
Bindel, Fall 2019 Matrix Computation

2019-09-23

1 Error analysis for linear systems
We now discuss the sensitivity of linear systems to perturbations. This is
relevant for two reasons:

1. Our standard recipe for getting an error bound for a computed solution
in the presence of roundoff is to combine a backward error analysis
(involving only features of the algorithm) with a sensitivity analysis
(involving only features of the problem).

2. Even without rounding error, it is important to understand the sensi-
tivity of a problem to the input variables if the inputs are in any way
inaccurate (e.g. because they come from measurements).

We describe several different bounds that are useful in different contexts.

1.1 First-order analysis
We begin with a discussion of the first-order sensitivity analysis of the system

Ax = b.

Using our favored variational notation, we have the following relation between
perturbations to A and b and perturbations to x:

δAx+ Aδx = δb,

or, assuming A is invertible,

δx = A−1(δb− δAx).

We are interested in relative error, so we divide through by ∥x∥:

∥δx∥
∥x∥

≤ ∥A−1δb∥
∥x∥

+
∥A−1δAx∥

∥x∥

The first term is bounded by

∥A−1δb∥
∥x∥

≤ ∥A−1∥∥δb∥
∥x∥

= κ(A)
∥δb∥

∥A∥∥x∥
≤ κ(A)

∥δb∥
∥b∥

Bindel, Fall 2019 Matrix Computation

and the second term is bounded by

∥A−1δAx∥
∥x∥

≤ ∥A−1∥∥δA∥∥x∥
∥x∥

= κ(A)
∥δA∥
∥A∥

Putting everything together, we have

∥δx∥
∥x∥

≤ κ(A)

(
∥δA∥
∥A∥

+
∥δb∥
∥b∥

)
,

That is, the relative error in x is (to first order) bounded by the condition
number times the relative errors in A and b.

1.2 Beyond first order
What if we want to go beyond the first-order error analysis? Suppose that

Ax = b and Âx̂ = b̂.

Then (analogous to our previous manipulations),

(Â− A)x̂+ A(x̂− x) = b̂− b

from which we have

x̂− x = A−1
(
(b̂− b)− Ex̂

)
,

where E ≡ Â− A. Following the same algebra as before, we have

∥x̂− x∥
∥x∥

≤ κ(A)

(
∥E∥
∥A∥

∥x̂∥
∥x∥

+
∥b̂− b∥
∥b∥

)
.

Assuming ∥A−1∥∥E∥ < 1, a little additional algebra (left as an exercise to
the student) yields

∥x̂− x∥
∥x∥

≤ κ(A)

1− ∥A−1∥∥E∥

(
∥E∥
∥A∥

+
∥b̂− b∥
∥b∥

)
.

Is this an important improvement on the first order bound? Perhaps not,
for two reasons:

Bindel, Fall 2019 Matrix Computation

• One typically cares about the order of magnitude of possible error, not
the exact bound, and

• The first-order bound and the “true” bound only disagree when both
are probably pretty bad. When our house is in flames, our first priority
is not to gauge whether the garage will catch as well; rather, we want
to call the firefighters to put it out!

1.3 Componentwise relative bounds
What if we have more control over the perturbations than a simple bound
on the norms? For example, we might have a componentwise perturbation
bound

|δA| < ϵA|A| |δb| < ϵb|b|,
and neglecting O(ϵ2) terms, we obtain

|δx| ≤ |A−1| (ϵb|b|+ ϵA|A||x|) ≤ (ϵb + ϵA)|A−1||A||x|.

Taking any vector norm such that ∥ |x| ∥ = ∥x∥, we have

∥δx∥ ≤ (ϵ+ ϵ′)∥ |A−1| |A| ∥.

The quantity κrel(A) = ∥ |A−1| |A| ∥ is the componentwise relative condition
number (also known as the Skeel condition number).

1.4 Residual-based bounds
The residual for an approximate solution x̂ to the equation Ax = b is

r = Ax̂− b.

We can express much simpler error bounds in terms of the residual, using
the relation

x̂− x = A−1r;

taking norms immediately gives

∥x̂− x∥ ≤ ∥A−1∥∥r∥

and for any vector norm such that ∥ |x| ∥ = ∥x∥, we have

∥x̂− x∥ ≤ ∥ |A−1||r| ∥.

Bindel, Fall 2019 Matrix Computation

Note that we can re-cast a residual error as a backward error on A via the
relation (

A− rx̂T

∥x̂∥2

)
x̂ = b.

1.5 Shape of error
So far, we have only really discussed the magnitude of errors in a linear solve,
but it is worth taking a moment to consider the shape of the errors as well. In
particular, suppose that we want to solve Ax = b, and we have the singular
value decomposition

A = UΣV T .

If σn(A) ≪ σ1(A), then κ2 = σ1/σn ≫ q, and we expect a large error. But is
this the end of the story? Suppose that A satisfies

1 ≥ σ1 ≥ . . . ≥ σk ≥ C1 > C2 ≥ σk+1 ≥ . . . ≥ σn > 0.

where C1 ≫ C2. Let r = Ax̂− b, so that Ae = r where e = x̂− x. Then

e = A−1r = V Σ−1UT r = V Σ−1r̃ =
n∑

j=1

r̃j
σj

vj.

where ∥r̃∥ = ∥UT r∥ = ∥r∥. Split this as

e = e1 + e2

where we have a controlled piece

∥e1∥ =

∥∥∥∥∥
k∑

j=1

r̃j
σj

vj

∥∥∥∥∥ ≤ ∥r∥
C1

and a piece that may be large,

e2 =
n∑

j=k+1

r̃j
σj

vj.

Hence, backward stability implies that the error consists of a small part and
a part that lies in the “nearly-singular subspace” for the matrix.

Bindel, Fall 2019 Matrix Computation

2 Iterative refinement
If we have a solver for Â = A + E with E small, then we can use iterative
refinement to “clean up” the solution. The matrix Â could come from finite
precision Gaussian elimination of A, for example, or from some factorization
of a nearby “easier” matrix. To get the refinement iteration, we take the
equation

(1) Ax = Âx− Ex = b,

and think of x as the fixed point for an iteration

(2) Âxk+1 − Exk = b.

Note that this is the same as

Âxk+1 − (Â− A)xk = b,

or
xk+1 = xk + Â−1(b− Axk).

If we subtract (1) from (2), we see

Â(xk+1 − x)− E(xk − x) = 0,

or
xk+1 − x = Â−1E(xk − x).

Taking norms, we have

∥xk+1 − x∥ ≤ ∥Â−1E∥∥xk − x∥.

Thus, if ∥Â−1E∥ < 1, we are guaranteed that xk → x as k → ∞. In fact,
this holds even if the backward error varies from step to step, as long as it
satisfies some uniform bound that is less than one. At least, this is what
happens in exact arithmetic.

In practice, the residual is usually computed with only finite precision,
and so we would stop making progress at some point — usually at the point
where we have a truly backward stable solution. In general, iterative refine-
ment is mainly used when either the residual can be computed with extra
precision or when the original solver suffers from relatively large backward
error.

	Error analysis for linear systems
	First-order analysis
	Beyond first order
	Componentwise relative bounds
	Residual-based bounds
	Shape of error

	Iterative refinement

