Var(c̃) = Var((X† +D)y)

= (X† +D)(σ2I)(X†D)

= σ2(X† +D)(X† +D)T

= σ2(XTX)−1 + σ2DDT = Var(ĉ) + σ2DDT ,

i.e. the variance of c̃ exceeds that of ĉ by a positive definite matrix. And
when the noise has covariance C, the best linear unbiased estimator satisfies
the generalized least squares problem XTC−1(Xc − y) = 0 or, in alternate
form [

C X
XT 0

] [
r
c

]
=

[
y
0

]
.

4.2 Maximum likelihood
Another estimator for the parameters c in the model y = Xc + ϵ comes
from maximizing the (log) likelihood function. If ϵ is a vector of multivariate
Gaussian noise with mean zero and covariance C, then the likelihood function
is

ℓ(y) =
1√

det(2πC
exp

(
−1

2
(y −Xc)TC−1(y − xC)

)
,

and for a fixed C, maximizing the likelihood corresponds to minimizing ∥y−
Xc∥2C−1 .
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Of course, Gaussian noise is not the only type of noise. More general
noise models lead to more complex optimization problems. For example, if
we assume the ϵi are Laplacian random variables (with probability propor-
tional to exp(−|z|) rather than exp(−z2)), then maximizing the likelihood
corresponds to maximimizing ∥y − Xc∥1 instead of ∥y − Xc∥2. This gives
an estimator that is a nonlinear function of the data. However, least squares
computations can be used as a building block for computing this type of
estimators as well.

4.3 Reasoning about the residual
When we come to a least squares problem via a statistical model, it is natural
to check whether the residual terms behave as one might expect:

• Are there about the same number of positive and negative residuals?

• If there is a natural “linear” structure to the data, is there evidence of
significant auto-correlation between consecutive residuals?

• Does the residual behave like white noise, or does it concentrate on
certain frequencies?

Even when they are small, residuals that do not appear particularly noisy
are a sign that the model may not describe the data particularly well.

5 A family of factorizations
5.1 Cholesky
If A is full rank, then ATA is symmetric and positive definite matrix, and we
can compute a Cholesky factorization of ATA:

ATA = RTR.

The solution to the least squares problem is then

x = (ATA)−1AT b = R−1R−TAT b.

Or, in Julia world
1 F = chol(A'*A);
2 x = F\(A'*b);
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5.2 Economy QR
The Cholesky factor R appears in a different setting as well. Let us write
A = QR where Q = AR−1; then

QTQ = R−TATAR−1 = R−TRTRR−1 = I.

That is, Q is a matrix with orthonormal columns. This “economy QR factor-
ization” can be computed in several different ways, including one that you
have seen before in a different guise (the Gram-Schmidt process).

Julia provides a numerically stable method to compute the QR factoriza-
tion via

1 F = qr(A)

and we can use the QR factorization directly to solve the least squares prob-
lem without forming ATA by

1 F = qr(A)
2 x = F\b

Behind the scenes, this is what is used when we write A\b with a dense
rectangular matrix A.

5.3 Full QR
There is an alternate “full” QR decomposition where we write

A = QR, where Q =
[
Q1 Q2

]
∈ Rn×n, R =

[
R1

0

]
∈ Rm×n.

To see how this connects to the least squares problem, recall that the Eu-
clidean norm is invariant under orthogonal transformations, so

∥r∥2 = ∥QT r∥2 =
∥∥∥∥[QT

1 b
QT

2 b

]
−

[
R1

0

]
x

∥∥∥∥2

= ∥QT
1 b−R1x∥2 + ∥QT

2 b∥2.

We can set ∥QT
1 v − R1x∥2 to zero by setting x = R−1

1 QT
1 b; the result is

∥r∥2 = ∥QT
2 b∥2.

The QR factorization routine in Julia can be used to reconstruct either
the full or the compact QR decomposition. Internally, it stores neither the
smaller Q1 nor the full matrix Q explicitly; rather, it uses a compact rep-
resentation of the matrix as a product of Householder reflectors, as we will
discuss next time.
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5.4 SVD
The full QR decomposition is useful because orthogonal transformations do
not change lengths. Hence, the QR factorization lets us change to a coordi-
nate system where the problem is simple without changing the problem in
any fundamental way. The same is true of the SVD, which we write as

A =
[
U1 U2

] [Σ
0

]
V T Full SVD

= U1ΣV
T Economy SVD.

As with the QR factorization, we can apply an orthogonal transformation
involving the factor U that makes the least squares residual norm simple:

∥UT r∥2 =
∥∥∥∥[UT

1 b
UT
2 b

]
−

[
ΣV T

0

]
x

∥∥∥∥ = ∥UT
1 b− ΣV Tx∥2 + ∥UT

2 b∥2,

and we can minimize by setting x = V Σ−1UT
1 b.
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