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LRPC - Motivation

® Small-kernel operating systems used RPC as the
method for interacting with OS servers.

® |Independent threads, exchanging (large?) messages.

® Great for protection, bad for performance.




Table II. Cross-Domain Performance (times are in microseconds)

Null
(theoretical Null
Processor minimum) (actual) Overhead

PERQ 444 2,300 1,856

Firefly C-VAX 109 464 355
C-VAX 90 754 664
68020 170 730 560
68020 170 800 630
68020 170 1,590 1,420




Where’s the problem?

® RPC implements cross-domain calls using cross-
machine facilities.

® Stub, buffer, scheduling, context switch, and
dispatch overheads.

® This overhead on every RPC call diminishes
performance, encouraging developers to sacrifice
safety for efficiency.

® Solution: optimize for the common case.




What’s the common case!
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Fig. 1. RPC size distribution.

Table I. Frequency of Remote Activity
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LRPC Calls - The Client Stub

® Client calls client stub with procedure arguments, A-
Stack List, and Binding Object. If call is cross-
machine, stub takes traditional RPC path.

» Otherwise, client stub finds next A-Stack for this
procedure and pushes procedure’s arguments.

» A-Stack, Binding Object, and Procedure ldentifier
addresses placed in registers.

® Kernel trap.




LRPC Calls - The Kernel

» Kernel executes in client’s context.

® Verifies binding object. Finds the linkage record linked
with the A-Stack.

® Place caller’s return address and stack pointer in
linkage record. Push linkage onto TCB.




| RPC Calls - Procedure
~ Execution

® Kernel finds new E-Stack in server’s domain. The
thread’s SP is updated to point to this stack.

® Processor’s virtual memory registered loaded with
the server’s domain.

® Control transferred to server stub’s entry address
from process descriptor.

® Server puts results on A-Stack, traps to kernel. Kernel
uses linkage record to return to client.




Major Advantage: Copy
Dot i 5 2

Table III. Copy Operations for LRPC versus
Message-Based RPC

Restricted
Message message
Operation passing passing

Call (mutable ABCE ADE

parameters)
Call (immutable ABCE | ADE

parameters)
Return BCF BF

Code Copy operation
Copy from client stack to message (or A-stack)
Copy from sender domain to kernel domain
Copy from kernel domain to.receiver domain
Copy from sender/kernel space to receiver/kernel domain
Copy from message (or A-stack) into server stack
Copy from message (or A-stack) into client’s results




Issues / Optimizations

® What about large arguments of variable size! What if
A-Stack size cannot be determined in advance!?

® Stub generator generates stubs in assembly language.
Generator must be ported from machine to machine.

® Multiprocessor systems can use idle processors to
eliminate context switch cost.




Performance - Taos Comparison

Table IV. LRPC Performance of Four Tests (in microseconds)

Test Description

LRPC/MP LRPC Taos

Null The Null cross-domain call
Add A procedure taking two 4-byte

arguments and returning one
4-byte argument

Bigln A procedure taking one 200-byte
argument

BigInOut A procedure taking and returning

one 200-byte argument

125 157 464
130 164 480

192

227

Averaged over 100,000 runs

on the C-VAX Firefly




Performance - LRPC Overhead

Table V. Breakdown of Time (in microseconds) for
Single-Processor Null LRPC

LRPC
Operation Minimum overhead

Modula2+ procedure call 7 —
Two kernel traps 36
Two context switches 66

c‘-iilﬁﬁ
WLLULLID —

Kernel transfer —

Total 109

A 307 microsecond improvement over Taos.




Performance - Throughput

LRPC Optimal
LRPC Measured

Calls
per
Second
RPC Optimal

RPC Measured

l
4

Number of Processors

L ess contention over shared resources increases
throughput.




U-Net: More Optimizing For The
ELRRIAL

® For small messages in a LAN, processing overhead
dominates network latency.

® New applications demand high bandwidth and low
latencies for small messages.

® Remote file systems, RPC, object-oriented
technologies, distributed systems, etc.




Is this possible on traditional
LINIX?

® Protocol stack is in the kernel:

® Increased overhead when sending messages
(especially from copies)

® New protocols have to be built on top of
protocols kernel provides. Bad for efficiency and
optimizing buffer management.




U-Net’s Solution

® Move the entire protocol stack into user space.
Applications access the network interface directly.

® Network must be multiplexed among processes.

® Processes cannot interfere with each other.




U-Net Design

® Processes wishing to use the network create an
endpoint, and associate a communication segment, send
queue, receive queue, and free queue with it.

recv free o send
queue queue communication segment queue

""\LJ_

h&—

U-Net endpoint
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Receiving a message

® Much the same. U-Net demultiplexes messages,
transferring data to the correct communication
segment.

® Space in segment found using free queue. Message
descriptor placed in receive queue.

® Process can poll the receive queue, block, or U-
Net can perform upcall on two events.

® Receive queue non-empty and almost full.




Multiplexing

® Process calls OS to create communication channel
based on destination. Uses this in sends and receives.

® On send, OS maps communication channel to a
message tag (such as ATM virtual channel identifier).
This tag is placed on message.

® Incoming message’s tag mapped to channel identifier:
message delivered to endpoint indicated by identifier.




Base-level U-Net

® Communication segments are pinned to physical
memory so network interface can access them.

® Buffers and segments can be scarce resources.
Kernel-emulated U-Net endpoints can be used:
application endpoints are multiplexed into a single
real endpoint.

® Represents zero-copy, which is really one copy (from
process address space to communication segment)




Direct-Access U-Net

® Let communication segment span entire address
space! Network interface can transfer data directly
into data structures (true zero-copy).

® But then NI needs to understand virtual memory, and
needs enough I/O bus address lines to reach all of
physical memory.




Iwo Implementations

® Implemented using SPARCstations and two Fore
Systems ATM interfaces.

® SBA-100 implemented with loadable device driver
and user-level library.

® SBA-200 firmware rewritten to implement U-Net
directly. The interface’s processor and DMA capability
make this possible.




Performance - Round Trip Times

. Raw. U-J\lét

Small round-trip times for messages under |-cell in size.
This case is optimized in the firmware.
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U-Net UDP Performance
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Figure 7. UDP bandwidth as a function of message size.




U-Net TCP Bandwidth
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Figure 8: TCP bandwidth as a function of data generation by
the application.




U-Net and Fore Latencies
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Some things to consider...

® |Is this really implemented on “off-the-shelf”
hardware!

® Firmware customizations.

® Memory requirements for end-points. Pages getting
pinned into memory.

® Virtual Interface Architecture (VIA) heavily influenced
by U-Net.




Summary

® LRPC and U-Net seek to speed up applications by
optimizing the common case.

® Both cases eliminated unneeded processing
overheads, boosting efficiency.




