
Bindel, Fall 2022 Matrix Computations

2022-09-01

1 Binary floating point
Binary floating point arithmetic is essentially scientific notation. Where in
decimal scientific notation we write

1

3
= 3.333 . . .× 10−1,

in floating point, we write

(1)2
(11)2

= (1.010101 . . .)2 × 2−2.

Because computers are finite, however, we can only keep a finite number of
bits after the binary point. We can also only keep a finite number of bits for
the exponent field. These facts turn out to have interesting implications.

1.1 Normalized representations
In general, a normal floating point number has the form

(−1)s × (1.b1b2 . . . bp)2 × 2E,

where s ∈ {0, 1} is the sign bit, E is the exponent, and (1.b2 . . . bp)2 is the
significand. The normalized representations are called normalized because
they start with a one before the binary point. Because this is always the
case, we do not need to store that digit explicitly; this gives us a “free” extra
digit.

In the 64-bit double precision format, p = 52 bits are used to store the
significand, 11 bits are used for the exponent, and one bit is used for the sign.
The valid exponent range for normal double precision floating point numbers
is −1023 < E < 1024; the number E is encoded as an unsigned binary
integer Ebits which is implicitly shifted by 1023 (E = Ebits − 1023). This
leaves two exponent encodings left over for special purpose, one associated
with Ebits = 0 (all bits zero), and one associated with all bits set; we return
to these in a moment.

In the 32-bit single-percision format, p = 23 bits are used to store the
significand, 8 bits are used for the exponent, and one bit is used for the sign.

Bindel, Fall 2022 Matrix Computations

The valid exponent range for normal is −127 < E < 128; as in the double
precision format, the representation is based on an unsigned integer and an
implicit shift, and two bit patterns are left free for other uses.

We will call the distance between 1.0 and the next largest floating point
number one either an ulp (unit in the last place) or, more frequently, machine
epsilon (denoted ϵmach). This is 2−52 ≈ 2 × 10−16 for double precision and
2−23 ≈ 10−7 for single precision. This is the definition used in most numerical
analysis texts, and in MATLAB and Octave, but it is worth noting that in
a few places (e.g. in the C standard), call machine epsilon the quantity that
is half what we call machine epsilon.

1.2 Subnormal representations
When the exponent field consists of all zero bits, we have a subnormal rep-
resentation. In general, a subnormal floating point number has the form

(−1)s × (0.b1b2 . . . bp)2 × 2−Ebias ,

where Ebias is 1023 for double precision and 127 for single. Unlike the normal
numbers, the subnormal numbers are evenly spaced, and so the relative dif-
ferences between successive subnormals can be much larger than the relative
differences between successive normals.

Historically, there have been some floating point systems that lack subnor-
mal representations; and even today, some vendors encourage “flush to zero”
mode arithmetic in which all subnormal results are automatically rounded to
zero. But there are some distinct advantage to these numbers. For example,
the subnormals allow us to keep the equivalence between x − y = 0 and
x = y; without subnormals, this identity can fail to hold in floating point.
Apart from helping us ensure standard identities, subnormals let us repre-
sent numbers close to zero with reduced accuracy rather than going from
full precision to zero abruptly. This property is sometimes known as gradual
underflow.

The most important of the subnormal numbers is zero. In fact, we con-
sider zero so important that we have two representations: +0 and −0! These
representations behave the same in most regards, but the sign does play a
subtle role; for example, 1/+ 0 gives a representation for +∞, while 1/− 0
gives a representation for −∞. The default value of zero is +0; this is what
is returned, for example, by expressions such as 1.0− 1.0.

Bindel, Fall 2022 Matrix Computations

1.3 Infinities and NaNs
A floating point representation in which the exponent bits are all set to
one and the signficand bits are all zero represents an infinity (positive or
negative).

When the exponent bits are all one and the significand bits are not all
zero, we have a NaN (Not a Number). A NaN is quiet or signaling depending
on the first bit of the significand; this distinguishes between the NaNs that
simply propagate through arithmetic and those that cause exceptions when
operated upon. The remaining significand bits can, in principle, encode
information about the details of how and where a NaN was generated. In
practice, these extra bits are typically ignored. Unlike infinities (which can
be thought of as a computer representation of part of the extended reals1),
NaN “lives outside” the extended real numbers.

Infinity and NaN values represent entities that are not part of the stan-
dard real number system. They should not be interpreted automatically as
“error values,” but they should be treated with respect. When an infinity or
NaN arises in a code in which nobody has analyzed the code correctness in the
presence of infinity or NaN values, there is likely to be a problem. But when
they are accounted for in the design and analysis of a floating point routine,
these representations have significant value. For example, while an expres-
sion like 0/0 cannot be interpreted without context (and therefore yields a
NaN in floating point), given context — eg., a computation involving a re-
movable singularity — we may be able to interpret a NaN, and potentially
replace it with some ordinary floating point value.

2 Basic floating point arithmetic
For a general real number x, we will write

fl(x) = correctly rounded floating point representation of x.
1The extended reals in this case means R together with ±∞. This is sometimes called

the two-point compactification of R. In some areas of analysis (e.g. complex variables),
the one-point compactification involving a single, unsigned infinity is also useful. This was
explicitly supported in early proposals for the IEEE floating point standard, but did not
make it in. The fact that we have signed infinities in floating point is one reason why it
makes sense to have signed zeros — otherwise, for example, we would have 1/(1/ − ∞)
yield +∞.

Bindel, Fall 2022 Matrix Computations

By default, “correctly rounded” means that we find the closest floating point
number to x, breaking any ties by rounding to the number with a zero in
the last bit2. If x exceeds the largest normal floating point number, then
fl(x) = ∞; similarly, if x is a negative number with magnitude greater than
the most negative normalized floating point value, then fl(x) = −∞.

For basic operations (addition, subtraction, multiplication, division, and
square root), the floating point standard specifies that the computer should
produce the true result, correctly rounded. So the Julia statement

1 # Compute the sum of x and y (assuming they are exact)
2 z = x + y

actually computes the quantity ẑ = fl(x+y). If ẑ is a normal double-precision
floating point number, it will agree with the true z to 52 bits after the binary
point. That is, the relative error will be smaller in magnitude than the
machine epsilon ϵmach = 2−53 ≈ 1.1× 10−16:

ẑ = z(1 + δ), |δ| < ϵmach.

More generally, basic operations that produce normalized numbers are cor-
rect to within a relative error of ϵmach.

The floating point standard also recommends that common transcenden-
tal functions, such as exponential and trig functions, should be correctly
rounded3, though compliant implementations that do not follow with this
recommendation may produce results with a relative error just slightly larger
than ϵmach. Correct rounding of transcendentals is useful in large part be-
cause it implies other properties: for example, if a computer function to
evaluate a monotone function returns a correctly rounded result, then the
computed function is also monotone.

Operations in which NaN appears as an input conventionally (but not
always) produce a NaN output. Comparisons in which NaN appears conven-
tionally produce false. But sometimes there is some subtlety in accomplishing
these semantics. For example, the following code for finding the maximum
element of a vector returns a NaN if one appears in the first element, but
otherwise results in the largest non-NaN element of the array:

2There are other rounding modes beside the default, but we will not discuss them in
this class

3For algebraic functions, it is possible to determine in advance how many additional
bits of precision are needed to correctly round the result for a function of one input. In
contrast, transcendental functions can produce outputs that fall arbitrarily close to the
halfway point between two floating point numbers.

Bindel, Fall 2022 Matrix Computations

1 # Find the maximum element of a vector -- naive about NaN
2 function mymax1(v)
3 vmax = v[1];
4 for k = 2:length(v)
5 if v[k] > vmax
6 vmax = v[k]
7 end
8 end
9 vmax

10 end

In contrast, the following code always propagates a NaN to the output if one
appears in the input

1 # Find the maximum element of a vector -- more careful about NaNs
2 function mymax2(v)
3 vmax = v[1];
4 for k = 2:length(v)
5 if isnan(v[k]) | (v[k] > vmax)
6 vmax = v[k]
7 end
8 end
9 vmax

10 end

You are encouraged to play with different vectors involving some NaN or
all NaN values to see what the semantics for the built-in vector max are in
MATLAB, Octave, or your language of choice. You may be surprised by the
results!

Apart from NaN, floating point numbers do correspond to real numbers,
and comparisons between floating point numbers have the usual semantics
associated with comparisons between floating point numbers. The only point
that deserves some further comment is that plus zero and minus zero are con-
sidered equal as floating point numbers, despite the fact that they are not
bitwise identical (and do not produce identical results in all input expres-
sions)4.

4This property of signed zeros is just a little bit horrible. But to misquote Winston
Churchill, it is the worst definition of equality except all the others that have been tried.

Bindel, Fall 2022 Matrix Computations

3 Exceptions
We say there is an exception when the floating point result is not an ordinary
value that represents the exact result. The most common exception is inexact
(i.e. some rounding was needed). Other exceptions occur when we fail to
produce a normalized floating point number. These exceptions are:

Underflow: An expression is too small to be represented as a normalized
floating point value. The default behavior is to return a subnormal.

Overflow: An expression is too large to be represented as a floating point
number. The default behavior is to return inf.

Invalid: An expression evaluates to Not-a-Number (such as 0/0)

Divide by zero: An expression evaluates “exactly” to an infinite value (such
as 1/0 or log(0)).

When exceptions other than inexact occur, the usual “1+ δ” model used for
most rounding error analysis is not valid.

An important feature of the floating point standard is that an exception
should not stop the computation by default. This is part of why we have
representations for infinities and NaNs: the floating point system is closed in
the sense that every floating point operation will return some result in the
floating point system. Instead, by default, an exception is flagged as having
occurred5. An actual exception (in the sense of hardware or programming
language exceptions) occurs only if requested.

4 Modeling floating point
The fact that normal floating point results have a relative error bounded
by ϵmach gives us a useful model for reasoning about floating point error.
We will refer to this as the “1 + δ” model. For example, suppose x is an
exactly-represented input to the Julia statement

5There is literally a register inside the computer with a set of flags to denote whether
an exception has occurred in a given chunk of code. This register is highly problematic,
as it represents a single, centralized piece of global state. The treatment of the exception
flags — and of exceptions generally — played a significant role in the debates leading up
to the last revision of the IEEE 754 floating point standard, and I would be surprised if
they are not playing a role again in the current revision of the standard.

Bindel, Fall 2022 Matrix Computations

1 z = 1-x*x

We can reason about the error in the computed ẑ as follows:

t1 = fl(x2) = x2(1 + δ1)

t2 = 1− t1 = (1− x2)

(
1− δ1x

2

1− x2

)
ẑ = fl(1− t1) = z

(
1− δ1x

2

1− x2

)
(1 + δ2)

≈ z

(
1− δ1x

2

1− x2
+ δ2

)
,

where |δ1|, |δ2| ≤ ϵmach. As before, we throw away the (tiny) term involving
δ1δ2. Note that if z is close to zero (i.e. if there is cancellation in the subtrac-
tion), then the model shows the result may have a large relative error.

4.1 First-order error analysis
Analysis in the 1+δ model quickly gets to be a sprawling mess of Greek letters
unless one is careful. A standard trick to get around this is to use first-order
error analysis in which we linearize all expressions involving roundoff errors.
In particular, we frequently use the approximations

(1 + δ1)(1 + δ2) ≈ 1 + δ1 + δ2

1/(1 + δ) ≈ 1− δ.

In general, we will resort to first-order analysis without comment. Those
students who think this is a sneaky trick to get around our lack of facility
with algebra6 may take comfort in the fact that if |δi| < ϵmach, then in double
precision ∣∣∣∣∣

n∏
i=1

(1 + δi)
N∏

i=n+1

(1 + δi)
−1

∣∣∣∣∣ < (1 + 1.03Nϵmach)

for N < 1014 (and a little further).
6Which it is.

Bindel, Fall 2022 Matrix Computations

4.2 Shortcomings of the model
The 1 + δ model has two shortcomings. First, it is only valid for expressions
that involve normalized numbers — most notably, gradual underflow breaks
the model. Second, the model is sometimes pessimistic. Certain operations,
such as taking a difference between two numbers within a factor of 2 of
each other, multiplying or dividing by a factor of two7, or multiplying two
single-precision numbers into a double-precision result, are exact in floating
point. There are useful operations such as simulating extended precision
using ordinary floating point that rely on these more detailed properties of
the floating point system, and cannot be analyzed using just the 1+δ model.

5 Finding and fixing floating point problems
Floating point arithmetic is not the same as real arithmetic. Even simple
properties like associativity or distributivity of addition and multiplication
only hold approximately. Thus, some computations that look fine in exact
arithmetic can produce bad answers in floating point. What follows is a (very
incomplete) list of some of the ways in which programmers can go awry with
careless floating point programming.

5.1 Cancellation
If x̂ = x(1+ δ1) and ŷ = y(1+ δ2) are floating point approximations to x and
y that are very close, then fl(x̂ − ŷ) may be a poor approximation to x − y
due to cancellation. In some ways, the subtraction is blameless in this tail:
if x and y are close, then fl(x̂ − ŷ) = x̂ − ŷ, and the subtraction causes no
additional rounding error. Rather, the problem is with the approximation
error already present in x̂ and ŷ.

The standard example of loss of accuracy revealed through cancellation
is in the computation of the smaller root of a quadratic using the quadratic
formula, e.g.

x = 1−
√
1− z

for z small. Fortunately, some algebraic manipulation gives an equivalent
7Assuming that the result does not overflow or produce a subnormal.

Bindel, Fall 2022 Matrix Computations

formula that does not suffer cancellation:

x =
(
1−

√
1− z

)(1 +
√
1− z

1 +
√
1− z

)
=

z

1 +
√
1− z

.

5.2 Sensitive subproblems
We often solve problems by breaking them into simpler subproblems. Un-
fortunately, it is easy to produce badly-conditioned subproblems as steps to
solving a well-conditioned problem. As a simple (if contrived) example, try
running the following Julia code:

1 function silly_sqrt(n=100)
2 x = 2.0
3 for k = 1:n
4 x = sqrt(x)
5 end
6 for k = 1:n
7 x = x^2
8 end
9 x

10 end

In exact arithmetic, this should produce 2, but what does it produce in
floating point? In fact, the first loop produces a correctly rounded result, but
the second loop represents the function x260 , which has a condition number
far greater than 1016 — and so all accuracy is lost.

5.3 Unstable recurrences
One of my favorite examples of this problem is the recurrence relation for
computing the integrals

En =

∫ 1

0

xnex−1 dx.

Integration by parts yields the recurrence

E0 = 1− 1/e

En = 1− nEn−1, n ≥ 1.

Bindel, Fall 2022 Matrix Computations

This looks benign enough at first glance: no single step of this recurrence
causes the error to explode. But each step amplifies the error somewhat,
resulting in an exponential growth in error8.

5.4 Undetected underflow
In Bayesian statistics, one sometimes computes ratios of long products. These
products may underflow individually, even when the final ratio is not far from
one. In the best case, the products will grow so tiny that they underflow to
zero, and the user may notice an infinity or NaN in the final result. In the
worst case, the underflowed results will produce nonzero subnormal numbers
with unexpectedly poor relative accuracy, and the final result will be wildly
inaccurate with no warning except for the (often ignored) underflow flag.

5.5 Bad branches
A NaN result is often a blessing in disguise: if you see an unexpected NaN,
at least you know something has gone wrong! But all comparisons involving
NaN are false, and so when a floating point result is used to compute a branch
condition and an unexpected NaN appears, the result can wreak havoc. As
an example, try out the following code in Julia with ‘0.0/0.0‘ as input.

1 function test_negative(x)
2 if x < 0.0
3 "$(x) is negative"
4 elseif x >= 0.0
5 "$(x) is non-negative"
6 else
7 "$(x) is ... uh..."
8 end
9 end

6 Sums and dots
We already described a couple of floating point examples that involve eval-
uation of a fixed formula (e.g. computation of the roots of a quadratic). We

8Part of the reason that I like this example is that one can run the recurrence backward
to get very good results, based on the estimate En ≈ 1/(n+ 1) for n large.

Bindel, Fall 2022 Matrix Computations

now turn to the analysis of some of the building blocks for linear algebraic
computations: sums and dot products.

6.1 Sums two ways
As an example of first-order error analysis, consider the following code to
compute a sum of the entries of a vector v:

1 s = 0
2 for k = 1:n
3 s += v[k]
4 end

Let ŝk denote the computed sum at step k of the loop; then we have

ŝ1 = v1

ŝk = (ŝk−1 + vk)(1 + δk), k > 1.

Running this forward gives

ŝ2 = (v1 + v2)(1 + δ2)

ŝ3 = ((v1 + v2)(1 + δ2) + v3)(1 + δ2)

and so on. Using first-order analysis, we have

ŝk ≈ (v1 + v2)

(
1 +

k∑
j=2

δj

)
+

k∑
l=3

vl

(
1 +

k∑
j=l

δj

)
,

and the difference between ŝk and the exact partial sum is then

ŝk − sk ≈
k∑

j=2

sjδj.

Using ∥v∥1 as a uniform bound on all the partial sums, we have

|ŝn − sn| ≲ (n− 1)ϵmach∥v∥2.

An alternate analysis, which is a useful prelude to analyses to come in-
volves writing an error recurrence. Taking the difference between ŝk and the

Bindel, Fall 2022 Matrix Computations

true partial sums sk, we have

e1 = 0

ek = ŝk − sk

= (ŝk−1 + vk)(1 + δk)− (sk−1 + vk)

= ek−1 + (ŝk−1 + vk)δk,

and ŝk−1 + vk = sk +O(ϵmach), so that

|ek| ≤ |ek−1|+ |sk|ϵmach +O(ϵ2mach).

Therefore,
|en| ≲ (n− 1)ϵmach∥v∥1,

which is the same bound we had before.

6.2 Backward error analysis for sums
In the previous subsection, we showed an error analysis for partial sums
leading to the expression:

ŝn ≈ (v1 + v2)

(
1 +

n∑
j=2

δj

)
+

n∑
l=3

vl

(
1 +

n∑
j=l

δj

)
.

We then proceded to aggregate all the rounding error terms in order to
estimate the error overall. As an alternative to aggregating the roundoff,
we can also treat the rounding errors as perturbations to the input variables
(the entries of v); that is, we write the computed sum as

ŝn =
n∑

j=1

v̂j

where
v̂j = vj(1 + ηj), where |ηj| ≲ (n+ 1− j)ϵmach.

This gives us a backward error formulation of the rounding: we have re-cast
the role of rounding error in terms of a perturbation to the input vector v.
In terms of the 1-norm, we have the relative error bound

∥v̂ − v∥1 ≲ nϵmach∥v∥1;

Bindel, Fall 2022 Matrix Computations

or we can replace n with n−1 by being a little more careful. Either way, what
we have shown is that the summation algorithm is backward stable, i.e. we
can ascribe the roundoff to a (normwise) small relative error with a bound
of Cϵmach where the constant C depends on the size n like some low-degree
polynomial.

Once we have a bound on the backward error, we can bound the for-
ward error via a condition number. That is, suppose we write the true and
perturbed sums as

s =
n∑

j=1

vj ŝ =
n∑

j=1

v̂j.

We want to know the relative error in ŝ via a normwise relative error bound
in v̂, which we can write as

|ŝ− s|
|s|

=
|
∑n

j=1(v̂j − vj)|
|s|

≤ ∥v̂ − v∥1
|s|

=
∥v∥1
|s|

∥v̂ − v∥1
∥v∥1

.

That is, ∥v∥1/|s| is the condition number for the summation problem, and
our backward stability analysis implies

|ŝ− s|
|s|

≤ ∥v∥1
|s|

nϵmach.

This is the general pattern we will see again in the future: our analysis con-
sists of a backward error computation that depends purely on the algorithm,
together with a condition number that depends purely on the problem. To-
gether, these give us forward error bounds.

6.3 Running error bounds for sums
In all the analysis of summation we have done so far, we ultimately simplified
our formulas by bounding some quantity in terms of ∥v∥1. This is nice for
algebra, but we lose some precision in the process. An alternative is to
compute a running error bound, i.e. augment the original calculation with
something that keeps track of the error estimates. We have already seen that
the error in the computations looks like

ŝn − sn =
n∑

j=2

sjδj +O(ϵ2mach),

Bindel, Fall 2022 Matrix Computations

and since sj and ŝj differ only by O(ϵmach) terms,

|ŝn − sn| ≲
n∑

j=2

|ŝj|ϵmach +O(ϵ2mach),

We are not worried about doing a rounding error analysis of our rounding
error analysis — in general, we care more about order of magnitude for
rounding error anyhow — so the following routine does an adequate job of
computing an (approximate) upper bound on the error in the summation:

1 s = 0.0
2 e = 0.0
3 for k = 1:n
4 s += v[k]
5 e += abs(s) * eps(Float64);
6 end

6.4 Compensated summation
We conclude our discussion of rounding analysis for summation with a com-
ment on the compensated summation algorithm of Kahan, which is not
amenable to straightforward 1 + δ analysis. The algorithm maintains the
partial sums not as a single variable s, but as an unevaluated sum of two
variables s and c:

1 s = 0.0
2 c = 0.0
3 for k = 1:n
4 y = v[i] - c
5 t = s + y
6 c = (t - s) - y # Key step
7 s = t
8 end

Where the error bound for ordinary summation is (n−1)ϵmach∥v∥1+O(ϵ2mach),
the error bound for compensated summation is 2ϵmach∥v∥1+O(ϵ2mach). More-
over, compensated summation is exact for adding up to 2k terms that are
within about 2p−k of each other in magnitude.

Nor is Kahan’s algorithm the end of the story! Higham’s Accuracy and
Stability of Numerical Methods devotes an entire chapter to summation meth-
ods, and there continue to be papers written on the topic. For our purposes,
though, we will wrap up here with two observations:

Bindel, Fall 2022 Matrix Computations

• Our initial analysis in the 1+δ model illustrates the general shape these
types of analyses take and how we can re-cast the effect of rounding
errors as a “backward error” that perturbs the inputs to an exact prob-
lem.

• The existence of algorithms like Kahan’s compensated summation method
should indicate that the backward-error-and-conditioning approach to
rounding analysis is hardly the end of the story. One could argue it is
hardly the beginning! But it is the approach we will be using for most
of the class.

6.5 Dot products
We conclude with one more example error analysis, this time involving a real
dot product computed by a loop of the form

1 dot = 0
2 for k = 1:n
3 dot += x[k]*y[k];
4 end

Unlike the simple summation we analyzed above, the dot product involves
two different sources of rounding errors: one from the summation, and one
from the product. As in the case of simple summations, it is convenient to
re-cast this error in terms of perturbations to the input. We could do this
all in one go, but since we have already spent so much time on summation,
let us instead do it in two steps. Let vk = xkyk; in floating point, we get
v̂k = vk(1+ηk) where |ηk| < ϵmach. Further, we have already done a backward
error analysis of summation to show that the additional error in summation
can be cast onto the summands, i.e. the floating point result is

∑
k ṽk where

ṽk = v̂k(1 +
n∑

j=min(2,n)

δj)(1 + ηk) +O(ϵ2mach)

= vk(1 + γk) +O(ϵ2mach)

where
|γk| = |ηk +

n∑
j=min(2,n)

δj| ≤ nϵmach.

Rewriting vk(1 + γk) as x̂kyk where x̂k = xk(1 + γk), we have that the com-
puted inner product yTx is equivalent to the exact inner product of yT x̂

Bindel, Fall 2022 Matrix Computations

where x̂ is an elementwise relatively accurate (to within nϵmach + O(ϵ2mach))
approximation to x.

A similar backward error analysis shows that computed matrix-matrix
products AB in general can be interpreted as ÂB where

|Â− A| < pϵmach|A|+O(ϵ2mach)

and p is the inner dimension of the product. Exactly what Â is depends not
only on the data, but also the loop order used in the multiply — since, as
we recall, the order of accumulation may vary from machine to machine de-
pending on what blocking is best suited to the cache! But the bound on the
backward error holds for all the common re-ordering9 And this backward er-
ror characterization, together with the type of sensitivity analysis for matrix
multiplication that we have already discussed, gives us a uniform framework
for obtaining forward error bounds for matrix-matrix muliplication; and the
same type of analysis will continue to dominate our discussion of rounding
errors as we move on to more complicated matrix computations.

7 Problems to ponder
1. How do we accurately evaluate

√
1 + x−

√
1− x when x ≪ 1?

2. How do we accurately evaluate ln
√
x+ 1− ln

√
x when x ≫ 1?

3. How do we accurately evaluate (1− cos(x))/ sin(x) when x ≪ 1?

4. How would we compute cos(x)− 1 accurately when x ≪ 1?

5. The Lamb-Oseen vortex is a solution to the 2D Navier-Stokes equation
that plays a key role in some methods for computational fluid dynamics.
It has the form

vθ(r, t) =
Γ

2πr

(
1− exp

(
−r2

4νt

))
How would one evaluate v(r, t) to high relative accuracy for all values
of r and t (barring overflow or underflow)?

9For those of you who know about Strassen’s algorithm — it’s not backward stable,
alas.

Bindel, Fall 2022 Matrix Computations

6. For x > 1, the equation x = cosh(y) can be solved as

y = − ln
(
x−

√
x2 − 1

)
.

What happens when x = 108? Can we fix it?

7. The difference equation

xk+1 = 2.25xk − 0.5xk−1

with starting values
x1 =

1

3
, x2 =

1

12

has solution
xk =

41−k

3
.

Is this what you actually see if you compute? What goes wrong?

8. Considering the following two MATLAB fragments:
1 % Version 1
2 f = (exp(x)-1)/x;
3

4 % Version 2
5 y = exp(x);
6 f = (1-y)/log(y);

In exact arithmetic, the two fragments are equivalent. In floating point,
the first formulation is inaccurate for x ≪ 1, while the second formu-
lation remains accurate. Why?

9. Running the recurrence En = 1− nEn−1 forward is an unstable way to
compute

∫ 1

0
xnex−1 dx. However, we can get good results by running

the recurrence backward from the estimate En ≈ 1/(N + 1) starting at
large enough N . Explain why. How large must N be to compute E20

to near machine precision?

10. How might you accurately compute this function for |x| < 1?

f(x) =
∞∑
j=0

(
cos(xj)− 1

)

	Binary floating point
	Normalized representations
	Subnormal representations
	Infinities and NaNs

	Basic floating point arithmetic
	Exceptions
	Modeling floating point
	First-order error analysis
	Shortcomings of the model

	Finding and fixing floating point problems
	Cancellation
	Sensitive subproblems
	Unstable recurrences
	Undetected underflow
	Bad branches

	Sums and dots
	Sums two ways
	Backward error analysis for sums
	Running error bounds for sums
	Compensated summation
	Dot products

	Problems to ponder

