
Bindel, Fall 2019 Matrix Computation

2019-11-18

1 General relaxations
So far, we have mostly discussed stationary methods in we think of sweeping
through all the variables in some fixed order and updating a variable or block
of variables at a time. There is nothing that say that the order must be fixed,
though, if we are willing to forgo the analytical framework of splittings. There
are essentially two reasons that we might think to do this:

1. We decide which variable(s) to update next based on some adaptive
policy, such as which equations have the largest residual. This leads
to the Gauss-Southwell method. Various methods for fast (sublinear
time) personalized PageRank use this strategy.

2. We update variable(s) on multiple processors, communicating the changes
opportunistically. In this case, there may be no real rhyme or reason
to the order in which we see updates. These methods are called chaotic
relaxation or asynchronous relaxation approaches, and they have seen a
great deal of renewed interest over the past several years for both clas-
sical scientific computing problems (e.g. PDE solvers) and for machine
learning applications.

2 Alternating Direction Implicit
The alternating direction implicit approach to the model problem began life
as an operator-splitting approach to solving a time-domain diffusion problem.
At each step of an ordinary implicit time stepper for the heat equation, one
would solve a system of the form

(I +∆tT)x = b,

where ∆t is small and T is the 2D Laplacian operator. But note that if
T = Tx + Ty, then

(I +∆t/2Tx)(I +∆t/2Ty) = (I +∆tT +O(∆t)2);

hence, we commit only a small amount of error if instead of solving one system
with T we solve two half-step systems involving Tx and Ty, respectively,

Bindel, Fall 2019 Matrix Computation

where Tx and Ty are the discretizations of the derivative operator in the x
and y directions. This is known as the alternating direction method. The
implementation is relatively straightforward:

1 % [U] = sweep_adi(U, F)
2 %
3 % Run one ADI sweep for 2D Poisson (single shift)
4 %
5 function [U] = sweep_adi(U, F);
6 n = size(U,1)-2;
7 I = 2:n+1;
8 h2 = 1/(n+1)^2;
9 dt = 1/(n+1);

10 Ts = spdiags(ones(n,1)*[-1, 2+dt, -1], [-1, 0, 1], n, n);
11

12 % Iterate on Ts*U + U*Ts = h^2*F + 2*dt*U where Ts = T+dt*I:
13 % Ts*U = h^2*F + 2*dt*U - U*Ts
14 % U*Ts = h^2*F + 2*dt*U - Ts*U
15 U(I,I) = Ts\(h2*F(I,I) - U(I,I)*Ts + 2*dt*U(I,I));
16 U(I,I) = (h2*F(I,I) - Ts*U(I,I) + 2*dt*U(I,I))/Ts;
17

18 end

In practice, cycling between several different versions of the shift param-
eter (interpreted above as a time-step) can lead to very rapid convergence of
the ADI iteration. This beautiful classical result, which has deep connections
to the Zolotarev problem from approximation theory, has taken on renewed
usefulness in modern control theory and model reduction, where recent work
has connected ADI-type methods for Sylvester equations to various rational
Krylov methods.

The ADI method and its relations have also garnered many citations over
the past 5–10 years because of their role as prior art for various optimization
methods, such as the ADMM method.

3 Approximation from a subspace
Our workhorse methods for solving large-scale systems involve two key ideas:
relaxation to produce a sequence of ever-better approximations to a problem,
and approximation from a subspace assumed to contain a good estimate to the
solution (e.g. the subspace spanned by iterates of some relaxation method).
Having dealt with the former, we now deal with the latter.

Bindel, Fall 2019 Matrix Computation

Suppose we wish to estimate the solution to a linear system Ax(∗) = b by
an approximate solution x̂ ∈ V , where V is some approximation subspace.
How should we choose x̂? There are three standard answers:

• Least squares: Minimize ∥Ax̂− b∥2M for some M .

• Optimization: If A is SPD, minimize ϕ(x) = 1
2
xTAx− xT b over V .

• Galerkin: Choose Ax̂ − b ⊥ W for some test space W . In Bubnov-
Galerkin, W = V ; otherwise we have a Petrov-Galerkin method.

These three methods are the standard approaches used in all the methods
we will consider. Of course, they are not the only possibilities. For example,
we might choose x̂ to minimize the residual in some non-Euclidean norm,
or we might more generally choose x̂ by optimizing some non-quadratic loss
function. But these approaches lead to optimization problems that cannot
be immediately solved by linear algebra methods.

The three approaches are closely connected in many ways:

• Suppose x̂ is the least squares solution. Then the normal equations
give that Ax̂− b ⊥ MAV ; this is a (Petrov-)Galerkin condition.

• Similarly, suppose x̂ minimizes ϕ(x) over the space V . Then for any
δx ∈ V we must have

δϕ = δxT (Ax− b) = 0,

i.e. Ax− b ⊥ V . This is a (Bubnov-)Galerkin condition.

• If x is the least squares solution, then by definition we minimize
1

2
∥Ax− b∥2M =

1

2
xTATMAx− xTATMb+

1

2
bTMb,

i.e. we have the optimization objective for the normal equation SPD
system ATMAx− ATMb = 0, plus a constant.

• Note that if A is SPD, then we can express ϕ with respect to the A−1

norm as
ϕ(x) =

1

2
∥Ax− b∥2A−1 −

1

2
bTA−1b,

so choosing x̂ by minimizing ϕ(x) is equivalent to minimizing the A−1

norm of the residual.

Bindel, Fall 2019 Matrix Computation

• Alternately, write ϕ(x) as

ϕ(x) =
1

2
∥x− A−1b∥2A − 1

2
bTA−1b,

and so choosing x̂ by minimizing ϕ(x) is also equivalent to minimizing
the A norm of the error.

When deriving methods, it is frequently convenient to turn to one or the
other of these characterizations. But for computation and analysis, we will
generally turn to the Galerkin formalism.

In order for any of these methods to produce accurate results, we need
two properties to hold:

• Consistency: Does the space contain a good approximation to x?

• Stability: Will our scheme find something close to the best approxima-
tion possible from the space?

We leave the consistency and the choice of subspaces to later; for now, we
deal with the problem of method stability.

4 Quasi-optimality
We quantify the stability of a subspace approximation method via a quasi-
optimality bound:

∥x∗ − x̂∥ ≤ Cmin
v∈V

∥x∗ − v∥.

That is, the approximation x̂ is quasi-optimal if it has error within some
factor C of the best error possible within the space.

To derive quasi-optimality results, it is useful to think of all of our meth-
ods as defining a solution projector that maps x∗ to the approximate solution
to Ax̂ = Ax∗ = b. From the (Petrov-)Galerkin perspective, if W ∈ Rn×k and
V ∈ Rn×k are bases for the trial space W and V , respectively, then we have

W TAV ŷ = W T b, x̂ = V ŷ

x̂ = V (W TAV)−1W T b

= V (W TAV)−1W TAx∗.

= Πx∗.

Bindel, Fall 2019 Matrix Computation

The error projector I−Π maps x∗ to the error x̂−x∗ in approximately solving
Ax̂ ≈ Ax∗ = b. There is no error iff x∗ is actually in V ; that is, V is the null
space of I − Π. Hence, if x̃ is any vector in V , then

ê = (I − Π)x = (I − Π)(x− x̃) = (I − Π)ẽ.

Therefore we have

∥x− x̂∥ ≤ ∥I − Π∥min
x̃∈V

∥x− x̃∥,

and a bound on ∥I − Π∥ gives a quasi-optimality result.
For any operator norm, we have

|I − Π∥ ≤ 1 + ∥Π∥ ≤ 1 + ∥V ∥∥(W TAV)−1∥∥W TA∥;

and in any Euclidean norm, if V and W are chosen to have orthonormal
columns, then

∥I − Π∥ ≤ 1 + ∥(W TAV)−1∥∥A∥.

If A is symmetric and positive definite and V = W , then the interlace
theorem gives ∥(V TAV)−1∥ ≤ ∥A−1∥, and the quasi-optimality constant is
bounded by 1 + κ(A). In more general settings, though, we may have no
guarantee that the projected matrix W TAV is far from singular, even if A
itself is nonsingular. To guarantee boundedness of (W TAV)−1 a priori re-
quires a compatibility condition relating W , V , and A; such a condition is
sometimes called the LBB condition (for Ladyzhenskaya-Babuška-Brezzi) or
the inf-sup condition, so named because (as we have discussed previously)

σmin(W
TAV) = inf

w∈W
sup
v∈V

wTAv

∥w∥∥v∥
.

The LBB condition plays an important role when Galerkin methods are used
to solve large-scale PDE problems, since there it is easy to choose the spaces
V and W in a way that leads to very bad conditioning. But for iterative
solvers of the type we discuss in this course (Krylov subspace solvers), such
pathologies are a more rare occurrence. In this setting, we may prefer to
monitor ∥(W TAV)−1∥ directly as we go along, and to simply increase the
dimension of the space if we ever run into trouble.

	General relaxations
	Alternating Direction Implicit
	Approximation from a subspace
	Quasi-optimality

