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Abstract

When n identical randomly located nodes, each capable of transmitting at W

bits/sec and using a fixed range, form a wireless network, the throughput A(n) ob-

tainable by each node for a randomly chosen destination is ©( \/V}/—) bits/sec under
nlogn

a non-interference protocol.

If the nodes are optimally placed in a disk of unit area, traffic patterns are optimally
assigned, and each transmission’s range is optimally chosen, the bit-distance product
that can be transported by the network per second is ©(W +v/An) bit-meters/sec. Thus,
even under optimal circumstances, the throughput is only © (%) bits/sec for each
node for a destination non-vanishingly far away.

Similar results also hold under an alternate physical model where a required signal-
to-interference ratio is specified for successful receptions.
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Fundamentally, it is the need for every node all over the domain to share whatever
portion of the channel it is utilizing with nodes in its local neighborhood that is the
reason for the constriction in capacity.

Splitting the channel into several sub-channels does not change any of the results.

Some implications may be worth considering by designers. Since the throughput
furnished to each user diminishes to zero as the number of users is increased, perhaps
networks connecting smaller numbers of users, or featuring connections mostly with
nearby neighbors, may be more likely to be find acceptance.

Keywords: Wireless networks, ad hoc networks, multi-hop radio networks, through-
put, capacity.

1 Introduction

Wireless networks consist of a number of nodes which communicate with each other over
a wireless channel. Some wireless networks have a wired backbone with only the last hop
being wireless. Examples are cellular voice and data networks and mobile IP. In others,
all links are wireless. One example of such networks is multi-hop radio networks or ad hoc
networks. Another possibly futuristic example, see [1], may be collections of “smart homes”
where computers, microwave ovens, door locks, water sprinklers, and other “information

appliances” are interconnected by a wireless network.

It is to these types of all wireless networks that this paper is addressed. Such networks
consist of a group of nodes which communicate with each other over a wireless channel
without any centralized control; see Figure 1. Nodes may cooperate in routing each others’
data packets. Lack of any centralized control and possible node mobility give rise to many
issues at the network, medium access, and physical layers, which have no counterparts in

the wired networks like internet, or in cellular networks.

At the network layer, the main problem is that of routing, which is exacerbated by the
time-varying network topology, power constraints, and the characteristics of the wireless
channel; see Ramanathan and Steenstrup [2] for an overview. The choice of medium access

scheme is also difficult in ad hoc networks due to the time-varying network topology and



Figure 1: An ad hoc wireless network

the lack of centralized control. Use of TDMA or dynamic assignment of frequency bands is
complex since there is no centralized control as in cellular networks, FDMA is inefficient in
dense networks, CDMA is difficult to implement due to node mobility and the consequent
need to keep track of the frequency hopping patterns and/or spreading codes for nodes in
the time-varying neighborhood, and random access appears to be the current favorite. The
access problem when many nodes transmit to the same receiver has been much studied in
the literature ever since the genesis of the ALOHA network, and bounds on the throughput
of successful collision free transmissions as well as transmission protocols have been devised;
see Gallager [3]. Sharing channels in networks does lead to some new problems associated
with “hidden” terminals and “exposed” terminals. The protocols MACA and its extension
MACAW, see Karn [4] and Bhargavan et al [5] respectively, use a series of handshake signals
to resolve these problems to a certain extent. This has been standardized in the IEEE
802.11 protocol, see [6]. At the physical layer an important issue is that of power control.
The transmission power of nodes needs to be regulated so that it is high enough to reach the
intended receiver while causing minimal interference at other nodes. Iterative power control

algorithms have been devised, see Bambos, Chen and Pottie [7] and Ulukus and Yates [8].



In this paper we analyze the capacity of wireless networks. We scale space and suppose
that n nodes are located in a region of area 1 sq. meter. Each node can transmit at W
bits/sec over a common wireless channel. We shall see that it is immaterial to our results’
if the channel is broken up into several sub-channels of capacity Wi, Wy, ..., Wy, bits/sec,
as long as an/f:l W, = W. Packets are sent from node to node in a multi-hop fashion until
they reach their final destination. They can be buffered at intermediate nodes while awaiting

transmission.

Due to spatial separation, several nodes can make wireless transmissions simultaneously,
provided there is no destructive interference of a transmission by others. We will describe
in the sequel under what conditions a wireless transmission over a sub-channel is received

successfully by its intended recipient.

We will consider two types of networks, Arbitrary Networks, where the node locations,
destinations of sources, and traffic demands, are all arbitrary, and Random Networks, where

the nodes and their destinations are randomly chosen.

1.1 Arbitrary Networks: Arbitrarily located nodes and traffic pat-
terns

In the arbitrary setting we suppose that n nodes are arbitrarily located in a disk of unit area
in the plane. Each node has an arbitrarily chosen destination to which it wishes to send
traffic at an arbitrary rate; thus the traffic pattern is arbitrary. Each node can choose an

arbitrary range or power level for each transmission.

We need to describe when a transmission is received successfully by its intended recipient.
We will allow for two possible models for successful reception of a transmission over one hop,
called the Protocol Model and the Physical Model, described below. Let X, denote the

location of a node; we will also use X; to refer to the node itself.

'We are grateful to Kimberly King for asking us to be more explicit about the prospects for routing
through multiple technologies.



1.1.1 The Protocol Model

Suppose node X; transmits over the m-th sub-channel to a node X;. Then this transmission

is successfully received by node Xj if
[Xe =X > (1+A)Xs = Xl (1)

for every other node X simultaneously transmitting over the same sub-channel.

The quantity A > 0 models situations where a guard zone is specified by the protocol to
prevent a neighboring node from transmitting on the same sub-channel at the same time. It

also allows for imprecision in the achieved range of transmissions.

Another model which is more related to physical layer considerations is:

1.1.2 The Physical Model

Let {Xx;k € T} be the subset of nodes simultaneously transmitting at some time instant
over a certain sub-channel. Let P be the power level chosen by node X, for £ € 7. Then
the transmission from a node Xj, ¢ € 7, is successfully received by a node X; if
S i A
| X — X[

N+ Y rer 2o —
2 eri | Xe—X;1®

> B (2)

This models a situation where a minimum signal to interference ratio (SIR) of (3 is necessary
for successful receptions, the ambient noise power level is N, and signal power decays with
distance r as T% We will suppose that o > 2, which is the usual model outside a small

neighborhood of the transmitter.

1.1.3 The Transport Capacity of Arbitrary Networks

Given any set of successful transmissions taking place over time and space, let us say that

the network transports one bit-meter when one bit has been transported a distance of one



meter towards its destination. (We do not give multiple credit for the same bit carried from
one source to several different destinations as in the multicast or broadcast cases). This sum
of products of bits and the distances over which they are carried is a valuable indicator of
a network’s transport capacity. (It should be noted that when the area of the domain is A
sq. meters rather than the normalized 1 sq. meter, then all the transport capacity results

presented below should be scaled by v/A).

Our main results are the following. Recall Knuth’s notation: f(n) = ©(g(n)) denotes
that f(n) = O(g(n)) as well as g(n) = O(f(n)).

Main Result 1. The transport capacity of an Arbitrary Network under the Protocol Model
is © (Wy/n) bit-meters/sec if the nodes are optimally placed, the traffic pattern is optimally

chosen, and if the range of each transmission is chosen optimally.

Specifically, an upper bound is \/E E\/ﬁ bit-meters/sec for every Arbitrary Network for

all spatial and temporal scheduling strategies, while bit-meters/sec (for n a

TI9R Vit VEr
multiple of four) can be achieved when the nodes and traffic patterns are appropriately

chosen, and the ranges and schedules of transmissions are appropriately chosen.

If this transport capacity were to be equitably divided between all the n nodes, then each
node would obtain © ( \/—) bit-meters/sec. If, further, each source has its destination about
the same distance of 1 meter away, then each node would obtain a throughput capacity of
S} (%) bits/sec.

The upper bound on transport capacity does not depend on the transmissions being omni-
directional, as implied by (1), but only on there being some dispersion in the neighborhood

of the receiver; see (A.vi) in Section 2.

Main Result 2. For the Physical Model, ¢W/n bit-meters/sec is feasible, while ¢Wn®a
bit-meters/sec is not, for appropriate ¢, c'.

1
65(2% +5))=

Specifically, 05 e \/— bit-meters/sec (for n a multiple of 4) is feasible when



S _
the network is appropriately designed, while an upper bound is % (%T”)“ Wn*= bit-

meters/sec.
We suspect that an upper bound of order ©(W/n) bit-meters/sec may actually hold.
In the special case where the ratio I;m—?}x between the maximum and minimum powers

min

that transmitters can employ is bounded above by 3, then an upper bound is in fact
\/ng\/ﬁ bit—meterS/SeC.
It is worth noting that both bounds suggest that transport capacity improves when « is

larger, i.e, when the signal power decays more rapidly with distance.

1.2 Random Networks: Randomly located nodes and traffic pat-
terns

In a random scenario, n nodes are randomly located, i.e., independently and uniformly
distributed, either on the surface S? of a three-dimensional sphere of area 1 sq. meter, or in
a disk of area 1 sq. meter in the plane. Our purpose in studying S? is to separate edge effects
from other phenomena. Each node has a randomly chosen destination to which it wishes
to send A(n) bits/sec. The destination for each node is independently chosen as the node
nearest to a randomly located point, i.e., uniformly and independently distributed. (Thus,

destinations are on the order of 1 meter away on average).

In this random setting, we will assume that the nodes are homogeneous, i.e., all trans-
missions employ the same nominal range or power. As for Arbitrary Networks, we will allow

for both a Protocol Model as well as a Physical Model for interference.
1.2.1 The Protocol Model

All nodes employ a common range r for all their transmissions. When node X; transmits to

a node X; over the m-th sub-channel, this transmission is successfully received by Xj; if:



i) The distance between X; and X is no more than r, i.e.,

Xi—X;| < r (3)
ii) For every other node X} simultaneously transmitting over the same sub-channel,
X —X;| > (Q1+A)r (4)
1.2.2 The Physical Model

All nodes choose a common power level P for all their transmissions. Let {Xy;k € T} be the
subset of nodes simultaneously transmitting at some time instant over a certain sub-channel.
A transmission from a node Xj, 7 € T, is successfully received by a node X; if

P

X=X > 8 5)
>
N+ Xeer mx@

1.2.3 The Throughput Capacity of Random Networks

The notion of throughput is defined in the usual manner as the time average of the number

of bits per second that can be transmitted by every node to its destination:

Definition: Feasible Throughput. A throughput of \(n) bits/sec for each node is feasible
if there is a spatial and temporal scheme for scheduling transmissions, such that by operat-
ing the network in a multi-hop fashion and buffering at intermediate nodes when awaiting
transmission, every node can send A(n) bits/sec on average to its chosen destination node.
That is, there is a T < oo such that in every time interval [(i — 1)T,iT] every node can send

TA(n) bits to its corresponding destination node.

Whether a particular throughput level is feasible may depend on the locations of the

nodes. These locations are random. So is the destination for the traffic entering each node.



As in PAC Learning Theory (see Valiant [9]), given the randomness involved in the prob-
lem statement, we allow for vanishingly small probabilities when defining the “throughput

capacity.”

Definition: The Throughput Capacity of Random Wireless Networks. We say
that the throughput capacity of the class of Random Networks is of order ©(f(n)) bits/sec

if there are deterministic constants ¢ > 0 and ¢ < +oo such that

lim Prob(A(n) = cf(n) is feasible) = 1,

n—00

liminf,,_, Prob(\(n) = ¢ f(n) is feasible) < 1.

Our main results are the following:

Main Result 3. In the case of both the surface of the sphere and a planar disk, the order

of the throughput capacity is A(n) = © ( W ) bits/sec for the Protocol Model. For the

\/nlogn

upper bound we actually prove the sharp cutoff phenomenon that for some ¢,

lim Prob(A(n) = ¢ is feasible) = 0.

w
vnlogn
Specifically, there are deterministic constants ¢’ and ¢” not depending on n, A or W,
such that A\(n) = —<W____ bits/sec is feasible, and A(n) = —<%— bits/sec is infeasible,
n

(1+A)24/nlog A2, /nlogn

both with probability approaching one as n — oo.

Since routing hot spots may form at the center in the case of a disk on the plane, and
yet the order of throughput capacity is the same as on the surface of the sphere, it shows
that the cause of the throughput construction is not the formation of hot spots, but is the

pervasive need for all nodes to share the channel locally with other nodes.

Main Result 4. For the Physical Model a throughput of A\(n) = \/% bits/sec is feasible,
nlogn

while A(n) = CITVX bits/sec is not, for appropriate c, ¢/, both with probability approaching one

as n — oQ.



Specifically, there are deterministic constants ¢” and ¢” not depending on n, N, «, 3

W, such that A(n) = W bt is feasible with probabilit
or such that A(n) T TSy Sty sy its/sec is feasible with probability

approaching one as n — oo. If L is the mean distance between two points independently and

uniformly distributed in the domain (either surface of sphere or planar disk of unit area),
then there is a deterministic sequence €(n) — 0, not depending on N, «, f or W, such that
8 w 1+e(n

TTeE) Vi bit-meters/sec is infeasible with probability approaching one as n — oc.

1.3 Some possible implications

The results in this paper allow for a perfect scheduling algorithm which knows the locations
of all nodes and all traffic demands, and which coordinates wireless transmissions temporally
and spatially to avoid collisions which would otherwise result in lost packets. Also, the nodes
are not mobile. If such perfect node location information is not available, or if nodes move,

or traffic demands are not known, then the capacity can only be even smaller.

There are some implications of these results which designers may want to consider. The
decrease in throughput with n may be regarded as unacceptable by users when the number
n of nodes is large. Perhaps designers should target their efforts at networks for smaller
numbers of users, rather than try to develop large wireless networks.

A feasible scenario is where nodes need to communicate only with nearby nodes. Then
the scaled distance between sources and destinations is only O(ﬁ) meters. Thus all nodes
can transmit data to nearby neighbors at a bit rate that does not decrease with n. Such a

scenario can arise, for example, in collections of “smart homes,” each home having sensors

and actuators communicating by wireless means.

Another implication concerns the power consumption by each node for transmission.
Consider Random Networks. The fraction of time that a modem is busy, whether relaying
traffic or sending packets originating at the node, is only @(@). Not only that, the scaled

range of each transmission is about O(y/'%%).

10



The bounds for the Physical Model suggest that a faster rate of decay of signal power

with distance, i.e., a larger «, allows greater transport and throughput capacity.

One more implication follows from the constructive proof of capacity. It shows that one
can group the nodes into small clusters or “cells,” where in each cell one can designate one
specific node to carry all the burden of relaying multi-hop packets, if so desired. Thus a
division of labor is possible, were this to be found profitable. Moreover, it would further
reduce the transmission power consumed by the vast majority of other nodes. This may offer

some suggestive guidelines for designers of routing protocols.

It should be noted that dividing the channel into sub-channels does not change any of

the results.

Yet another issue concerns the use of relay nodes?. Consider a Random Network with n

source nodes. Then the throughput that can be furnished to each of them is only ©(—%—)
\/nlogn

under the Protocol Model. Suppose m additional homogeneous nodes are deployed as

pure relays in random positions, with no independent traffic needs of their own, i.e., they

are not sources. Then the throughput that can be furnished to each of the n sources is

( (n+m)W )
n\/(n—l—m) log(n+m)
put. The number of additional relay nodes that need to be deployed to gain an appreciable

. There is however a severe cost of providing this increase in through-

increase in capacity for the source nodes may be very large. When there are n = 100 active

(n+m)
n\/(n—l—m) log(n+m)
equal to at least 4476. The addition of kn nodes to serve as pure relays provides a less than

v k + 1-fold increase in this term.

nodes, to make equal to five times its value at m = 0, m will have to be

One way to overcome the barrier of wireless networks is to do what is done in cellular
telephony — connect the base stations by a wired network. If, however, non-directed wireless
links are used for connecting the base stations, then the capacity limitation of wireless

networks remains with us, though in less obvious ways. For example, suppose a high power

2We are grateful to Chip Elliott for raising this issue.
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base station is chosen in each cell, which communicates with other distant base stations by

a wireless channel. Then the set of base stations inherits the same capacity limitation. A

set of b wirelessly connected base stations can provide a throughput of only ©( \/bllo—b) for
g

each base station.

1.4 A discussion of the tradeoffs involved

Why does the throughput capacity diminish as the number of nodes increases? For an insight
into some of the tradeoffs involved, consider Random Networks. Let the mean distance to be
traversed by a packet be L, and denote by r(n) the common range of all transmissions. Then

the mean number of hops taken by packets is no less than % Thus each node generates

at least Z’?(") bits/sec of traffic for other nodes. Since the total number of nodes is n, the

L")‘(" bits/sec. This has to be served by n nodes each capable of

total traffic is no less than
W bits/sec. Thus, one needs L"(’\) < nW. An upper bound on the throughput is therefore
A(n) < ==X WT (™) " Since the term on the right side grows linearly in r(n), it might appear that
to increase the throughput by reducing the number of hops traversed by each packet, and
thus the burden on other nodes serving as relays, one should increase the range r(n) of each
node. However, the expression above is not an achievable upper bound as a function of r(n).
The reason is that we have neglected the reduction in capacity due to spatial concurrency
constraints, since nodes close to a receiver are required to be idle to avoid collisions which
cause the loss of packets. In fact, the loss from increasing r(n) is quadratic due to the area of
the conflict involved. Therefore the desire to reduce the multi-hop burden and the desire to
increase spatial concurrency and frequency reuse are in conflict. It turns out that when we
consider both issues together, we find that one really needs to reduce the value of r(n) to as
small a value as possible. However, there is a limit to how small one can make r(n). When
the range r(n) of transmissions is too small, the wireless network loses connectivity. In a

precursor result, see [10], the critical range for connectivity of networks formed by randomly

located nodes on a disk in the plane has been determined. Consider the graph with random

12



vertices uniformly and independently distributed in a disk of unit area. Join two vertices by
an edge whenever they are within a distance r(n) from each other. The critical radius for
connectivity is \/% in the sense that the graph with r(n) = \/log;‘% is connected with

probability approaching one as n — oo if and only if ,, — 4o00.

For Arbitrary Networks under the Protocol model, just three constraints — the length of
routes, the consumption of valuable two-dimensional area by transmissions, and the total
number of nodes — are enough to force the transport capacity to be no more than O(W/n)

bit-meters/sec.

The rest of this paper is organized as follows. In Section 2 we exhibit upper bounds on
the transport capacity of the form ¢WW/n bit-meters/sec and ¢ Wn®s bit-meters /sec, under
the Protocol and Physical Models respectively, for Arbitrary Networks. In Section 3 we show
that a transport capacity of ¢"W/n bit-meters/sec is also feasible for Arbitrary Networks.
In Section 4 we construct a scheduling and routing scheme which achieves a throughput
of ©(—%—) bits/sec for Random Networks on S2. In Section 5 we show that ©(—2—)

bits/sec and @(%) bits/sec are upper bounds on the throughput for Random Networks on

S?, under the Protocol and Physical Models respectively. In Section 6 we show that the

above results for Random Networks also hold for a disk in the plane.

2 Arbitrary Networks: An upper bound on transport
capacity

We consider the setting on a planar disk of unit area. Consider the following (nearly) minimal

set, of assumptions:

(A.i) There are n nodes arbitrarily located in a disk of unit area on the plane. (The results

carry over to any domain of unit area in R? which is the closure of its interior).

(A.ii) The network transports AnT" bits over T seconds.

13



(A.iii) The average distance between the source and destination of a bit is L. Note that,
together with (A.ii), this implies that a transport capacity of AnL bit-meters/sec is

achieved.

(A.iv) Each node can transmit over any subset of M sub-channels with capacities W,

bits/sec, 1 < m < M, where ¥M_ W,, = W.

(A.v) Transmissions are slotted into synchronized slots of length 7 secs. (This assumption

can be eliminated, but makes the exposition easier).

(A.vi) While retaining the restriction (2) for the case of the Physical Model, we can either
retain (1) in the Protocol Model or consider an alternate restriction as follows: If a
node X; transmits to another node X; located at a distance of r units on a certain
sub-channel in a certain slot, then there can be no other receiver within a radius of
Ar around X; on the same sub-channel in the same slot. This alternate restriction
addresses situations where the transmissions are not omni-directional, but nevertheless

there is some dispersion in the neighborhood of the receiver.

Theorem 2.1 (i) In the Protocol Model, the transport capacity AnL is bounded as follows:

- 1
AnL < §KW\/ﬁ bit-meters/sec.
m

(71) In the Physical Model,

1

- 2 2\ > 1 a-

anL < ( b+ ) —Wn's bit-meters/sec.
B VT

(iii) If the ratio % between the maximum and minimum powers that transmitters can

employ is strictly bounded above by (3, then

- 8 1
AnL < \/;WW\/H bit-meters/sec.
Pmax

Q=

(iv) When the domain is of A sq. meters rather than 1 sq. meter, then all the upper bounds

above are scaled by \/A.
14



Proof. Consider bit b, where 1 < b < AnT. Let us suppose that it moves from its origin
to its destination in a sequence of h(b) hops, where the h-th hop traverses a distance of 7.
Then from (A.iii),

AnT h(b)

SN i > AnTL. (6)

b=1 h=1

Note now that in any slot at most n/2 nodes can transmit. Hence for any sub-channel
m and any slot s,
AnT h(b) W,

Z Z 1(The h-th hop of bit b is over sub-channel m in slot s) < 7;7_”
b=1 h=1

Summing over the sub-channels and the slots, and noting that there can be no more than %

slots in T secs, yields

H = bﬁjh(b)gwgn. (7)

Consider now the Protocol Model. Suppose that X is receiving a transmission from Xj
over the m-th sub-channel at the same time that X, is receiving a transmission from X over
the same sub-channel. Then from the triangle inequality and (1),

X5 — Xl > |Xj = Xi| = | X — Xi]
> (1+A4)1X; — X;| — [ X — Xyl
Similarly,
Xe= X5 2 (14 A)[Xe— X~ X - Xl
Adding the two inequalities, we obtain

Xe—X;| > = (X, —Xo| +|Xi — Xj]).

vo| >

Hence disks of radius % times the lengths of hops centered at the receivers over the same

sub-channel in the same slot are essentially disjoint. (Note that this conclusion directly

15



follows when (1) is replaced by the alternate restriction of (A.vi)). Allowing for edge effects
where a node is near the periphery of the domain, and noting that a range greater than the
diameter of the domain is unnecessary, we see that at least a quarter of such a disk is within
the domain. Since at most W,, 7 bits can be carried in slot s from a receiver to a transmitter

over the m-th sub-channel, we have

AnT h(b) A2
>~ ) " 1(The h-th hop of bit b is over sub-channel m in slot s)—— G (rM? < Wyt (8)
b=1 h=1

Summing over the sub-channels and the slots gives

AnT h(b) A2
b1 by 16
This can be rewritten as,
AnT h(8) 16WT
)2
z:: z:: H - 7wA?H 9)

Note now that the quadratic function is convex. Hence

AnT h(b) 1 . AnT h(b) 1 o
( < = ()" (10)
b=t H b=t H
Combining (9,10) yields,
T 16WTH
>0 S A (11)
b=1 h=1 7T
Now substituting (6) in (11) gives,
- 16WTH
Tl < JIWTH (12)

TA2

Substituting (7) in (12) yields the result.

Now turn to the Physical Model. The difference stems from the need to replace (8) by a
different expression. Suppose X; is transmitting to X ;) over the m-th sub-channel at power

level P; at some time, and let 7 denote the set of all simultaneous transmitters over the

16



m-th sub-channel at that time. Including the signal power of X; also in the denominator,

the signal-to-interference requirement (2) for X;(;) can be written as

P;
| X5 — X505 |* > B

> 7
N+ Zrer mmxor A F1

Hence
a pg+1 P
keT [ X=Xl
B+1 P

(since | X} — X | <

4l

B N+ (5) Sher B

Summing over all transmitter-receiver pairs,

a p+1 ZieT Ii
2 XK= Xjpl* < =5 T
ieT N+ (%) Sker P

< 2% ——.

Summing over all slots and sub-channels gives

AnT h(b) o 1
S Y re(hb) < 2%—55; WT.

b=1 h=1

The rest of the proof proceeds along lines similar to the Protocol Model, invoking the con-

vexity of r® instead of 2.

For the consideration of the special case where % < f3, we start with (2). From it, it
min

follows that if X; is transmitting to X, at the same time that X is transmitting to X,, both

over the same sub-channel, then

SE > 8
| X5 — X[
Thus
/BPmin é
x-x) > () - )
= (1+8)[X; - ;)

17



where A := (ﬁ n:;) — 1. Thus the same upper bound as for the Protocol Model carries

over with A defined as above. 0

3 Arbitrary Networks: A constructive lower bound on
transport capacity

We will now show that the order of the upper bound in the previous section is sharp for the
Protocol Model, by exhibiting a scenario where it is achieved. This scenario is also feasible

for the Physical Model.

Theorem 3.1 There is a placement of nodes and an assignment of traffic patterns such

that the network can achieve bit-meters/sec under the Protocol Model, and

1+2A f+\/g
bit-meters/sec under the Physical Model, both whenever n is a multi-

(16ﬂ(27+6" Z)e fWﬁ
ple of 4.

Proof. Consider the Protocol Model. Define r := Recall that the domain is

a disk of unit area, i.e., of radius %, in the plane. With the center of the disk located at the
origin, place transmitters at locations (j(1+ 2A)r +£ Ar, k(1 4+ 2A)r) and (5(1 4+ 2A)r, k(1 +
2A)r + Ar) where |7 + k| is even. Also place receivers at (j(1 + 2A)r + Ar, k(1 + 2A)r)
and (j(1 + 2A)r, k(1 + 2A)r £ Ar) where |j + k| is odd. Each transmitter can transmit
to its nearest receiver, which is at a distance r away, without interference from any other
transmitter-receiver pair. It can be verified that there are at least 7 transmitter-receiver
pairs all located within the domain. (This is done by noting that for a tessellation of the
plane by squares of side s, all squares intersecting a disk of radius R — 1/2s are entirely
contained within a larger concentric disk of radius R. The number of such squares is greater
than “(R;;/is) Now take s = (14 2A)r and R = f) Restricting attention to just these

pairs, there are a total of 7 simultaneous transmissions, each of range r, and each at W

bits/sec. This achieves the transport capacity indicated.
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For the Physical Model, a calculation of the SIR shows that it is lower bounded at all

(142A)
16(2F +62=2)"

receivers by Choosing A to make this lower bound equal to § yields the result.

O

The above lower bounds on feasible transport capacity can be sharpened. The following

bounds may be useful in the design of networks with small numbers of nodes.

Lemma 3.1 In the Protocol Model, there is a placement of nodes and an assignment of

traffic patterns such that the network can achieve

% bit-meters/sec for n > 2,

m bit-meters/sec for n > 8,

H”;A \F+x/§ bit-meters/sec forn =2,3,4,...,19,20,21, and
B )
1+2A \/4L%J4—|—\/8_7r bit-meters/sec for all n.

Proof. With at least 2 nodes, clearly — bit-meters/sec can be achieved by placing two
nodes at diametrically opposite locations. This verifies the formula for the bound for n < 8.
With at least 8 nodes, 4 transmitters can be placed at the opposite ends of perpendicular

diameters, and each can transmit towards its receiver located at a distance 7 1 towards

2+2A)

the center of the domain. This ylelds bit-meters/sec, verifying the formula up to

(1+A)

These bounds can be further improved slightly by tessellating the domain into hexagons,

at the expense of more unwieldy expressions.

4 Random Networks: A constructive lower bound on
throughput capacity

Now we turn to Random Networks. Even though the setting of the problem is very different,

the proof of throughput capacity is somewhat reminiscent of traditional information theoretic
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arguments. We provide a constructive scheme to show that one can spatially and temporally
schedule transmissions in a random graph so that when each randomly located node has
a randomly chosen destination, each source-destination pair can indeed be guaranteed a
“virtual channel” of capacity WM bits/sec with probability approaching 1 as n — oo,
for an appropriate constant ¢ > 0. We will show how to route traffic efficiently through the
random graph so that no node is overloaded. The routing scheme will utilize a Voronoi
tessellation of S? with some special properties. The size of each Voronoi cell is chosen
carefully in relation to the number of nodes. Every cell should also be neither too thin nor
too fat. The routing will be over nearly straight line paths, which assures that it is efficient.
To show that the load is balanced uniformly over the entire network, we calculate the Vapnik-
Chervonenkis dimension for certain geometrically defined random variables on the plane and
the sphere, which are connected with the tessellations and routes used. We will need to
ensure that the routes are independently and identically distributed. This will require us
to circumvent the possible pitfall that knowledge of one route provides information on the

locations of the source, destination, and intermediate relay nodes, thus possibly introducing

dependencies with other routes which may depend on the locations of these nodes.

We begin the constructive proof of the lower bound on the throughput capacity for Ran-
dom Networks. Our treatment will be directed at the Protocol Model. Where appropriate

we will comment on the arguments required for the Physical Model.

4.1 A spatial tessellation

We use a Voronoi tessellation of the surface S? of the sphere. Recall the definition of a
Voronoi tessellation, see Okabe, Boots and Sugihara [11]. Let {a1,as,...,a,} be a set of p
points on S? (or any other set for that matter). The Voronoi cell V (a;) is the set of all points

which are closer to a; than to any of the other a;’s, i.e.,
V(a;) = {z € S” : |z — a;| = Mini<j<p|z — a4}
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Above and throughout, distances are measured on the surface S? of the sphere by segments
of great circles connecting two points; see Stilwell [12]. The point qa; is called the generator

of the Voronoi cell V(q;). Figure 2 shows an example of a tessellation of S2.

(T

Figure 2: A tessellation of the surface S? of the sphere

Unfortunately, the surface of the sphere does not allow any regular tessellation where all
cells look the same, except for the platonic solids; see Lyndon [13]. These latter tessellations
cannot be made as fine as we need to make them. Moreover, our Voronoi tessellations will
also need to be not too eccentrically shaped. We exhibit tessellations with these two special

properties in the following lemma, the proof of which is constructive.

Lemma 4.1 For every € > 0, there is a Voronoi tessellation of S* with the property that

every Voronoi cell contains a disk of radius € and is contained in a disk of radius 2e.

Proof. Denote by D(z,¢) a disk of radius € centered at x. Choose a; as any point in S2.
Suppose that ay,...,a, have already been chosen such that the distance between any two

a;’s is at least 2e. There are two cases to consider.

Suppose there is a point x such that D(z,€) does not intersect any S(a;, €). Then x can

be added to the collection: Define a,,; := x. Otherwise, we stop.
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This procedure has to terminate in a finite number of steps since the addition of each
a; removes the area of a disk of radius € > 0 from S2. When we stop we will have a set of
generators such that they are at least 2¢ units apart, and such that all other points on S?
are within a distance of 2e from one of the generators. The Voronoi tessellation arising from

this set of generators has the desired properties. 0
In the sequel we will use a Voronoi tessellation V), for which:

(V.i) Every Voronoi cell contains a disk of area %gﬂ. Let

1001
ogn

p(n) := radius of a disk of area n S% (13)

n

(Note that the area of a disk of radius p on S? is less than mp?).

(V.ii) Every Voronoi cell is contained in a disk of radius 2p(n).

We will refer to each Voronoi cell V' € V), as simply a “cell.”

4.2 Adjacency and interference

Note that all Voronoi cells are polygons since they are formed as finite intersections of

hemispheres on S? (or halfspaces in the case of R?).

Definition: Adjacent Cells. Say that two cells are adjacent, if they share a common

point. (Recall that every cell is a closed set).
Let us choose the range r(n) of each transmission so that
r(n) = 8p(n). (14)

This range allows direct communication within a cell and between adjacent cells:

Lemma 4.2 FEvery node in a cell is within a distance r(n) from every node in its own cell

or adjacent cell.
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Proof. The diameter of cells is bounded by 4p(n); see (V.ii). The range of a transmission

is 8p(n). Thus the area covered by the transmission of a node includes adjacent cells. 0

Definition: Interfering Neighbors. We say that two cells are interfering neighbors if
there is a point in one cell which is within a distance (2 + A)r(n) of some point in the other

cell.

As the name implies, the interpretation is this: If two cells are not interfering neighbors,
then in the Protocol Model a transmission from one cell cannot collide with a transmission

from the other cell.

4.3 A bound on the number of interfering neighbors of a cell

An important property of the constructed Voronoi tessellation V), is that the number of
interfering neighbors of a cell is uniformly bounded. This will be exploited in the next
section in constructing a spatial transmission schedule which allows for a high degree of
spatial concurrency and thus frequency reuse. From now on ¢;’s will be used to denote

deterministic constants not depending on n.

Lemma 4.3 Ewvery cell in V, has no more than c; interfering neighbors. c; depends only on

A and grows no faster than linearly in (1 + A)2.

Proof. Let V be a Voronoi cell. If V' is an interfering neighboring Voronoi cell, there must
be two points, one in V' and the other in V', which are no more than (24 A)r(n) units apart.
From (V.ii), the diameter of a cell is bounded by 4p(n). Hence V', and similarly every other
interfering neighbor in the Protocol Model, must be contained within a common large disk
D of radius 6p(n) + (2 + A)r(n).

Such a disk D cannot contain more than ¢, (")+Sz;§)r("))2 disks of radius p(n). By

(V.i), there can therefore be no more than this number of cells within D. This therefore
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is an upper bound on the number of interfering neighbors of the cell V. The result follows

from the magnitudes of p(n) and r(n) chosen as in (14). 0

4.4 A bound on the length of an all-cell inclusive transmission
schedule

The bounded number of interfering neighbors for each cell allows the construction of a
schedule of bounded length which allows one opportunity for each cell in the tessellation V,

to transmit.

Lemma 4.4 (i) In the Protocol Model there is a schedule for transmitting packets such that
in every (1 + ¢1) slots, each cell in the tessellation V,, gets one slot in which to transmit,
and such that all transmissions are successfully received within a distance r(n) from their
transmitters.

(ii) There is a deterministic constant ¢ not depending on n, N,«, 8 or W such that if A is
chosen to satisfy (1+A)* > (2(¢B(3 + -5 + ﬁ))é —1)?, then for a large enough common
power level P, the above result (i) holds even for the Physical Model.

Proof. First we show the result for the Protocol Model. This follows from a well known
fact about vertex coloring of graphs of bounded degree: A graph of degree no more than ¢,
can have its vertices colored by using no more than (1 + ¢;) colors, with no two neighboring
vertices have the same color; see Bondy and Murthy [14]. One can therefore color the cells
with no more than (14 ¢;) colors such that no two interfering neighbors have the same color.
This gives a schedule of length at most (1 4 ¢;), where one can transmit one packet from

each cell of the same color in a slot.

For the Physical Model we will show that under the same schedule as above, the required
SIR of (3 is obtained if each transmitter chooses an identical power level P that is high

enough, and A is large enough.
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Note first that any two nodes transmitting simultaneously are separated by a distance of
at least (2+ A)r(n). Hence disks of radius (1+ £)r(n) around each transmitter are disjoint.
The area of each such disk is at least c3m(1 + 5)%r%(n). (In the case of disks on the plane
c3 = 1, but it is smaller for disks on the surface of the sphere).

Consider a node X; transmitting to a node X; at a distance less than r(n). The signal

power received at X is at least Ta}(on)'

Now we look at the interference power due to all the other simultaneous transmissions.
Consider the annulus of all points lying within a distance between a and b from X;. A
transmitter within this annulus has the disk centered at itself and of radius (1 + £)r(n)
entirely contained within a larger annulus of all points lying between a distance a—(1+5)r(n)
and b+(1+2)r(n). The area of this larger annulus is no more than c,m{[b+(14+%)r(n)]*—[a—

(1+%£)r(n)]?}. Each transmitter above above “consumes” an area of at least c3m(1+2)%r?(n),

as noted earlier. Hence the annulus of points at a distance between a and b from the receiver

cam{[b+(14+5)r(n)]> ~[a—(1+3)r(n)]
cam(1+5)2r2(n)

received power at X; from each such transmission is at most a%.

2
} transmitters. Furthermore the

X cannot contain more than

Noting that there can be no other simultaneous transmitter within a distance (1+A)r(n)
of X;, and taking a = k(1 + $)r(n) and b = (k+ 1)(1 + 2)r(n) for k = 1,2,3,..., we see
that the SIR at X; is lower bounded by

b p
re(n) _ N
k+2)2—(k—1)2 - P +o0o 6k+43 °
N+ Z;—g ca{(k+ )c3 ( ) )ka(l_{_%P)a’r"(n) ’f‘a(n) + CS(I_C:%)Q N kg ko

Since o > 2, the sum in the denominator converges, and is in fact smaller than (9+%+ ﬁ)
When A is as specified and P — oo, the lower bound on the SIR converges to a value greater

than g. 0
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4.5 The source-destination pairs

Each node wishes to communicate with the node nearest to a randomly chosen location.
Let Y; be a randomly chosen location such that X; and Y; are independently and uniformly
distributed on S?, and that the sequence {(X;,Y;)}!, is i.i.d. The destination node X gesti)

for the traffic generated at node Xj; is chosen as the node X; which is closest to Y;.

Denote by L; the straight line segment connecting X; and Y;. Above, and in the rest of
the paper, by a “straight line” segment we actually mean a segment of the great circle on the
surface S? of the sphere; see [12]. There is one significant property enjoyed by the sequence

of straight lines {L;}7 ;.
Lemma 4.5 The random sequence of straight line segments {L;}"_, is i.i.d.

This has the powerful consequence of allowing us to apply the law of large numbers to
the i.i.d. straight line segments. It will be useful since the route followed by each origination-
destination pair will approximate the corresponding straight line segment, as described in

the next section.

4.6 The routes of packets

We will choose the routes of packets to approximate these straight line segments. The
straight line segment L; will intersect many cells in the tessellation V,. Let V; denote the

particular cell which contains X;, and V' the cell which contains Y;.

Packets originating at X; will be relayed from the cell V; to the cell V' in a sequence
of hops. In each hop, the packet is transferred from one cell to another in the order in
which they intersect the line. (If two cells are both “next” cells, then either can be chosen
arbitrarily). Finally, after reaching the cell V' containing Y;, the packets will be sent on to
their final destination, which we shall show later in Section 4.7 to be no more than one hop

away with high probability.
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Note that this is a randomized algorithm for choosing routes. It can be thought of
as a load balancing scheme with some rather powerful uniformity properties, as shown in

Section 4.9.

4.7 Each cell contains at least one node

To make relaying of traffic from one cell to an adjacent cell feasible, we need to first ensure
that every cell V in V), contains at least one node. For this we use uniform convergence in

the weak law of large numbers. Note that uniformity is required over all cells in V.

We recall the following definitions; see Vapnik and Chervonenkis [15] and Vapnik [16].
Let F be a set of subsets. A finite set of points A is said to be shattered by F if for every
subset B of A there is a set ' € F such that AN F = B. The VC-dimension of F, denoted
by VC-d(F), is defined as the supremum of the sizes of all finite sets that can be shattered
by F.

For sets of finite VC-dimension, one has uniform convergence in the weak law of large

numbers:

The Vapnik—Chervonenkis Theorem. If F is a set of finite VC-dimension VC-d(F),
and {X,} is a sequence of i.i.d. random variables with common probability distribution P,
then for every €,6 > 0,
1N
Prob(sup | =Y I(X; € F) — P(F)| <€) >1—4,
FeF i=1
whenever

N Max{svad(f) 16e 4. 2

First we will consider the case where F is the set of all disks on the plane. Later we will
consider the case where the disks are located on S?. In the planar case we can make use
of results from Euclidean geometry. The following result may perhaps be known already,

though we have been unable to find it in the literature.
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Lemma 4.6 The Vapnik-Chervonenkis dimension of the set of disks in R? is 3.

Proof. It is easy to see that there is a 3 point set that can be shattered by the set of disks.

An example is the set of vertices of an equilateral triangle.

Suppose there is a set {1, xo, 3, 24} of four points that is shattered by the set of disks.
If any one of the X;’s lies in the convex hull of the other three points, then there is no disk
which can contain the others without containing X; too. Hence we can assume without loss

of generality that the convex hull of the four points is a quadrilateral.

Figure 3: Proof that the vertices of a quadrilateral cannot be shattered by the set of disks.

Again, we obtain a contradiction as follows. Without loss of generality suppose that the

angles of the quadrilateral at x; and x3 sum to at least 180°, i.e.,
Zﬂ')l + Z.T,'g Z 1800.

Suppose D is a disk which contains x5 and x4, but not z; or z3; see Figure 3. Extend the
diagonal zox4 outwards in both directions till it meets the circumference of D at the points
Z9 and Z4. Simultaneously, let ; and T3 be the points of intersection of the diagonal z;x3

with the circumference of D. Then Z,%2%374 is a cyclic quadrilateral. However

/T1+ /T3 > [x1+ /23

> 180°.
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This is a contradiction since the sum of the opposite angles of a cyclic quadrilateral is exactly

180°. 0

Now we address the problem of determining the VC-dimension of disks on the surface of

a sphere. It is sufficient for us to restrict attention to disks strictly smaller than hemispheres.

To convert results from the plane to S?, we use a mapping called the “inversion map”
which maps the punctured surface of the sphere onto the plane. Since the radius of the
sphere is immaterial for the remainder of this discussion, we consider a sphere of radius %,
centered at the point (0,0, —31). Let us refer to it temporarily as S2. Also let us refer to the

plane z3 = —1 as H. Then the mapping

z
o) = o
=17
where || - || is the Euclidean norm, has several useful properties (see [11]):

(i) It maps the punctured surface S? (i.e., S? except for the origin) onto the plane H. In
fact each point z on S? is mapped to the point obtained by extending the ray from the
origin to z until it hits the plane H.

(iii) It maps disks on S? not containing the origin into disks on the plane H. See Figure 4.

For our purposes, the last property is most important. It is used in the following lemma.

Lemma 4.7 The VC-dimension of the set of disks on S? strictly smaller than hemispheres

15 3.
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(0,00

(00,-1/2)

Cw

Figure 4: The inversion mapping maps disks on S? into disks on R2.

Proof. The proof parallels the contradiction argument of Lemma 4.6. Suppose that there
is a set of 4 points {x1, T2, 3, x4} which is shattered by such disks. They all have to be
contained in a disk smaller than a hemisphere. Let x; and z3 be opposite vertices of the
quadrilateral formed. Since the set is shattered, there are two disks, each of radius less than
that necessary to form a hemisphere, one of which contains z; and z3 but excludes z, and
x4, while the other contains x5 and x4 but excludes x; and x3. Since each disk is strictly less
than a hemisphere, there is a point in the complement of their union. Rotate the sphere so

that this point is at the top.

Without loss of generality we can scale the sphere so that its radius is %, and then
translate it so that its top is at the origin. Applying the inversion map shows that there is
a disk on the plane H which contains f(z;) and f(z3) and excludes f(z2) and f(x4), and

another disk on H which contains f(x9) and f(z4) and excludes f(z;) and f(x3).

However, we have seen the impossibility of this happening on the plane in Lemma 4.6.

100logn

Since each cell V' in the tessellation V), contains a disk of area — 2% (from V.i), we can

appeal to uniform convergence in the law of large numbers:

Lemma 4.8 There is a sequence §(n) — 0 such that

Prob (Every cell V €V, contains a node) > 1—4(n).
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Proof. Let F denote the class of disks of area %gﬂ. Note that the VC-dimension of F

is also 3. Hence,

Number of nodes in D 100logn

Prob (sup \

DeF n n

< e(n)) > 1-6(n)

whenever

o M 241 16e 4 1 2
" e Oge(n)’e(n) Og&(n) )

This is satisfied when

en) = o(n) = 5010gn'

n

Since each cell V in V), contains a disk of area %g—", we have
Prob (Number of nodes in V' > 50logn, for every V €V,) > 1-—4(n).

The result follows. 0

Hence every cell in V), contains at least one node to relay the traffic (with probability
exceeding (1 — %gﬂ)) Moreover every such node has enough range to communicate with
all nodes in any adjacent cell (see Lemma 4.2). Hence packets can be relayed from one cell
intersecting a line L; to the next cell intersecting the line. Hence the routing scheme given

above can indeed work as planned with probability exceeding 1 — %gﬂ.

From now on we will use the phrase “with high probability,” abbreviated as whp, to

stand for “with probability approaching 1 as n — o0.”

The multi-hop relaying scheme can therefore function as planned whp.

4.8 The mean number of routes served by each cell

Recall that the straight line L; connects X; and Y;, where X; and Y; are independently

and uniformly distributed on S?. By our assumption (V.ii) on the tessellation V,, each cell
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V € V), is contained in a disk of radius no more than ‘/4007:& (Note that the area of a disk
of radius p on S? is less than mp?). This allows us to bound the probability that a line L;

intersects a given cell V in V.

Lemma 4.9 For every line L; and cell V € V,,

1
Prob (Line L; intersects V) < cs ogn.
n

Proof. As noted above, from property (V.ii) of the tessellation, every cell V € V), i
contained in a disk of radius \/4007:%. If X; lies at a distance x from the disk, then the
angle a subtended at X by the disk is no more than < 1"%. The area of the sector so
formed is no more than <I*. If Y; does not lie in this sector, then the line L; joining X; and
Y; cannot intersect the disk containing the cell V. Hence, for a point X; at a distance x from

the disk of radius /2% log” containing the cell V', the probability that the line connecting X;
and Y] intersects the disk is no more than Cf\/k’%.

Since X is uniformly distributed on S?, the probability density that it is at a distance z
from the disk is bounded above by 2com(z + /241%™ Integrating, we obtain

i logn 400 logn
Prob (L; intersects V) < /\/m ( \/ ) 2com (az + T) dzx.

logn

Cs
n

Let C; denote the great circle containing the line L;, i.e., the extension of the line so that

it wraps around the sphere. The same proof technique shows the following:

Lemma 4.10 For every great circle C; and cell V € V,,

1
Prob (Great circle C; intersects V) < ciof/ ogn
n
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There being a total of n lines {L;} |, one connecting each X; with Y;, the mean number

of lines or great circles passing through a cell is bounded as below:

E[Number of lines in {L;};; intersecting a cell V] < ¢51/nlogn,
E[Number of great circles in {C;}, intersecting a cell V] < ¢i9y/nlogn.

4.9 The actual traffic served by each cell

Above, since routes follow lines, we have bounded the mean number of routes passing through
each cell. However, what we need to bound is the actual random number of routes served

by every cell.

To do this we make use of the critical property that the sequence {(X;,Y;)} isi.i.d. Hence,
so are the straight lines L;. This allows us to exploit uniform convergence in the law of large

numbers.

Recall that each cell V' € V), is contained in a disk of radius 2p(n). We will bound the
number of great circles C; intersecting such disks of radius 2p(n). This is clearly an upper

bound on the number of lines L; passing through cells.

We transform the problem of counting “intersections” of disks of radius e with great
circles into a “shattering” problem as follows. For every point z on S? let F'(z) denote the
(unique) great circle containing all points equidistant from it. This is akin to associating an

equator with a pole.

Given a great circle C, the inverse of this map is not well defined since every equator

has two poles. However, we arbitrarily choose one of these two poles and designate it as the

inverse F~1(C).

Consider a disk D of radius ¢ centered at a point z on S2. Let F(D) := UzepF () denote
the set of all points which are within a distance ¢ from F'(z); it is a band of width 2¢ around

the great circle F'(z). See Figure 5.
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Figure 5: Transforming great circles intersecting disks into points lying in equatorial bands.

Let D denote the set of all disks on S2. It is easy to see the following lemma and corollary.

Lemma 4.11 The great circle C intersects the disk D if and only if the point F~1(C) is
contained in the band F(D).

Corollary 4.1 Let C(D) denote the set of all great circles which intersect D € D. The
VC-dimension of {C(D) : D € D} is the same as the VC-dimension of {F (D) : D € D}.

Let D' denote the set of all great circles strictly smaller than hemispheres. To appeal to
uniform convergence in the law of large numbers we only have to show that the VC-dimension
of {F(D): D € D'} is bounded. Note that for D € D', each band F(D) is the intersection
of two disks, each strictly larger than a hemisphere. It is trivial that the VC-dimension of a
class of sets is the same as the VC-dimension of the class formed by the complements of the
sets. It is also known (see Vidyasagar [17]) that if A is a set of sets, and B consists of sets

which are each obtained by intersecting two sets in A, then
VC-d(B) < 10 VC-d(A).

Hence we obtain:

Lemma 4.12 The VC-dimension of {F (D) : D € D'} is no more than 10 times the VC-

dimension of D'.
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In Lemma 4.7 we have already shown that the VC-dimension of D’ is 3. Hence uniform

convergence in the weak law of large numbers holds, and we obtain the following:

Lemma 4.13 There is a 6'(n) — 0 such that

Prob <sup ( Number of lines L; intersecting V' ) < csy/nlog n) > 1-4"(n).
Vevn

Note that if a cell contains Y;, it needs to forward the packet to its final destination X geg;(s)-
This final destination is at most one hop away whp. Else, if a cell does not contain Y;, then
the traffic is relayed to the next cell. Hence the traffic handled by a cell is proportional to
the number of lines passing through it. Since each line L; carries traffic of rate A(n) bits/sec,

we have obtained the following bound:

Lemma 4.14 There is a 6'(n) — 0 such that

Prob (sup (Traffic needing to be carried by cell V') < esA(n)y/nlog n) > 1-4(n).

VEVn
4.10 Lower bound on throughput capacity of Random Networks

From Lemma 4.4 we know that there exists a schedule for transmitting packets such that in
every (1 + ¢;) slots, each cell in the tessellation V,, gets one slot to transmit, and such that
each transmission is received within a range r(n) of the transmitter. Thus the rate at which

each cell gets to transmit is % bits/sec.
On the other hand, the rate at which each cell needs to transmit is less than csA(n)+/n logn
whp.

With high probability, this rate can be accommodated by all cells if it is less than the

rate available, i.e., if




Moreover, within a cell, the traffic to be handled by the entire cell can be handled by any

one node in the cell, since each node can transmit at rate W bits/sec whenever necessary. In

?

fact one can even designate one node in each cell as a “relay” node. This node can handle

all the traffic needing to be relayed. The other nodes can simply serve as sources or sinks.

We have proved the following theorem, noting the linear growth of ¢; in (1 + A)? in
Lemma 4.3, and the choice of A in Lemma 4.4 for the Physical Model.

Theorem 4.1 (i) For Random Networks on S* in the Protocol Model, there is a determin-

istic constant ¢ > 0 not depending on n, A or W, such that A\(n) = # bits/sec is
nlogn

feasible whp.

(ii) For Random Networks on S? in the Physical Model, there are deterministic constants c’

/

- _ w
and ' not depending on n, N,a, 3 or W, such that \(n) = (2(c"ﬂ(3+a+f+ﬁ))éf1)2 o

bits/sec is feasible whp.

It should be noted that these throughput levels have been attained without subdividing the

wireless channel into sub-channels of smaller capacity.

5 Random Networks: An upper bound on throughput
capacity

Now we turn to the proof of the upper bound on the capacity for Random Networks.

First we will show that that when the range is too small not every source will be able to

communicate with its desired destination.

5.1 Asymptotic probability of an isolated node

From [10] we know that a necessary condition for connectivity whp for the problem of n

nodes strewn on a disk of unit area in the plane is r(n) = lﬂg%, where k,, — +00.
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The S? setting here requires a slightly different treatment. The area of a disk of radius
r on S? is not mr2. A saving grace in comparison to a disk on the plane is that there is no

need to consider the tedious issue of edge effects.

Another subtle issue is that we may not need connectivity of the entire graph. Strictly
speaking, we only need that every source be able to communicate with its chosen destination.
What we will show below is that disconnectedness manifests itself by the presence of isolated
nodes. These nodes will then be unable to communicate with any other node. Hence the

absence of isolated nodes is indeed a necessary condition for feasibility of any throughput.

We recall two results from [10].

Lemma 5.1 (i) For any p € [0, 1]

(1-p) <e™

(i1) For any given 0 > 1, there exists py € [0, 1], such that
e < (1=p), forall 0<p<py

If 6 > 1, then py > 0.

Lemma 5.2 If nr?(n) = 1°g++", then, for any fixed 0 < 1 and for all sufficiently large n

n(l —ar?(n))" ! > e ",

Given the n nodes, denote by G(n,r(n)) the graph which results from connecting nodes
separated by a distance less than r(n) by an edge. Let P%*)(n,r(n)),k =1,2,... denote the
probability that a graph G(n,r(n)) has at least one order-k component, i.e., a set of k nodes
which form a connected set, but which are not connected with any other node. Also, let

Py(n,r(n)) denote the probability that G(n,r(n)) is disconnected.

The main necessary condition for the absence of a single isolated node, and consequently

also for connectivity, is the following.
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Lemma 5.3 If nr?(n) = lﬁg% where lim,,_, o, kK, = k < 400, then
L 1 —K —K
llT{I_l)g)lfP( J(n,r(n)) > e (1 —e ) , and
liggg)lfpd(n, r(n)) > e (1 —e ) .

Proof. Consider first the case where mr?(n) = 62~ for a fixed k. Consider PY(n,r(n)),

the probability that G(n,r(n)) has at least one order-1 component. Then

PW(n,r(n)) > > P({iis the only isolated node in G(n,r(n))})

> i (P({z is an isolated node in G(n,7(n))})
— > P({i and j are isolated nodes in Q(n,r(n))}))
J#
> Z P({i is isolated in G(n,r(n))})
— §§P({z and j are isolated in G(n,r(n))}). (15)

Next we compute the area A(r) of a disk of radius » on S?. Note that the radius of the
T

Figure 6: Computing A(r), the area of a disk of radius 7 on a sphere of unit surface area.

sphere itself is 7y = —

.
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From ¢(r) := r/ry as indicated in Figure 6, we get

é(r)
A(r) = / 27ro(sin ¢)rode
0
= 2mri(1 — cos é(r))

_ 1.¢%(r)  ¢'(r)
= 5( 5 _4T+...)
= 7r?— 7T3T (16)
Hence »
- < A(r) < wr, (17)
Now
P({i is isolated in G(n,r(n))}) = (1—A(r(n)))"*
> (1) 18)
Also,
P({i and j isolated in G(n,r(n))}) < (A(2r(n)) — A(r(n)))(1 — gA(r(n)))n—Q
+(1 — A(2r(n)))(1 — 2A(r(n)))"2, (19)

where the first term on the RHS above takes into account the case where the distance between

i and j is between r(n) and 2r(n). Substituting (18) and (19) in (15) and using (17), we get

72rt(n)
3

PO(n,r(n)) > n(l—wr’*(n)"" = n(n—1)((3mr(n) +

+ (1 = 2(wr?(n) — w’r(n) /3))"?).

(1= S (n) — wr () /3))"

Using Lemmas 5.1 and 5.2, for 77%(n) = 26" and any fixed § < 1 and ¢, €’ > 0, we have

n I

PO(n,r(n)) > fe " —n(n-— 1)(3(1 + ¥ (n)e 22T 4 (1 4 6')6’2("’2)7”"2("))

>fe ™ — (1+e€)e > for all n > N(e,0,k).
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Now, replace k by k, where lim,_,., k, = k. Then, for any ¢ > 0, k, < K + € for all

n > N'(€). Also, the probability of an isolated node is monotone decreasing in k. Hence
PW(n,r(n)) > e FtI — (1 + €)e 2F 9
for n > max{N(e, 0,k + ¢€), N'(¢) }. Taking limits,
liﬁ)g}fP(l)(n, r(n)) > e~ "+ — (1 4 €)e 259,

Since this holds for all ¢ > 0 and @ < 1, and since PY(n,r(n)) < Py(n,r(n)), the results

follow. O

Corollary 5.1 The asymptotic probability that graph G(n,r(n)) has an isolated node and is

disconnected is strictly positive if mr?(n) = 135% and lim sup kK, < +00.
n

5.2 Upper bound on throughput capacity of Random Networks

The key to the upper bound, as in the case of Arbitrary Networks, is to note that each

transmission consumes valuable area.

Lemma 5.4 The number of simultaneous transmissions on any particular sub-channel is no

more than
4

c11mA?%r2(n)

in the Protocol Model.

Proof. Suppose node X; in Figure 7 transmits successfully to node X; on the m-th sub-
channel. Then no other node X within a distance Ar(n) of X; can be simultaneously
receiving a separate transmission on the same sub-channel due to the requirements (3) and

(4) and the triangle inequality.
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<(1+4)r(n)

xk < Ar(n) xj

Figure 7: X}, cannot receive at the same time as X; on the same sub-channel.

Ar(n)

Hence disks of radius =5~ centered at each receiver on the m-th sub-channel are disjoint.

Since the area of each such disk is C“”iﬂ, it follows that the network can support no
more than % simultaneous transmissions on the m-th sub-channel. 0
c117A2%r2(n)

Noting that each transmission over the m-th sub-channel is of W,, bits/sec, by adding
all the transmissions taking place at the same time over all the M sub-channels, we see that
they cannot total more than mz%ﬂ W,, = %W bits/sec in the Protocol

c11mA2r2(n
Model.

Now let L denote the mean length of a line connecting two independently and uniformly
distributed points on S?. Then the mean length of the path of packets is at least L — o(1)

since there is always a node within a distance o(1) of a point on the sphere whp. (This was
shown in Lemma 4.8). Thus the mean number of hops taken by a packet is at least fr_(fz()l).

Since each source generates A(n) bits/sec, there are n sources, and each bit needs to be

relayed on the average by at least Z;(f,’l()l) nodes, it follows that the total number of bits/sec

(L—o0(1))nA(n)

served by the entire network needs to be at least () .

To ensure that all the required traffic is carried, we therefore need

(L —o(1))nA(n) < AW
r(n) ~ cenmA%r?(n)
Thus,
A(n) Aﬁim) |



From the previous section we know that r(n) > \/1‘7’% is necessary to guarantee connectivity

whp. Hence we obtain the following upper bound:

Theorem 5.1 For Random Networks on S? under the Protocol Model, there is a determin-

istic constant ¢ < +00, not depending on n, A or W, such that

/
lim Prob(A(n) = ald

e W 18 feasible) =0.

Note that just as in Theorem 4.1 the number of sub-channels is irrelevant.

For the Physical Model, the upper bound is as follows.

Theorem 5.2 For Random Networks on S? under the Physical Model, there is a determin-

istic sequence e€(n) — 0, not depending on N, o, 3 or W, such that

8 W 1+4¢(n)
s I_/(ﬁi —1) n

lim Prob(A(n) = is feasible) = 0,

where L is the mean distance between two points independently and uniformly distributed on

the unit area surface of the sphere.

Proof. In Section 2 we have shown that \/g W \/n bit-meters/sec is an upper bound on
the transport capacity for an Arbitrary Network under the Protocol Model. We will now
show that any upper bound on the transport capacity for Arbitrary Networks under the
Protocol Model is also an upper bound on the transport capacity for Random Networks
under the Physical Model. This will prove the assertion since there are n nodes, each having

its destination at least L — o(1) meters away on average.

Consider any set of successful simultaneous transmissions under the Physical Model for
Random Networks. If X; is successfully transmitting to X; over a the m-th sub-channel, at

the same time that X} is also successfully transmitting to X, over the same sub-channel,
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then from (5),

)
X=X [
and so
Xk =Xl = (1+A)[Xi = X,
where A = (ﬂé — 1). Hence any set of simultaneous transmissions feasible for Random

Networks under the Physical Model is also feasible in the Protocol Model for Arbitrary
Networks. Thus the upper bound on the transport capacity for the latter also holds for the

former. O

6 Throughput capacity of Random Networks on planar
disk

The reader may wonder if the capacity is much different when the network is located on a
disk in the two-dimensional plane, rather than on the surface of a sphere. The key issue
is whether hot spots created at the center of the domain by several origin-destination pairs
routing their traffic through the center will make it a bottleneck. The answer is no. The
order of the capacity is unchanged for the Protocol Model, and the earlier orders for the

lower and upper bounds for the Physical Model continue to hold.

Clearly the arguments for the earlier upper bounds still hold, in view of the same necessary
condition on the radius for connectivity (see [10]) in Random Networks under the Protocol
Model, and the same reduction of Random Networks under the Physical Model to Arbitrary
Networks under the Protocol Model.

The critical issue is to show that the earlier lower bounds can still be achieved. We show

this by using the same tessellation based scheme as on S2. Let G be the disk of unit area on
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the plane on which the nodes are randomly located. Note that just as on S?, the probability
that a randomly chosen line on G intersects a disk of radius 2p(n) is no more than c; lﬂi—”
This applies even to disks of radius 2p(n) in the center of G. Thus, no unduly hot spots are

expected to occur at the center of the domain G.

The key result to show however is that with high probability no hot spots are created
anywhere. That is, we need to show the analog of Lemma 4.13 that the number of lines
intersecting every cell is less than csy/nlogn whp. Lemma 4.11 and Corollary 4.1 are not
applicable any more since we are not on S?. However we can circumvent this problem as

follows.

We map G into a large sphere of radius M by using an inversion map f(-). Consider a
straight line L on G. Let f(L) denote the curve on S? which is the image of the line, and
let g(L) denote the corresponding geodesic on S? connecting the two end points. When M
is large enough, every such f(L) deviates from g(L) by no more than a distance p(n). That
is, the distortion between the images of straight lines on the disk and the geodesics is very

small.

Consider now a cell V' C G of the tessellation V, of G. It is contained in a disk D of
radius 2p(n). This disk is mapped into another disk A = f(D) C S?. Let A’ C S? be a disk
in §% with the same center as A, but with a radius 2p(n) larger than that of A. Tt follows
that a straight L; on G intersects the disk D only if the corresponding geodesic g(L;) on
S? intersects the disk A’. (The reason is that the enlargement of the radius of A accounts
for the distortion involved in replacing the images of straight line by geodesics). We have
already shown in Section 4.9 that the uniform law of large numbers holds for the probability
of randomly chosen geodesics intersecting disks. Mapping back into D on the plane shows
that the uniform upper bound on the number of straight lines passing through the disks of
radius 2p(n) applies with high probability.

Thus the same results for the capacity continue to hold.
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Theorem 6.1 For Random Networks on a planar disk of unit area, the results of Theo-
rems 4.1, 5.1, and 5.2 continue to hold, except that in Theorem 5.2, L is the mean distance

between two points independently and uniformly distributed in the planar disk of unit area.

7 Concluding remarks

We have shown that under a Protocol Model of non-interference, the capacity of wireless
networks with n randomly located nodes each capable of transmitting at W bits/sec and

employing a common range, and each with randomly chosen and therefore likely far away

destination, is 6(\/nWTgn)'

three dimensional sphere or on a planar disk. Even when the nodes are optimally placed in a

This is true whether the nodes are located on the surface of a

disk of unit area, and the range of each transmission is optimally selected, a wireless network
cannot provide a throughput of more than @(%) bits/sec to each node for a distance of the
order of 1 meter away. In fact, summing over all the bits transported, a wireless network on a
disk of unit area in the plane cannot transport a total of more than ©(1W/n) bit-meters/sec,
irrespective of how the load is distributed. Under a Physical Model of non-interference, the
lower bounds are the same as those above for the Protocol Model, while the upper bounds

on throughput are ©() for Random Networks and ©(~r) for Arbitrary Networks.
Splitting the channel into several sub-channels does not change any of these results.

These results have some implications that designers may want to consider. Perhaps efforts

should be targeted at designing networks with small numbers of nodes.

On the positive side, the results show that modulo further medium access or adaptive
routing restrictions, communication with nearby neighbors at constant bit rates can be
provided in a dense clusters of nodes, since the source-destination distances then shrink in
scaled length as O(ﬁ) This shows that scenarios envisaged in collections of smart homes, or

networks with mostly close range transactions and sparse long range demands, are feasible.
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We have not considered in this paper the additional burden in coordinating access to
the wireless channel, and the additional burden caused by mobility and link failures and the
consequent need to route traffic in a distributed and adaptive way. These can only further

throttle capacity. It would be useful to quantify these additional burdens.

Another issue to be studied is delay. This will arise when the traffic is bursty or when

nodes are mobile. These two sources of delay are markedly different.

Finally, spatial directivity in the antennas or beamforming will be advantageous in in-
creasing the spatial concurrency of transmissions, since wireless networks can then behave
like wired ones. Ephremides [18] has analyzed the medium access problem for a single chan-
nel and shown that when only ternary feedback from the channel can be used to schedule
transmissions, the throughput of collision free successful transmissions is the same as in
the usual omni-directional case. When node locations and demands are known and do not
have to be figured out purely from ternary feedback, transmissions can be advantageously
scheduled so that collisions are avoided, and the throughput can consequently be increased.
However, this is a challenging proposition since transmissions from nodes will have to be
carefully orchestrated. Such schemes may pose some technological challenges though for low

cost networks.
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