
Bindel, Fall 2019 Matrix Computation

2019-10-04
A programmatic note: this version of the lecture notes includes updates

posted after the actual lecture in order to reflect what we actually covered
(general inner products and the Gauss-Markov theorem).

1 General inner products
Let’s start this lecture by considering the derivation of the normal equations
in a more abstract setting. For a general inner product space over R, the
least squares problem is to minimize

ϕ(x) =
1

2
∥Ax− b∥2 = 1

2
⟨Ax− b, Ax− b⟩.

Taking variations with respect to x, we have the normal equations

δϕ = ⟨Aδx,Ax− b⟩ = 0 for all δx.

In the standard inner product, we write this as δxTAT (Ax−b) = 0; but what
if we work with something other than the standard inner product?

For any finite-dimensional abstract inner product space, we can choose
an orthonormal basis to make things look like Rn with the standard inner
product. However, we might prefer a basis that is not orthonormal. A
standard example of this is the space Pd of polynomials of degree at most d,
with the inner product

⟨p, q⟩L2[−1,1] =

∫ 1

−1

p(x)q(x) dx.

Expressed in terms of the monomial basis 1, x, x2, . . . , xd (also called the
power basis), we have⟨

d∑
j=0

ajx
j,

d∑
i=0

bix
i

⟩
L2[−1,1]

=

∫ 1

−1

(
d∑

j=0

ajx
j

)(
d∑

i=0

bix
i

)
dx

=
d∑

i=0

d∑
j=0

biaj

∫ 1

−1

xixj dx

= bTMa



Bindel, Fall 2019 Matrix Computation

where the entries of M (indexed from 0 to d) are

mij = ⟨xi, xj⟩L2[−1,1] =

∫ 1

−1

xixj dx =

{
2/(i+ j + 1), i+ j even
0, otherwise.

More generally, for any finite dimensional inner product space over R with
some basis v1, . . . , vn, we have⟨∑

j

ajvj,
∑
i

bivi

⟩
= bTMa, where mij = ⟨vi, vj⟩.

By the symmetry and positive definiteness propertiess of the inner product,
the matrix M must also be symmetric and positive definite.

In general, every symmetric positive definite matrix defines an inner prod-
uct on Rn, and every inner product on a finite dimensional space can be
written in terms of an spd matrix. For a general spd matrix M , we say the
M inner product is1

⟨x, y⟩M = yTMx,

and the associated norm is

∥x∥M =
√
xTMx.

The standard inner product corresponds to M = I. For general M , though,
the normal equations are

⟨Aδx,Ax− b⟩M = δxTATM(Ax− b) = 0 for all δx.

The generalized Moore-Penrose pseudo-inverse is therefore.

x = A†
Mb, A†

M = (ATMA)−1ATM.

If M = RTR is a Cholesky factorization, then we have⟨∑
j

ajvj,
∑
i

bivi

⟩
= bTMa = (Rb)T (Ra),

1What’s the story with the order of x and y? In the complex case, we usually say the
inner product is linear in the first slot and conjugate-linear in the second slot. Hence, in
the complex case we want ⟨x, y⟩M = y∗Mx. In the real case, the order does not matter:
yTMx = xTMy.



Bindel, Fall 2019 Matrix Computation

which means in particular that

∥x∥2M = ∥Rx∥2.

Therefore, minimizing ∥Ax− b∥2M is equivalent to minimizing ∥R(Ax− b)∥2,
and we can map from the standard inner product version of the normal
equations to the generalized version:

(RA)TR(Ax− b) = ATRTR(Ax− b) = ATM(Ax− b) = 0.

2 Inner products and random variables
Suppose X and Y are real-valued random variables. Then co-variance of X
and Y is defined to be

Cov[X,Y ] = E[XY ]− E[X]E[Y ],

and the covariance of X is Var[X] = Cov[X,X]. In general, the covariance
is a positive semi-definite quadratic form, and the only null vectors for the
quadratic forms (zero-variance random variables) are constants. The set of
random variables with zero mean and finite variance forms a vector space2 for
which the covariance forms an inner product and the variance can be treated
as a squared Euclidean norm. With this observation, an enormous amount
of basic probability theory can be translated directly into linear algebra3.

What about random variables that are not zero variance? In general, we
can define an inner product over all finite-variance real random variables by

⟨X,Y ⟩ = E[XY ].

For continuous random variables that are defined on some underlying space
with a probability density function µ(z), we have

⟨X,Y ⟩ =
∫

x(z)y(z)µ(z) dz,

2The “finite variance” restriction is automatic when we are dealing with random vari-
ables on a finite set. The restriction is important when dealing with continuous random
variables, or even random variables on a discrete-but-infinite set.

3This does not seem to be the most common way to teach these concepts in probability
theory, but it is certainly the way that I taught them when I had the chance to teach the
class.



Bindel, Fall 2019 Matrix Computation

i.e. the expected value inner product defines a (weighted) L2 inner product
space. The problem of finding a minimal mean-squared error predictor for
a random variable Y in terms of random variables X1, . . . , Xn is exactly a
least squares problem with respect to this L2 inner product.

3 The Gauss-Markov theorem
The Gauss-Markov theorem is one of the motivations for studying least
squares in a statistical context. Suppose for some unknown x we have a
random vector b drawn from the multivariate normal distribution

b ∼ N(Ax,C).

We seek to find the best linear unbiased estimator (BLUE) for x. Unpacking
the last three terms, we want:

• A linear estimator for x in terms or the observed random vector b.
That is, we want a statistic

x̂ = Lb

for some matrix L. By a simple computation — or consulting an ap-
propriate reference — we note that

x̂ ∼ N(LAx,LCLT )

• We want x̂ to be an unbiased estimator. That means

E[Lb] = LAx = x,

i.e. L should be a pseudo-inverse of A.

What does it mean to choose the “beat” linear unbiased predictor? In
order to explain this, it is useful to first find a plausible candidate for the
best choice. The probability density function for b is

p(b) =
1√

det(2πC)
exp

(
−1

2
(b− Ax)C−1(b− Ax)

)
.



Bindel, Fall 2019 Matrix Computation

Treating this as a likelihood, the maximum likelihood estimate for x would
involve minimizing the quantity

1

2
∥b− Ax∥2C−1 ,

i.e. we consider x̂ = A†
C−1b as a candidate for the “best” solution. A†

C−1 is a
pseudoinverse for A, so this is a linear unbiased estimator. Moreover, we can
write any linear unbiased estimator in terms of

L = A†
C−1 + F

for some F s.t. FA = 0. The covariance matrix for any such estimator will
be

LCLT = A†
C−1CA†

C−1 + 2[A†
C−1CF T ]S + FCF T ,

where [B]S refers to the symmetric part of B for any square matrix B. The
first and last term in this expansion are clearly positive definite; the middle
term is the symmetric part of

(ATC−1A)−1ATC−1CF T = (ATC−1A)−1(FA)T = 0.

Therefore, for any nonzero F , we have variance

LCLT = A†
C−1CA†

C−1 + FCF T ≥ A†
C−1CA†

C−1 ,

where the ordering relation ≥ means that the first matrix is greater than the
second by a symmetric positive definite difference. The pseudoinverse A†

C−1

is best in the sense that it results in a variance smaller than that of any other
pseudoinverse.

4 QR and Gram-Schmidt
We now turn to our first numerical method for computing the QR decom-
position: the Gram-Schmidt algorithm. This method is usually presented in
first linear algebra classes, but is rarely interpreted as a matrix factorization.
Rather, it is presented as a way of converting a basis for a space into an
orthonormal basis for the same space. If a1, a2, . . . , an are column vectors,



Bindel, Fall 2019 Matrix Computation

the Gram-Schmidt algorithm is as follows: for each j = 1, . . . , n

ãj = aj −
j−1∑
i=1

qiq
T
i aj

qj = ãj/∥ã∥j.

At the end of the iteration, we have that the qj vectors are all mutually
orthonormal and

span{a1, . . . , aj} = span{q1, . . . , qj}.

To see this as a matrix factorization, we rewrite the iteration as

rij = qTi aj

ãj = aj −
j−1∑
i=1

qirij

rjj = ∥ã∥j
qj = ãj/rjj

Putting these equations together, we have that

aj =

j∑
i=1

qirij,

or, in matrix form,
A = QR

where A and Q are the matrices with column vectors aj and qj, respectively.
Sadly, the Gram-Schmidt algorithm is not backward stable. The problem

occurs when a vector aj is nearly in the span of previous vectors, so that
cancellation rears its ugly head in the formation of ãj. The classical Gram-
Schmidt (CGS) method that we have shown is particularly problematic; a
somewhat better alternative is the modified Gram-Schmidt method (MGS)
algorithm:

1 % Overwrite A with Q via MGS, store R separately
2 R = zeros(n);
3 for j = 1:n
4 for i = 1:n-1



Bindel, Fall 2019 Matrix Computation

5 R(i,j) = Q(:,i)'*A(i,j);
6 A(:,j) = A(:,j) - Q(:,i)*R(i,j);
7 end
8 R(j,j) = norm(A(:,j));
9 A(:,j) = A(:,j) / R(j,j);

10 end

Though equivalent in exact arithmetic, the MGS algorithm has the advan-
tage that it computes dot products with the updated ãj as we go along,
and these intermediate vectors have smaller norm than the original vector.
Sadly, this does not completely fix the matter: the computed qj vectors
can still drift away from being orthogonal to each other. One can explicitly
re-orthogonalize vectors that drift away from orthogonality, and this helps
further. In practice, though, we usually don’t bother: if backward stability
is required, we turn to other algorithms.

Despite its backward instability, the Gram-Schmidt algorithm forms a
very useful building block for iterative methods, and we will see it frequently
in later parts of the course.

5 Householder transformations
The Gram-Schmidt orthogonalization procedure is not generally recommended
for numerical use. Suppose we write A = [a1 . . . am] and Q = [q1 . . . qm]. The
essential problem is that if rjj ≪ ∥aj∥2, then cancellation can destroy the
accuracy of the computed qj; and in particular, the computed qj may not
be particularly orthogonal to the previous qj. Actually, loss of orthogonality
can build up even if the diagonal elements of R are not exceptionally small.
This is Not Good, and while we have some tricks to mitigate the problem,
we need a different approach if we want the problem to go away.

Recall that one way of expressing the Gaussian elimination algorithm is
in terms of Gauss transformations that serve to introduce zeros into the lower
triangle of a matrix. Householder transformations are orthogonal transfor-
mations (reflections) that can be used to similar effect. Reflection across the
plane orthogonal to a unit normal vector v can be expressed in matrix form
as

H = I − 2vvT .

Now suppose we are given a vector x and we want to find a reflection
that transforms x into a direction parallel to some unit vector y. The right



Bindel, Fall 2019 Matrix Computation

x− ∥x∥y
x

∥x∥y

Figure 1: Construction of a reflector to transform x into ∥x∥y, ∥y∥ = 1.

reflection is through a hyperplane that bisects the angle between x and y
(see Figure 1), which we can construct by taking the hyperplane normal to
x− ∥x∥y. That is, letting u = x− ∥x∥y and v = u/∥u∥, we have

(I − 2vvT )x = x− 2
(x+ ∥x∥y)(xTx+ ∥x∥xTy)

∥x∥2 + 2xTy∥x∥+ ∥x∥2∥y∥2

= x− (x− ∥x∥y)
= ∥x∥y.

If we use y = ±e1, we can get a reflection that zeros out all but the first
element of the vector x. So with appropriate choices of reflections, we can
take a matrix A and zero out all of the subdiagonal elements of the first
column.

Now think about applying a sequence of Householder transformations
to introduce subdiagonal zeros into A, just as we used a sequence of Gauss
transformations to introduce subdiagonal zeros in Gaussian elimination. This
leads us to the following algorithm to compute the QR decomposition:

1 function [Q,R] = hqr1(A)
2 % Compute the QR decomposition of an m-by-n matrix A using
3 % Householder transformations.
4

5 [m,n] = size(A);
6 Q = eye(m); % Orthogonal transform so far
7 R = A; % Transformed matrix so far
8

9 for j = 1:n
10



Bindel, Fall 2019 Matrix Computation

11 % -- Find H = I-tau*w*w' to put zeros below R(j,j)
12 normx = norm(R(j:end,j));
13 s = -sign(R(j,j));
14 u1 = R(j,j) - s*normx;
15 w = R(j:end,j)/u1;
16 w(1) = 1;
17 tau = -s*u1/normx;
18

19 % -- R := HR, Q := QH
20 R(j:end,:) = R(j:end,:)-(tau*w)*(w'*R(j:end,:));
21 Q(:,j:end) = Q(:,j:end)-(Q(:,j:end)*w)*(tau*w)';
22

23 end

Note that there are two valid choices of u1 at each step; we make the choice
that avoids cancellation in the obvious version of the formula.

As with LU factorization, we can re-use the storage of A by recognizing
that the number of nontrivial parameters in the vector w at each step is the
same as the number of zeros produced by that transformation. This gives us
the following:

1 function [A,tau] = hqr2(A)
2 % Compute the QR decomposition of an m-by-n matrix A using
3 % Householder transformations, re-using the storage of A
4 % for the Q and R factors.
5

6 [m,n] = size(A);
7 tau = zeros(n,1);
8

9 for j = 1:n
10

11 % -- Find H = I-tau*w*w' to put zeros below A(j,j)
12 normx = norm(A(j:end,j));
13 s = -sign(A(j,j));
14 u1 = A(j,j) - s*normx;
15 w = A(j:end,j)/u1;
16 w(1) = 1;
17 A(j+1:end,j) = w(2:end); % Save trailing part of w
18 A(j,j) = s*normx; % Diagonal element of R
19 tau(j) = -s*u1/normx;
20

21 % -- R := HR
22 A(j:end,j+1:end) = A(j:end,j+1:end)-...
23 (tau(j)*w)*(w'*A(j:end,j+1:end));
24



Bindel, Fall 2019 Matrix Computation

25 end

If we ever need Q or QT explicitly, we can always form it from the com-
pressed representation. We can also multiply by Q and QT implicitly:

1 function QX = applyQ(QR,tau,X)
2

3 [m,n] = size(QR);
4 QX = X;
5 for j = n:-1:1
6 w = [1; QR(j+1:end,j)];
7 QX(j:end,:) = QX(j:end,:)-(tau(j)*w)*(w'*QX(j:end,:));
8 end

1 function QTX = applyQT(QR,tau,X)
2

3 [m,n] = size(QR);
4 QTX = X;
5 for j = 1:n
6 w = [1; QR(j+1:end,j)];
7 QTX(j:end,:) = QTX(j:end,:)-(tau(j)*w)*(w'*QTX(j:end,:));
8 end

6 Givens rotations
Householder reflections are one of the standard orthogonal transformations
used in numerical linear algebra. The other standard orthogonal transforma-
tion is a Givens rotation:

G =

[
c −s
s c

]
.

where c2 + s2 = 1. Note that

G =

[
c −s
s c

] [
x
y

]
=

[
cx− sy
sx+ cy

]
so if we choose

s =
−y√
x2 + y2

, c =
x√

x2 + y2

then the Givens rotation introduces a zero in the second column. More
generally, we can transform a vector in Rm into a vector parallel to e1 by



Bindel, Fall 2019 Matrix Computation

a sequence of m − 1 Givens rotations, where the first rotation moves the
last element to zero, the second rotation moves the second-to-last element to
zero, and so forth.

For some applications, introducing zeros one by one is very attractive.
In some places, you may see this phrased as a contrast between algorithms
based on Householder reflections and those based on Givens rotations, but
this is not quite right. Small Householder reflections can be used to introduce
one zero at a time, too. Still, in the general usage, Givens rotations seem to
be the more popular choice for this sort of local introduction of zeros.


	General inner products
	Inner products and random variables
	The Gauss-Markov theorem
	QR and Gram-Schmidt
	Householder transformations
	Givens rotations

