

All about Tunnels

Paul Francis CS619, Sept. 21 2004

IP has only a few basic principles

- Gateway / subnet architecture
 - Implemented as encapsulation of IP header within subnet protocol header
- · Fragmentation to conform to subnet MTU size
- · Best effort at IP layer
 - upper layers responsible for additional "services"
 - nothing expected from lower layers
- E2E IP address distinct from subnet addresses
 - Hourglass: one IP, many different subnets and transports

Gateway / subnet layering, more than anything else, led to IP's success

(in my humble opinion)

- This layering (encapsulation) allowed the Internet to easily absorb Ethernet
 - X.25 couldn't do this as easily, for instance

Main benefits of encapsulation

- Modularity
 - Develop subnet technologies without thinking about IP
- Scalability
 - Subnet is not impacted by the tremendous scale of IP
- These are important benefits, and as it so happens:
- They apply to "mutual encapsulation" as well as to IP-on-subnet encapsulation!

What is "mutual encapsulation"?

- The situation where "peer network protocols" may each encapsulate over the other
 - First encountered with PUP and IP around 1980
 - · Bob Metcalfe originated the term
 - Sometimes each might view the other as a "subnet"
- The more general term "tunnel" evolved to mean an instance of this type of encapsulation
 - Subnet encap is of course also a "tunnel" of sorts
- By the early 90's, it was clear that IP-in-IP was a useful form of tunnel

Why IP-in-IP tunneling???

- · Originally (late '80s) for routing tricks
 - From RFC 1241 (1991):
 - A tunnel . . . circumvents conventional routing mechanisms
 - ... bypass routing failures, avoid broken gateways and routing domains, or establish deterministic paths for experimentation
 - To do policy routing over administrative domains (RFC1479)

Was Postel stupid?

ORNE

- Didn't he foresee a need to tunnel IP around routing failures etc.??? (RFC791, 1981)
- · Of course he did: Loose Source Routing (LSR)
 - IP LSR option carries a series of router addresses
 - Each router is visited in turn
 - By swapping router address into the destination address field
- · But LSR was never widely implemented
- · And we figured out how to solve routing without tunnels
 - Dynamic routing protocols (OSPF, ISIS, RIP, . . .)
 - BGP and next hop resolution

Even so, IP-IP tunnels have proliferated!*

Cornei

- L2TP
 - R-R, prot 115
 - XX-L2TP-[UDP]-IP
- PPTP
 - R-R. later H-R
 - XX-PPP-GRE'-IP
- MIF
 - H-R, prot 55 (135 for v6)
 - IP-IP, or IP-GRE-IP
- GRE
 - R-R, H-R (PPTP), prot 47
 - XX-GRE-IP
- IP-IP
 - R-R, H-R (MIP), prot 4

- IPsec
 - R-R or H-R or H-H, prots 50,51
 - IP-IPsec-IP. or
 - IP-IPsec-UDP-IP
- IPv6-IP(v4)
 - R-R, H-R, or H-H, prot 41
 - IPv6-IP, or IPv6-UDP-IP
- IP mcast-IP (mbone)
 - Uses IP-IP
- · link-IP!
 - Eth-IP, prot 97
 - MPLS-IP, prot TBA
 - * Yes, this is meant to be confusing**
 - ** Assume errors here...

Why so many tunnels???

- Four primary reasons:
 - Virtualization
 - Security
 - Preserve an interface
 - Protocol evolution (incremental deployment)
- (Note that solving routing problems per se is not one of the reasons!)

Some tunnel terminology . . .

Cornei

(This is my terminology)

- · Symmetric versus Cone
 - Symmetric: Tunnel Endpoint (TE) and Tunnel Startpoint (TS) bound together and explicitly configured
 - · Tunnel may or may not be authenticated
 - · Packets may or may not be authenticated
 - Cone: TE and TS not explicitly bound---any TS can send to any TE (this is rare)
- · Unidirectional versus Bidirectional
 - Cone is by definition unidirectional
 - Symmetric is typically bidirectional

Other tunnel characterizations

- · How is the tunnel endpoint (TE) discovered?
- · How is the tunnel established?
- What types of systems (host, router, etc.) can be tunnel endpoints?
- Are the tunnel endpoints authenticated, and how?
- Are packets in the tunnel authenticated, and how?
- · How are fragmentation and TTL handled?

GRE (Generic Routing Encapsulation)

- The only tunnel standardized outside of a specific context
- Meant to satisfy several "generic" tunnel requirements:
 - Allows anything Some tunnels should mimic link characteristics in terms of packet ordering and loss
 - Some tunnels have a certain virtual context (i.e. VPN)

GRE Header (RFC 1701) For Routing field Same as Ethernet processing 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 8 9 0 1 5 6 7 8 9 0 1 |C|R|K|S|s|Recur| Flags | Ver | Protocol Type Offset (optional) Checksum (optional) Key (optional) Sequence Number (optional) Routing (optional)

More about GRE tunnels

- GRE spec says nothing about how the tunnel is configured
 - Which is appropriate
- · GRE provides no authentication
 - Of the tunnel or of the packets in the tunnel
 - The tunnel can run over IPsec though, thus allowing multiprotocol and meast over IPsec
- GRE tunnel does not have to be symmetric
 - But typically it is (i.e. for VPN)

GRE (and other) tunnel issues

- All router-to-router tunnels must deal with two basic issues:
 - Fragmentation
 - IP TTL (hop count) field (Actually this not a big deal--just copy TTL over for both encap and decap)
- Problem with fragmentation is that packet may fragment in tunnel, but ICMP error message doesn't identify sending host
 - Router may need to know tunnel MTU, and generate its own ICMP message to host
 - I don't know if this is still a real issues or not . . .

L2TP and PPTP

- Purpose is to extend a PPP link across the Internet
 - Mainly for client VPN functionality
 - They are essentially "competing" protocols
- PPP is a link-layer protocol originally designed for authentication and framing for dial-up links
 - Between a host and network access controller box
 - Now also used for high-speed router links

<u>Draw a PPTP/L2TP example (with Radius tunnel parameter)</u>

L2TP and PPTP

- L2TP and PPTP tunnels are always bidirectional (and symmetric)
- · The tunnel itself may be authenticated
- The tunnel may be dynamically configured via a RADIUS attribute
- User sessions running over the tunnel are also authenticated (using PPP authentication methods)
- · These days PPTP often runs directly from the client host
 - As a client VPN solution

Mobile IP (MIP)

- Allows a host to maintain the same IP address as it changes access points
- Operates by establishing a tunnel from the mobile host to a fixed router (the Home Agent)
 - This tunnel is IP-IP or GRE
- Mutual authentication of Home Agent and mobile host
 - Originally used a MIP-specific authentication, later evolved to use same authentication as PPP
 - · CHAP with Network Access Identifiers (NAI)

MIP and VPN

- Some commercial products combine benefits of VPN and MIP (mobile host access to VPN)
 - Runs IPsec over MIP (over UDP, in order to deal with NAT boxes!)
- MIP tunnels have evolved to have much in common with L2TP/PPTP tunnels
 - Bidirectional, authenticated
 - RADIUS can now be used to assign the tunnel endpoint (HA)
 - Indeed some folks derive mobility from L2TP by maintaining abstraction of a stable PPP session during mobility

IPv6 – IPv4

ORNE

- IPv6 IPv4 needed to transition to IPv6
 - Run IPv6 over existing IPv4 infrastructure
 - Can be GRE, but often not
- IPv6 folks have been quite creative about how to autoconfigure these tunnels
 - 6to4: embed IPv4 address in IPv6 address to cross global IPv4 backbone
 - ISATAP: embed IPv4 address in IPv6 address to cross enterprise network
 - Teredo: embed NAT address in port in IPv6 address to cross NAT (IPv6-UDP-IPv4)
 - Plus protocols for negotiating and establishing v6-v4 tunnels

6to4 is not bidirectional

Cornei

- Mostly so far we've seen bidirectional (symmetric) tunnels
- · 6to4 is the first cone tunnel we've seen
 - Because any 6to4 router may send packets to any other 6to4 router

mbone

- The mbone is perhaps the earliest example of an IP-IP overlay network
 - Used to run IP multicast over an IP unicast infrastructure
- · Used IP-IP encapsulation
- Note:
 - Most global multicast done as application overlays (i.e. Akamai, Real Networks)
 - Native IP multicast usage growing in enterprises

Link over IP

- · Ethernet over IP
 - Used to preserve an Ethernet interface abstraction
- · MPLS over IP
 - Naturally

MPLS "tunnels"

- · MPLS is a "subnet" (below IP) technology
- But it is often seen as an IP tunneling technology because it is closely coupled with IP
 - BGP carries information about MPLS tunnel endpoints for running provider VPNs
 - MPLS labels can be "stacked", so it is a powerful primitive for tunneling
 - · Convey tunnel context, for instance

Do we have enough tunnels???

- · Well, yes and no . . .
- We have enough tunnel formats (more than enough!), but we are still nowhere near getting all we can from tunneling!
 - · My opinion anyway
- · What's missing?
 - General purpose lightweight cone tunnels at routers
 - Ability to establish per-socket tunnels at hosts
 - · Not just per-interface as we have today

Per-socket host tunnels

Cornel

- · Needed because of "middleboxes"
 - Firewalls, NATs, web proxies, virus filters, protocol boosters, etc.
- Today hosts can establish "per-interface" tunnels (i.e. to VPN server), but not per-socket
- Per-socket tunnel definition allows packets to be routed through middleboxes as appropriate
- A signaling protocol like SIP could be used to specify the middleboxes

NAT Example

Need for lightweight router cone tunnels

- · Traffic engineering within an ISP
 - This courtesy Jennifer Rexford
- · Traffic engineering across ISPs
- · Better BGP scaling
 - These last two from Joy Zhang's TBGP research
 - TBGP = Tunneled BGP!

TBGP

- Problem:
 - BGP overloaded: slow response times, hard to understand and debug
 - BGP does not provide adequate traffic engineering (especially site multihoming)
- · TBGP solution:
 - Pull as much out of BGP as possible, making it more responsive and simpler to understand
 - Use BGP only to route to POPs, not all destinations
 - Use tunnels and flat tunnel mapping tables to select appropriate POP
 - Intuition: Flat mapping tables much easier to deal with than BGP distributed route computation

TBGP picture

Intra-ISP traffic engineering

- Problem:
 - Traffic engineering through OSPF metric manipulation is very hard
 - One metric change ripples through the system in hard to predict ways
 - MPLS is too heavyweight (label setup protocols etc.)
- Solution:
 - Use IP-IP tunneling from ingress POP to egress POP for simple, fine-grained traffic engineering
 - Perhaps managed from a replicated central controller

Can't we do intra-ISP tunneling today???

- Why not configure N² symmetric tunnels?
 - After all, N is probably only a few hundred
- · Two problems:
 - Today routers can establish only a limited number of tunnels
 - Detunneling is slow (double the packet processing time)
- These problems exist, in essence, because routers treat tunnels as symmetric
- · What we need is fast detunneling!

Faster detunneling

CORNEL

- Note that detunneling is nothing more than glorified decapsulation
- Routers can decapsulate the link layer fast, so why not the network layer?
 - Because link layers are local...we trust the encapsulator and understand its limited context
 - It is architecturally convenient to discover packet is for "self" in the forwarding table
- Technically, a router could detunnel the link layer fast
 - simple pattern match on a few header fields, move a pointer
 - But is it safe to do so???

Possible tunnel dangers?

- · Subvert ACLs?
 - I distrust packets from A, and trust packets from B
 - Source at A tunnels packet via B!
 - (Not clear that this is a serious problem)
- · Hide source of DDoS attack?
 - Attack appears to come from tunnel endpoint
- · Others?

Trusted intra-ISP lightweight tunneling

- Seems straightforward to trust an intra-ISP tunnel
 - ISP doesn't advertise tunnel endpoint prefixes outside of ISP
 - ISP puts explicit blackhole routes for tunnel endpoints at tunnel startpoints (ISP edge routers)

Trusted inter-ISP lightweight tunnels?

- · This is more difficult
- Perhaps a similar model (among participating ISPs) would be adequate?
- · Other ideas?