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LRPC - Motivation

Small-kernel operating systems used RPC as the 
method for interacting with OS servers. 

Independent threads, exchanging (large?) messages.

Great for protection, bad for performance.  
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Table II. Cross-Domain Performance (times are in microseconds) 

System 

Accent 

Taos 

Mach 

V 

Amoeba 

DASH 

Processor 

PERQ 

Firefly C-VAX 

C-VAX 

68020 

68020 

68020 

Null 

(theoretical 

minimum) 

444 

109 

90 

170 

170 

170 

Null 

(actual) 

2,300 

464 

754 

730 

800 

1,590 

Overhead 

1,856 

355 

664 

560 

630 

1,420 

execution path that are general but infrequently needed. For example, it takes 

about 70 ~LS to execute the stubs for the Null procedure call in SRC RPC. Other 

systems have comparable times. 

Message buffer overhead. Messages need to be allocated and passed between 

the client and server domains. Cross-domain message transfer can involve an 

intermediate copy through the kernel, requiring four copy operations for any 

RPC (two on call, two on return). 

Access validation. The kernel needs to validate the message sender on call and 

then again on return. 

Message transfer. The sender must enqueue the message, which must later be 

dequeued by the receiver. Flow control of these queues is often necessary. 

Scheduling. Conventional RPC implementations bridge the gap between ab- 

stract and concrete threads. The programmer’s view is one of a single, abstract 

thread crossing protection domains, while the underlying control transfer mech- 

anism involves concrete threads fixed in their own domain signalling one another 

at a rendezvous. This indirection can be slow, as the scheduler must manipulate 

system data structures to block the client’s concrete thread and then select one 

of the server’s for execution. 

Context switch. There must be a virtual memory context switch from the 
client’s domain to the server’s on call and then back again on return. 

Dispatch. A receiver thread in the server domain must interpret the message 

and dispatch a thread to execute the call. If the receiver is self-dispatching, it 

must ensure that another thread remains to collect messages that may arrive 

before the receiver finishes to prevent caller serialization. 

RPC systems have optimized some of these steps in an effort to improve cross- 

domain performance. The DASH system [la] eliminates an intermediate kernel 

copy by allocating messages out of a region specially mapped into both kernel 

and user domains. Mach [7] and Taos rely on handoff scheduling to bypass 

the general, slower scheduling path; instead, if the two concrete threads cooper- 

ating in a domain transfer are identifiable at the time of the transfer, a direct 

context switch can be made. In line with handoff scheduling, some systems 

pass a few, small arguments in registers, thereby eliminating buffer copying 
and management.3 

3 Optimizations based on passing arguments in registers exhibit a performance discontinuity once the 

parameters overflow the registers. The data in Figure 1 indicate that this can be a frequent problem. 
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Where’s the problem?

RPC implements cross-domain calls using cross-
machine facilities.

Stub, buffer, scheduling, context switch, and 
dispatch overheads.  

This overhead on every RPC call diminishes 
performance, encouraging developers to sacrifice 
safety for efficiency.  

Solution:  optimize for the common case.



What’s the common case?
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Table I. Frequency of Remote Activity 

Percentage of operations 

that cross machine 

Operating system boundaries 

V 3.0 

Taos 5.3 

Sun UNIX+NFS 0.6 

frequent kernel interaction, and file caching, eliminating many calls to remote 

file servers, are together responsible for the relatively small number of cross- 

machine operations. 

Table I summarizes our measurements of these three systems. Our conclusion 

is that most calls go to targets on the same node. Although measurements of 

systems taken under different work loads will demonstrate different percentages, 

we believe that cross-domain activity, rather than cross-machine activity, will 

dominate. Because a cross-machine RPC is slower than even a slow cross-domain 

RPC, system builders have an incentive to avoid network communication. This 

incentive manifests itself in the many different caching schemes used in distrib- 

uted computing systems. 

2.2 Parameter Size and Complexity 

The second part of our RPC evaluation is an examination of the size and 

complexity of cross-domain procedure calls. Our analysis considers both the 

dynamic and static usage of SRC RPC as used by the Taos operating system and 

its clients. The size and maturity of the system make it a good candidate for 

study; our version includes 28 RPC services defining 366 procedures involving 

over 1,000 parameters. 

We counted 1,487,105 cross-domain procedure calls during one four-day period. 
Although 112 different procedures were called, 95 percent of the calls were to 

10 procedures, and 75 percent were to just 3. None of the stubs for these three 

were required to marshal complex arguments; byte copying was sufficient to 

transfer the data between domains.’ 

In the same four days, we also measured the number of bytes transferred 

between domains during cross-domain calls. Figure 1, a histogram and cumulative 

distribution of this measure, shows that the most frequently occurring calls 

transfer fewer than 50 bytes, and a majority transfer fewer than 200. 

Statically, we found that four out of five parameters were of fixed size known 

at compile time; 65 percent were 4 bytes or fewer. Two-thirds of all procedures 

passed only parameters of fixed size, and 60 percent transferred 32 or fewer bytes. 

No data types were recursively defined so as to require recursive marshaling 

(such as linked lists or binary trees). Recursive types were passed through RPC 

‘SRC RPC maps domain-specific pointers into and out of network-wide unique representations, 

enabling pointers to be passed back and forth across an RPC interface. The mapping is done by a 

simple table lookup and was necessary for two of the top three problems. 
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Fig. 1. RPC size distribution. 

interfaces, but these were marshaled by system library procedures, rather than 

by machine-generated code. 

These observations indicate that simple byte copying is usually sufficient for 

transferring data across system interfaces and that the majority of interface 

procedures move only small amounts of data. 

Others have noticed that most interprocess communication is simple, passing 

mainly small parameters [2, 4, 81, and some have suggested optimizations for 

this case. V, for example, uses a message protocol that has been optimized for 

fixed-size messages of 32 bytes. Karger describes compiler-driven techniques for 

passing parameters in registers during cross-domain calls on capability systems. 
These optimizations, although sometimes effective, only partially address the 

performance problems of cross-domain communication. 

2.3 The Performance of Cross-Domain RPC 

In existing RPC systems, cross-domain calls are implemented in terms of the 

facilities required by cross-machine ones. Even through extensive optimization, 

good cross-domain performance has been difficult to achieve. Consider the Null 

procedure call that takes no arguments, returns no values, and does nothing: 

PROCEDURE Null( ); BEGIN RETURN END Null; 

The theoretical minimum time to invoke Null( ) as a cross-domain operation 

involves one procedure call, followed by a kernel trap and change of the proces- 

sor’s virtual memory context on call, and then a trap and context change again 

on return. The difference between this theoretical minimum call time and the 

actual Null call time reflects the overhead of a particular RPC system. Table II 

shows this overhead for six systems. The data in Table II come from measure- 

ments of our own and from published sources [6, 18, 191. 

The high overheads revealed by Table II can be attributed to several aspects 

of conventional RPC: 

Stub overhead. Stubs provide a simple procedure call abstraction, concealing 

from programs the interface to the underlying RPC system. The distinction 

between cross-domain and cross-machine calls is usually made transparent to 

the stubs by lower levels of the RPC system. This results in an interface and 
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LRPC Calls - The Client Stub 

Client calls client stub with procedure arguments, A-
Stack List, and Binding Object.  If call is cross-
machine, stub takes traditional RPC path.  

Otherwise, client stub finds next A-Stack for this 
procedure and pushes procedure’s arguments.  

A-Stack, Binding Object, and Procedure Identifier 
addresses placed in registers.

Kernel trap.  



LRPC Calls - The Kernel

Kernel executes in client’s context.  

Verifies binding object. Finds the linkage record linked 
with the A-Stack.  

Place caller’s return address and stack pointer in 
linkage record.  Push linkage onto TCB. 



LRPC Calls - Procedure 
Execution

Kernel finds new E-Stack in server’s domain.  The 
thread’s SP is updated to point to this stack.

Processor’s virtual memory registered loaded with 
the server’s domain.

Control transferred to server stub’s entry address 
from process descriptor.  

Server puts results on A-Stack, traps to kernel. Kernel 
uses linkage record to return to client.  



Major Advantage:  Copy 
Reduction

50 l B. N. Bershad et al. 

Table III. Copy Operations for LRPC versus 

Message-Based RPC 

Operation LRPC 

Message 

passing 

Restricted 

message 

passing 

Call (mutable 

parameters) 

Call (immutable 

parameters) 

Return 

A ABCE ADE 

AE ABCE ADE 

F BCF BF 

Code Copy operation 

A Copy from client stack to message (or A-stack) 

B Copy from sender domain to kernel domain 

C Copy from kernel domain to receiver domain 

D Copy from sender/kernel space to receiver/kernel domain 

E Copy from message (or A-stack) into server stack 

F Copy from message (or A-stack) into client’s results 

more common case of small- to medium-sized values, eliminating copy operations 

is crucial to good performance when call latency is on the order of only 100 

instructions. 

LRPC’s A-stack/E-stack design offers both safety and performance. Although 

out implementation demonstrates the performance of this design, the Firefly 

operating system does not yet support pairwise shared memory. Our current 

implementation places A-stacks in globally shared virtual memory. Since map- 

ping is done at bind time, an implementation using pairwise shared memory 
would have identical performance, but greater safety. 

4. THE PERFORMANCE OF LRPC 

To evaluate the performance of LRPC, we used the four tests shown in 

Table IV. These tests were run on the C-VAX Firefly using LRPC and Taos 

RPC. The Null call provides a baseline against which we can measure the added 

overhead of LRPC. The procedures Add, BigIn, and BigInOut represent calls 

having typical parameter sizes. 

Table IV shows the results of these tests when performed on a single node. 

The measurements were made by performing 100,000 cross-domain calls in a 

tight loop, computing the elapsed time, and then dividing by 100,000. The table 

shows two times for LRPC. The first, listed as “LRPC/MP,” uses the idle 

processor optimization described in Section 3.4. The second, shown as “LRPC,” 

executes the domain switch on a single processor; it is roughly three times faster 

than SRC RPC, which also uses only one processor. 

Table V shows a detailed cost breakdown for the serial (single-processor) Null 

LRPC on a C-VAX. This table was produced from a combination of timing 

measurements and hand calculations of TLB misses. The code to execute a Null 
LRPC consists of 120 instructions that require 157 ps to execute. The column 

labeled “Minimum” in Table V is a timing breakdown for the theoretically 

minimum cross-domain call (one procedure call, two traps, and two context 

switches). The column labeled “LRPC overhead” shows the additional time 
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Issues / Optimizations

What about large arguments of variable size?  What if 
A-Stack size cannot be determined in advance?

Stub generator generates stubs in assembly language.  
Generator must be ported from machine to machine.

Multiprocessor systems can use idle processors to 
eliminate context switch cost.  



Performance - Taos Comparison
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Table IV. LRPC Performance of Four Tests (in microseconds) 

Test Descrintion LRPC/MP LRPC Taos 

Null 

Add 

BigIn 

BigInOut 

The Null cross-domain call 

A procedure taking two I-byte 

arguments and returning one 

I-byte argument 

A procedure taking one 200-byte 

argument 

A procedure taking and returning 

one 200-byte argument 

125 157 464 

130 164 480 

173 192 539 

219 227 636 

Table V. Breakdown of Time (in microseconds) for 

Sinele-Processor Null LRPC 

LRPC 

Operation Minimum overhead 

ModulaQ+ procedure call 7 - 

Two kernel traps 36 - 

Two context switches 66 - 

Stubs - 21 

Kernel transfer - 27 

Total 109 48 

required to execute the call and return operations described in Section 3.2 and is 
the added cost of our implementation. For the Null call, approximately 18 ps are 
spent in the client stub and 3 ps in the server’s. The remaining 27 ps of overhead 
are spent in the kernel and go toward binding validation and linkage management. 
Most of this takes place during the call, as the return path is simpler. 

Approximately 25 percent of the time used by the Null LRPC is due to TLB 
misses that occur during virtual address translation. A context switch on a 
C-VAX requires the invalidation of the TLB, and each subsequent TLB miss 
increases the cost of a memory reference by about 0.9 I.LS. Anticipating this, the 
data structures and control sequences of LRPC were designed to minimize TLB 
misses. Even so, we estimate that 43 TLB misses occur during the Null call. 

Section 3.4 stated that LRPC avoids locking shared data during call and return 
in order to remove contention on shared-memory multiprocessors. This is dem- 
onstrated by Figure 2, which shows call throughput as a function of the number 
of processors simultaneously making calls. Domain caching was disabled for this 
experiment-each call required a context switch. A single processor can make 
about 6,300 LRPCs per second, but four processors can make over 23,000 calls 
per second-a speedup of 3.7 and close to the maximum that the Firefly is capable 
of delivering. These measurements were made on a Firefly having four C-VAX 
processors and one MicroVaxII I/O processor. Measurements on a five-processor 
MicroVaxII Firefly showed a speedup of 4.3 with five processors. 

In contrast, the throughput of SRC RPC levels off with two processors at 
about 4,000 calls per second. This limit is due to a global lock that is held during 
a large part of the RPC transfer path. For a machine like the Firefly, a small- 
scale shared-memory multiprocessor, a limiting factor of two is annoying, but 
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Table IV. LRPC Performance of Four Tests (in microseconds) 

Test Descrintion LRPC/MP LRPC Taos 

Null 

Add 

BigIn 

BigInOut 

The Null cross-domain call 

A procedure taking two I-byte 

arguments and returning one 

I-byte argument 

A procedure taking one 200-byte 
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Operation Minimum overhead 

ModulaQ+ procedure call 7 - 

Two kernel traps 36 - 

Two context switches 66 - 
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Kernel transfer - 27 

Total 109 48 

required to execute the call and return operations described in Section 3.2 and is 
the added cost of our implementation. For the Null call, approximately 18 ps are 
spent in the client stub and 3 ps in the server’s. The remaining 27 ps of overhead 
are spent in the kernel and go toward binding validation and linkage management. 
Most of this takes place during the call, as the return path is simpler. 

Approximately 25 percent of the time used by the Null LRPC is due to TLB 
misses that occur during virtual address translation. A context switch on a 
C-VAX requires the invalidation of the TLB, and each subsequent TLB miss 
increases the cost of a memory reference by about 0.9 I.LS. Anticipating this, the 
data structures and control sequences of LRPC were designed to minimize TLB 
misses. Even so, we estimate that 43 TLB misses occur during the Null call. 

Section 3.4 stated that LRPC avoids locking shared data during call and return 
in order to remove contention on shared-memory multiprocessors. This is dem- 
onstrated by Figure 2, which shows call throughput as a function of the number 
of processors simultaneously making calls. Domain caching was disabled for this 
experiment-each call required a context switch. A single processor can make 
about 6,300 LRPCs per second, but four processors can make over 23,000 calls 
per second-a speedup of 3.7 and close to the maximum that the Firefly is capable 
of delivering. These measurements were made on a Firefly having four C-VAX 
processors and one MicroVaxII I/O processor. Measurements on a five-processor 
MicroVaxII Firefly showed a speedup of 4.3 with five processors. 

In contrast, the throughput of SRC RPC levels off with two processors at 
about 4,000 calls per second. This limit is due to a global lock that is held during 
a large part of the RPC transfer path. For a machine like the Firefly, a small- 
scale shared-memory multiprocessor, a limiting factor of two is annoying, but 
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not serious. On shared-memory machines with just a few dozen processors, 

though, contention on the critical control transfer path would have a greater 

performance impact. 

5. THE UNCOMMON CASES 

In addition to performing well in the common case, LRPC must perform accept- 

ably in the less common ones. This section describes several of these less common 

cases and explains how they are dealt with by the LRPC. This section does not 

enumerate all possible uncommon cases that must be considered. Instead, 

by describing just a few, we hope to emphasize that the common-case 

approach taken by LRPC is flexible enough to accommodate the uncommon 

cases gracefully. 

5.1 Transparency and Cross-Machine Calls 

Deciding whether a call is cross-domain or cross-machine is made at the earliest 

possible moment: the first instruction of the stub. If the call is to a truly remote 

server (indicated by a bit in the Binding Object), then a branch is taken 

to a more conventional RPC stub. The extra level of indirection is negligible 

compared to the overheads that are part of even the most efficient network 

RPC implementation. 

5.2 A-Stacks: Size and Number 

PDLs are defined during the compilation of an interface. The stub generator 

reads each interface and determines the number and size of the A-stacks for each 

procedure. The number defaults to five, but can be overridden by the interface 

writer. When the size of each of a procedure’s arguments and return values are 

known at compile time, the A-stack size can be determined exactly. In the 

presence of variable-sized arguments, though, the stub generator uses a default 

size equal to the Ethernet packet size (this default also can be overridden). 

Experience has shown, and Figure 1 confirms, that RPC programmers strive to 

keep the sizes of call and return parameters under this limit. Most existing RPC 

protocols are built on simple packet exchange protocols, and multipacket calls 

have performance problems. In cases where the arguments are too large to fit 

into the A-stack, the stubs transfer data in a large out-of-band memory segment. 
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U-Net: More Optimizing For The 
Common Case

For small messages in a LAN, processing overhead 
dominates network latency.  

New applications demand high bandwidth and low 
latencies for small messages.

Remote file systems, RPC, object-oriented 
technologies, distributed systems, etc.  



Is this possible on traditional 
UNIX?

Protocol stack is in the kernel:

Increased overhead when sending messages 
(especially from copies)

New protocols have to be built on top of 
protocols kernel provides.  Bad for efficiency and 
optimizing buffer management.  



U-Net’s Solution

Move the entire protocol stack into user space.  
Applications access the network interface directly.  

Network must be multiplexed among processes.

Processes cannot interfere with each other.



U-Net Design

Processes wishing to use the network create an 
endpoint, and associate a communication segment, send 
queue, receive queue, and free queue with it.  

provide user-level accessto the network, but the solutions rely on

custom hardware and are somewhat constrained to the controlled

environment of a multiprocessor. On the other hand, given that

these parallel machines resemble clusters of workstations ever

more closely, it is reasonable to expect that some of the concepts

developed in these designs can indeed be transferred to worksta-

tions.

Successive simplifications and generalizations of shared mem-

ory is leading to a slightly different type of solution in which the

network can be accessed indirectly through memory accesses.

Shrimp[4] uses custom NIs to allow processes to establish chan-

nels connecting virtual memory pageson two nodes such that data

written into a page on one side gets propagated automatically to

the other side. Thekkath[27] proposes a memory-based network

accessmodel that separatesthe flow of control from the data flow.

The remote memory operations have been implemented by emulat-

ing unused opcodes in the MIPS instruction set.While the use of a

sharedmemory abstraction allows a reduction of the communica-

tion overheads, it is not clear how to efficiently support legacy pro-

tocols, long data streams, or remote procedure call.

2.6 U-Net design goals

Experience with network interfaces in parallel machines made it

clear that providing user-level access to the network in U-Net is

the best avenue towards offering communication latencies and

bandwidths that are mainly limited by the network fabric and that,

at the same time, offer full flexibility in protocol design and in the

integration of protocol, buffering, and appropriate higher commu-

nication layers, The many efforts in developing fast implementa-

tions of TCP and other internetworking protocols clearly affirm the

relevance of these protocols in high-performance networking and

thus any new network interface proposal must be able to support

theseprotocols effectively (which is typically not the casein paral-

lel machines, for example).

The three aspects that set U-Net apart from the proposals dis-

cussedabove are:

! the focus on low latency and high bandwidth using small mes-

sages,

! the emphasis on protocol design and integration flexibility, and

! the desire to meet the first two goals on widely available stan-

dard workstations using off-the-shelf communication hardware.

3 The user-level network interface architecture

The U-Net user-level network interface architecture virtualizes

the interface in such a way that a combination of operating system

and hardware mechanisms can provide every process1the illusion

of owning the interface to the network. Depending on the sophisti-

cation of the actual hardware, the U-Net components manipulated

by a processmay correspond to real hardware in the NI, to mem-

ory locations that are interpreted by the OS, or to a combination of

the two. The role of U-Net is limited to multiplexing the actual NI

among all processesaccessing the network and enforcing protec-

tion boundaries aswell as resource consumption limits. In particu-

lar, a process has control over both the contents of each message

and the management of send and receive resources, such as buff-

ers.

3.1 Sending and receiving messages

The U-Net architecture is composed of three main building

blocks, shown in Figure 2: endpoints serve asan application’s han-

dle into the network and contain comwumicatkm segments which

are regions of memory that hold message data, and message

queues which hold descriptors for messagesthat are to be sent or

1.The terms “process” and “application” are used interchangeably

to refer to arbitrary unprivileged UNIX processes.

that have been received. Each process that wishes to access the

network first createsone or more endpoints, then associatesa com-

munication segment and a set of send, receive, and free message

queueswith each endpoint.

To send amessage,a user process composes the data in the com-

munication segment and pushes a descriptor for the messageonto

the send queue. At that point, the network interface is expected to

pick the messageup and insert it into the network. If the network is

backed-up, the network interface will simply leave the descriptor

in the queue and eventually exert back-pressure to the user process

when the queue becomes full. The NI provides a mechanism to

indicate whether a message in the queue has been injected into the

network, typically by setting a flag in the description this indicates

that the associated send buffer can be reused.

Incoming messagesare demtdtiplexed by U-Net based on their

destination: the data is transferred into the appropriate communica-

tion segment and a message descriptor is pushed onto the corre-

sponding receive queue, The receive model supported by U-Net is

either polling or event driven: the process can periodically check

the status of the receive queue, it can block waiting for the next

messa e to arrive (using a UNIX select call), or it can register an
F.upcall with U-Net. The upcall is used by U-Net to signal that the

recv free
queue queue communication
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Figure 2: U-Net building blocks.

a) Endpoints serve as an application’s handle into the net-

work, communication segments are regions of memory that

hold message data, and message queues (sena%ecv/free

queues) hold descriptors for messages that are to be sent or

that have been received.

b) Regular endpoints are serviced by the U-Net network inter-

face directly, Emulated endpoints are serviced by the kernel
and consume no additional network interface resources but

cannot offer the same level of performance.

2. The term “upcall” is used in a very general sense to refer to a

mechanism which allows U-Net to signal an asynchronous

event to the application.
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Receiving a message

Much the same.  U-Net demultiplexes messages, 
transferring data to the correct communication 
segment. 

Space in segment found using free queue.  Message 
descriptor placed in receive queue.

Process can poll the receive queue, block, or U-
Net can perform upcall on two events.

Receive queue non-empty and almost full.  



Multiplexing

Process calls OS to create communication channel 
based on destination.  Uses this in sends and receives.

On send, OS maps communication channel to a 
message tag (such as ATM virtual channel identifier).  
This tag is placed on message.

Incoming message’s tag mapped to channel identifier: 
message delivered to endpoint indicated by identifier.



Base-level U-Net

Communication segments are pinned to physical 
memory so network interface can access them.

Buffers and segments can be scarce resources.  
Kernel-emulated U-Net endpoints can be used: 
application endpoints are multiplexed into a single 
real endpoint.  

Represents zero-copy, which is really one copy (from 
process address space to communication segment)



Direct-Access U-Net

Let communication segment span entire address 
space!  Network interface can transfer data directly 
into data structures (true zero-copy).  

But then NI needs to understand virtual memory, and 
needs enough I/O bus address lines to reach all of 
physical memory.  



Two Implementations

Implemented using SPARCstations and two Fore 
Systems ATM interfaces.

SBA-100 implemented with loadable device driver 
and user-level library.

SBA-200 firmware rewritten to implement U-Net 
directly.  The interface’s processor and DMA capability 
make this possible.  



Performance - Round Trip Times
of the ATM adaptation layer processing from the host processor as

much as possible. The kernel-firmware interface is patterned after

the data structures used for managing BSD vrbufs and System V

streams bufs. It allows the i960 to traverse these data structures
using DMA in order to determine the location of messagedata, and

then to move it into or out of the network rather autonomously.

The performance potential of Fore’s firmware was evaluated

using a test program which maps the kernel-firmware interface
data structures into user space and manipulates them directly to

send raw AAL5 PDUS over the network. The measured round-trip

time was approximately 160LS while the maximum bandwidth

achieved using 4Kbyte packets was 13Mbytes/sec. This perfor-

mance is rather discouraging: the round-trip time is almost 3 times

larger than using the much simpler and cheaper SBA- 100 inter-

face, and the bandwidth for reasonable sized packets falls short of

the 15.2Mbytes/sec peak fiber bandwidth.

A more detailed analysis showed that the poor performance can
mainly be attributed to the complexity of the kernel-firmware

interface. The messagedata structures are more complex than nec-
essary and having the i960 follow linked data structures on the
host using DMA incurs high latencies. Finally, the host processor

is much faster than the i960 and so off-loading can easily backfire.

4.2.2 U-Net firmware

The base-level U-Net implementation for the SBA-200 modifies

the firmware to add a new U-Net compatible interface. The main
design considerations for the new firmware were to virtualize the

host-i960 interface such that multiple user processescan commu-

nicate with the i960 concurrently, and to minimize the number of
host and i960 accessesacross the 1/0 bus.

The new host-i960 interface reflects the base-level U-Net archi-

tecture directly, The i960 maintains a data structure holding the
protection information for all open endpoints. Communication

segments are pinned to physical memory and mapped into the

i960’s DMA space,receive queues are similarly allocated such that

the host can poll them without crossing the 1/0 bus, while send and

free queues are actually placed in SBA-200 memory and mapped

into user-space such that the i960 can poll these queues without
DMA transfers.

The control interface to U-Net on the i960 consists of a single
i960-resident command queue that is only accessible from the ker-

nel, Processesuse the system call interface to the device driver that

implements the kernel resident part of U-Net. This driver assistsin

providing protection by validating requests for the creation of
communication segments and related endpoints, and by providing
a secure interface between the operating system service that man-
agesthe multiplexing tags and the U-Net channel registration with
the i960. The tags used for the ATM network consist of a VCI pair

that implements full duplex communication (ATM is a connection

oriented network and requires explicit connection set-up even
though U-Net itself is not connection oriented). The communica-

tion segments and message queues for distinct endpoints are dis-

joint and are only present in the address space of the process that
creates the endpoint.

In order to send a PDU, the host usesa double word store to the
i960-resident transmit queue to provide a pointer to a transmit

buffer, the length of the packet and the channel identifier to the
i960. Single cell packet sends are optimized in the firmware
becausemany small messagesare less than a cell in size. For larger

sized messages,the host-i960 DMA uses three 32-byte burst trans-

1. For software engineering reasons, the new firmware’s function-

ality is a strict superset of Fore’s such that the traditional net-
working layers can still function while new applications can use

the faster U-Net.
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Figure 3: U-Net round-trip times as a function of message

size. The Raw U-Net graph shows the round-trip times for a

simple ping-pong benchmark using the lJ-Net interface

directly. The inset graph highlights the performance on small

messages.The UAM line measures the performance of U-Net

Active Messages using reliable single-cell requests and
replies whereas UAh4 xfer usesreliable block transfers of arbi-
trary size.

fers to fetch two cells at a time and computes the AAL5 CRC using

special SBA-200 hardware.

To receive cells from the network, the i960 periodically polls the

network input FIFO. Receiving single cell messages is special-

cased to improve the round-trip latency for small messages.The

single cell messagesare directly transferred into the next receive

queue entry which is large enough to hold the entire message—this

avoids buffer allocation and extra DMA for the buffer pointers.
Longer messages are transferred to fixed-size receive buffers

whose offsets in the communication segment are pulled off the

i960-resident free queue. When the last cell of the packet is

received, the message descriptor containing the pointers to the

buffers is DMA-ed into the next receive queue entry.

4.2.3 Performance

Figure 3 shows the round trip times for messages up to 1K
bytes, i.e., the time for a message to go from one host to another

via the switch and back. The round-trip time is 65LS for a one-cell

messagedue to the optimization, which is rather low, but not quite

at par with parallel machines, like the CM-5, where custom net-

work interfaces placed on the memory bus (Mbus) allow round-

trips in 12Ls. Using a UNIX signal to indicate message arrival
instead of polling adds approximately another 30LS on each end.

Longer messagesstart at 120LS for 48 bytes and cost roughly an

extra 6VS per additional cell (i.e., 48 bytes). Figure 4 shows the
bandwidth over the raw base level U-Net interface in Mbytes/see
for messagesizes varying from 4 bytes to 5Kbytes. It is clear from
the graph that with packet sizes as low as 800 bytes, the fiber can
be saturated.

4.2,4 Memory requirements

The current implementation pins pages used in communication

segments down to physical memory and maps them into the SBA-
200’s DMA space. In addition, each endpoint has its own set of
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Small round-trip times for messages under 1-cell in size. 
This case is optimized in the firmware.  



U-Net Bandwidth Performance
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Figure 4: U-Net bandwidth asa function of messagesize. The

AAL-5 limit curve represents the theoretical peak bandwidth

of the fiber (the sawtooths are causedby the quantization into

48-byte cells). The Raw U-/Vet measurement shows the band-

width achievable using the U-Net interface directly, while

UAM store/get demonstrate the performance of reliable U-Net

Active Messagesblock transfers.

send, receive and free buffer queues, two of which reside on the

i960 and aremapped to user-space.The number of distinct applica-

tions that can be run concurrently is therefore limited by the

amount of memory that can be pinned down on the host, the size of

the DMA address space and, the i960 memory size. Memory

resource management is an important issue if access to the net-

work interface is to be scalable. A reasonable approach would be

to provide amechanism by which the i960, in conjunction with the

kernel, would provide some elementary memory management

functions which would allow dynamic allocation of the DMA

address space to the communication segments of active user pro-

cesses.The exact mechanism to achieve such an objective without

compromising the efficiency and simplicity of the interface

remains a challenging problem.

5 U-Net Active Messages implementation and per-

formance

The U-Net Active Messages (UAM) layer is a prototype that

conforms to the Generic Active Messages (GAM) 1.1 specifica-

tion[9], Active Messagesis a mechanism that allows efficient over-

lapping of communication with computation in multiprocessors.

Communication using Active Messages is in the form of requests

and matching replies. An Active Message contains the addressof a

handler that gets called on receipt of the message followed by up

to four words of arguments. The function of the handler is to pull

the messageout of the network and integrate it into the ongoing

computation, A request message handler may or may not send a

reply message. However, in order to prevent live-lock, a reply

messagehandler cannot send another reply.

Generic Active Messages consists of a set of primitives that

higher level layers can use to initialize the GAM interface, send

request and reply messages and perform block gets and stores.

GAM provides reliable message delivery which implies that a

message that is sent will be delivered to the recipient barring net-

work partitions, node crashes,or other catastrophic failures.

5.1 Active Messagesimplementation

The UAM implementation consists of a user level library that

exports the GAM 1.1 interface and uses the U-Net interface. The

library is rather simple and mainly performs the flow-control and

retransmissions necessary to implement reliable delivery and the

Active Messages-specific handler dispatch.

5.1.1 Flow Control Issues

In order to ensure reliable message delivery, UAM uses a win-

dow-based flow control protocol with a fixed window size (w).

Every endpoint preallocates a total of 4W transmit and receive

buffers for every endpoint it communicates with. This storage

allows w requests and w replies to be kept in caseretransmission is

needed and it allows 2Wrequest and reply messagesto arrive with-

out buffer overflow.

Request messageswhich do not generate a reply are explicitly

acknowledged and a standard “go back N’ retransmission mecha-

nism is used to deal with lost requests or replies. The flow control

implemented here is an end-to-end flow control mechanism which

does not attempt to minimize message losses due to congestion in

the network.

5.1.2 Sending and Receiving

To send a request message, UAM first processes any outstand-

ing messagesin the receive queue, drops a copy of the messageto

be sent into a pre-allocated transmit buffer and pushes a descriptor

onto the sendqueue, If the sendwindow is full, the sender polls for

incoming messagesuntil there is space in the send window or until

a time-out occurs and all unacknowledged messages are retrans-

mitted. The sending of reply messages or explicit acknowledg-

ments is similar except that no flow-control window check is

necessary.

The UAM layer receives messagesby explicit polling. On mes-

sagearrival, UAM loops through the receive queue, pulls the mes-

sages out of the receive buffers, dispatches the handlers, sends

explicit acknowledgments where necessary, and frees the buffers

and the receive queue entries.

5.2 Active Messages micro-benchmarks

Four different micro-benchmarks were run to determine round

trip times and transfer bandwidths for single cell messagesaswell

as block transfers:

1.The single-cell round trip time was estimated by repeatedly

sending a single cell request messagewith Oto 32 bytes of data ‘

to a remote host specifying a handler that replies with an identi-

cal message. The measured round trip times are shown in

Figure 3 and start at 71~s which suggests that the UAM over-

head over raw U-Net is about 6ps. This includes the costs to

send a request message,receive it, reply and receive the reply.

2. The block transfer round-trip time was measured similarly by

sending messagesof varying sizes back and forth between two

hosts. Figure 3 shows that the time for an N-byte transfer is

roughly 135&s + N 0.2vs, The per-byte cost is higher than for

Raw U-Net because each one-way UAM transfer involves two

copies (from the source data structure into a send buffer and

from the receive buffer into the destination data structure).

3. The block store bandwidth was measured by repeatedly storing
a block of a specified size to a remote node in a loop and mea-

suring the total time taken. Figure 4 shows that the bandwidth

reaches 80% of the AAL-5 limit with blocks of about 2Kbytes.

The dip in performance at 4164 bytes is caused by the fact that

UAM uses buffers holding 4160 bytes of data and thus addi-
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The dip in performance at 4164 bytes is caused by the fact that
UAM uses buffers holding 4160 bytes of data and thus addi-
tional processing time is required. The peak bandwidth at
4Kbytes is 14.8Mbytes/s.

4. The block get bandwidth was measured by sending a series of
requests to a remote node to fetch a block of specified size and
waiting until all blocks arrive. The block get performance is
nearly identical to that of block stores.

 

5.3 Summary

 

The performance of Active Messages shows that the U-Net
interface is well suited for building higher-level communication
paradigms used by parallel languages and run-times. The main
performance penalty of UAM over raw U-Net is due to the cost of
implementing reliability and removing the restrictions of the com-
munication segment size: UAM must send acknowledgment mes-
sages and it copies data into and out of buffers in the
communication segment. For large transfers there is virtually no
bandwidth loss due to the extra copies, but for small messages the
extra overhead of the copies and the acknowledgments is notice-
able.

Overall, the performance of UAM is so close to raw U-Net that
using the raw interface is only worthwhile if control over every
byte in the AAL-5 packets is required (e.g., for compatibility) or if
significant benefits can be achieved by using customized retrans-
mission protocols.

 

6 Split-C application benchmarks

 

Split-C[7] is a simple parallel extension to C for programming
distributed memory machines using a global address space
abstraction. It is implemented on top of U-Net Active Messages
and is used here to demonstrate the impact of U-Net on applica-
tions written in a parallel language. A Split-C program comprises
one thread of control per processor from a single code image and
the threads interact through reads and writes on shared data. The
type system distinguishes between local and global pointers such
that the compiler can issue the appropriate calls to Active Mes-
sages whenever a global pointer is dereferenced. Thus, dereferenc-
ing a global pointer to a scalar variable turns into a request and
reply Active Messages sequence exchange with the processor
holding the data value. Split-C also provides bulk transfers which
map into Active Message bulk gets and stores to amortize the over-
head over a large data transfer.

Split-C has been implemented on the CM-5, Paragon, SP-1,
Meiko CS-2, IBM SP-2, and Cray T3D supercomputers as well as
over U-Net Active Messages. A small set of application bench-
marks is used here to compare the U-Net version of Split-C to the
CM-5[7,29] and Meiko CS-2[25] versions. This comparison is par-
ticularly interesting as the CM-5 and Meiko machines are easily
characterized with respect to the U-Net ATM cluster as shown in
Table 2: the CM-5’s processors are slower than the Meiko’s and

Machine
CPU
speed

message
overhead

round-trip
latency

network
bandwidth

CM-5
33 Mhz
Sparc-2

3!s 12!s 10Mb/s

Meiko
CS-2

40Mhz
Supersparc

11!s 25!s 39Mb/s

U-Net
ATM

50/60 Mhz
Supersparc

6!s 71!s 14Mb/s

Table 2: Comparison of CM-5, Meiko CS-2, and U-Net ATM 
cluster computation and communication performance charac-
teristics

 

the ATM cluster’s, but its network has lower overheads and laten-
cies. The CS-2 and the ATM cluster have very similar characteris-
tics with a slight CPU edge for the cluster and a faster network for
the CS-2.

The Split-C benchmark set used here is comprised of seven pro-
grams: a blocked matrix multiply[7], a sample sort optimized for
small messages[8], the same sort optimized to use bulk trans-
fers[25], two radix sorts similarly optimized for small and bulk
transfers, a connected components algorithm[20], and a conjugate
gradient solver. The matrix multiply and the sample sorts have
been instrumented to account for time spent in local computation
phases and in communication phases separately such that the time
spent in each can be related to the processor and network perfor-
mance of the machines. The execution times for runs on eight pro-
cessors are shown in Figure 5; the times are normalized to the total
execution time on the CM-5 for ease of comparison. The matrix
multiply uses matrices of 4 by 4 blocks with 128 by 128 double
floats each. The main loop multiplies two blocks while it
prefetches the two blocks needed in the next iteration. The results
show clearly the CPU and network bandwidth disadvantages of the
CM-5. The sample sort sorts an array of 4 million 32-bit integers
with arbitrary distribution. The algorithm first samples the keys,
then permutes all keys, and finally sorts the local keys on each pro-
cessor. The version optimized for small messages packs two values
per message during the permutation phase while the one optimized
for bulk transfers presorts the local values such that each processor
sends exactly one message to every other processor. The perfor-

Figure 5: Comparison of seven Split-C benchmarks on the
CM-5, the U-Net ATM cluster, and the Meiko CS-2. The exe-
cution times are normalized to the CM-5 and the computa-
tion/communication breakdown is shown for three
applications.
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The dip in performance at 4164 bytes is caused by the fact that
UAM uses buffers holding 4160 bytes of data and thus addi-
tional processing time is required. The peak bandwidth at
4Kbytes is 14.8Mbytes/s.

4. The block get bandwidth was measured by sending a series of
requests to a remote node to fetch a block of specified size and
waiting until all blocks arrive. The block get performance is
nearly identical to that of block stores.

 

5.3 Summary

 

The performance of Active Messages shows that the U-Net
interface is well suited for building higher-level communication
paradigms used by parallel languages and run-times. The main
performance penalty of UAM over raw U-Net is due to the cost of
implementing reliability and removing the restrictions of the com-
munication segment size: UAM must send acknowledgment mes-
sages and it copies data into and out of buffers in the
communication segment. For large transfers there is virtually no
bandwidth loss due to the extra copies, but for small messages the
extra overhead of the copies and the acknowledgments is notice-
able.

Overall, the performance of UAM is so close to raw U-Net that
using the raw interface is only worthwhile if control over every
byte in the AAL-5 packets is required (e.g., for compatibility) or if
significant benefits can be achieved by using customized retrans-
mission protocols.

 

6 Split-C application benchmarks

 

Split-C[7] is a simple parallel extension to C for programming
distributed memory machines using a global address space
abstraction. It is implemented on top of U-Net Active Messages
and is used here to demonstrate the impact of U-Net on applica-
tions written in a parallel language. A Split-C program comprises
one thread of control per processor from a single code image and
the threads interact through reads and writes on shared data. The
type system distinguishes between local and global pointers such
that the compiler can issue the appropriate calls to Active Mes-
sages whenever a global pointer is dereferenced. Thus, dereferenc-
ing a global pointer to a scalar variable turns into a request and
reply Active Messages sequence exchange with the processor
holding the data value. Split-C also provides bulk transfers which
map into Active Message bulk gets and stores to amortize the over-
head over a large data transfer.

Split-C has been implemented on the CM-5, Paragon, SP-1,
Meiko CS-2, IBM SP-2, and Cray T3D supercomputers as well as
over U-Net Active Messages. A small set of application bench-
marks is used here to compare the U-Net version of Split-C to the
CM-5[7,29] and Meiko CS-2[25] versions. This comparison is par-
ticularly interesting as the CM-5 and Meiko machines are easily
characterized with respect to the U-Net ATM cluster as shown in
Table 2: the CM-5’s processors are slower than the Meiko’s and

Machine
CPU
speed

message
overhead

round-trip
latency

network
bandwidth

CM-5
33 Mhz
Sparc-2

3!s 12!s 10Mb/s

Meiko
CS-2

40Mhz
Supersparc

11!s 25!s 39Mb/s

U-Net
ATM

50/60 Mhz
Supersparc

6!s 71!s 14Mb/s

Table 2: Comparison of CM-5, Meiko CS-2, and U-Net ATM 
cluster computation and communication performance charac-
teristics

 

the ATM cluster’s, but its network has lower overheads and laten-
cies. The CS-2 and the ATM cluster have very similar characteris-
tics with a slight CPU edge for the cluster and a faster network for
the CS-2.

The Split-C benchmark set used here is comprised of seven pro-
grams: a blocked matrix multiply[7], a sample sort optimized for
small messages[8], the same sort optimized to use bulk trans-
fers[25], two radix sorts similarly optimized for small and bulk
transfers, a connected components algorithm[20], and a conjugate
gradient solver. The matrix multiply and the sample sorts have
been instrumented to account for time spent in local computation
phases and in communication phases separately such that the time
spent in each can be related to the processor and network perfor-
mance of the machines. The execution times for runs on eight pro-
cessors are shown in Figure 5; the times are normalized to the total
execution time on the CM-5 for ease of comparison. The matrix
multiply uses matrices of 4 by 4 blocks with 128 by 128 double
floats each. The main loop multiplies two blocks while it
prefetches the two blocks needed in the next iteration. The results
show clearly the CPU and network bandwidth disadvantages of the
CM-5. The sample sort sorts an array of 4 million 32-bit integers
with arbitrary distribution. The algorithm first samples the keys,
then permutes all keys, and finally sorts the local keys on each pro-
cessor. The version optimized for small messages packs two values
per message during the permutation phase while the one optimized
for bulk transfers presorts the local values such that each processor
sends exactly one message to every other processor. The perfor-

Figure 5: Comparison of seven Split-C benchmarks on the
CM-5, the U-Net ATM cluster, and the Meiko CS-2. The exe-
cution times are normalized to the CM-5 and the computa-
tion/communication breakdown is shown for three
applications.
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The dip in performance at 4164 bytes is caused by the fact that
UAM uses buffers holding 4160 bytes of data and thus addi-
tional processing time is required. The peak bandwidth at
4Kbytes is 14.8Mbytes/s.

4. The block get bandwidth was measured by sending a series of
requests to a remote node to fetch a block of specified size and
waiting until all blocks arrive. The block get performance is
nearly identical to that of block stores.

 

5.3 Summary

 

The performance of Active Messages shows that the U-Net
interface is well suited for building higher-level communication
paradigms used by parallel languages and run-times. The main
performance penalty of UAM over raw U-Net is due to the cost of
implementing reliability and removing the restrictions of the com-
munication segment size: UAM must send acknowledgment mes-
sages and it copies data into and out of buffers in the
communication segment. For large transfers there is virtually no
bandwidth loss due to the extra copies, but for small messages the
extra overhead of the copies and the acknowledgments is notice-
able.

Overall, the performance of UAM is so close to raw U-Net that
using the raw interface is only worthwhile if control over every
byte in the AAL-5 packets is required (e.g., for compatibility) or if
significant benefits can be achieved by using customized retrans-
mission protocols.

 

6 Split-C application benchmarks

 

Split-C[7] is a simple parallel extension to C for programming
distributed memory machines using a global address space
abstraction. It is implemented on top of U-Net Active Messages
and is used here to demonstrate the impact of U-Net on applica-
tions written in a parallel language. A Split-C program comprises
one thread of control per processor from a single code image and
the threads interact through reads and writes on shared data. The
type system distinguishes between local and global pointers such
that the compiler can issue the appropriate calls to Active Mes-
sages whenever a global pointer is dereferenced. Thus, dereferenc-
ing a global pointer to a scalar variable turns into a request and
reply Active Messages sequence exchange with the processor
holding the data value. Split-C also provides bulk transfers which
map into Active Message bulk gets and stores to amortize the over-
head over a large data transfer.

Split-C has been implemented on the CM-5, Paragon, SP-1,
Meiko CS-2, IBM SP-2, and Cray T3D supercomputers as well as
over U-Net Active Messages. A small set of application bench-
marks is used here to compare the U-Net version of Split-C to the
CM-5[7,29] and Meiko CS-2[25] versions. This comparison is par-
ticularly interesting as the CM-5 and Meiko machines are easily
characterized with respect to the U-Net ATM cluster as shown in
Table 2: the CM-5’s processors are slower than the Meiko’s and

Machine
CPU
speed

message
overhead

round-trip
latency

network
bandwidth

CM-5
33 Mhz
Sparc-2

3!s 12!s 10Mb/s

Meiko
CS-2

40Mhz
Supersparc

11!s 25!s 39Mb/s

U-Net
ATM

50/60 Mhz
Supersparc

6!s 71!s 14Mb/s

Table 2: Comparison of CM-5, Meiko CS-2, and U-Net ATM 
cluster computation and communication performance charac-
teristics

 

the ATM cluster’s, but its network has lower overheads and laten-
cies. The CS-2 and the ATM cluster have very similar characteris-
tics with a slight CPU edge for the cluster and a faster network for
the CS-2.

The Split-C benchmark set used here is comprised of seven pro-
grams: a blocked matrix multiply[7], a sample sort optimized for
small messages[8], the same sort optimized to use bulk trans-
fers[25], two radix sorts similarly optimized for small and bulk
transfers, a connected components algorithm[20], and a conjugate
gradient solver. The matrix multiply and the sample sorts have
been instrumented to account for time spent in local computation
phases and in communication phases separately such that the time
spent in each can be related to the processor and network perfor-
mance of the machines. The execution times for runs on eight pro-
cessors are shown in Figure 5; the times are normalized to the total
execution time on the CM-5 for ease of comparison. The matrix
multiply uses matrices of 4 by 4 blocks with 128 by 128 double
floats each. The main loop multiplies two blocks while it
prefetches the two blocks needed in the next iteration. The results
show clearly the CPU and network bandwidth disadvantages of the
CM-5. The sample sort sorts an array of 4 million 32-bit integers
with arbitrary distribution. The algorithm first samples the keys,
then permutes all keys, and finally sorts the local keys on each pro-
cessor. The version optimized for small messages packs two values
per message during the permutation phase while the one optimized
for bulk transfers presorts the local values such that each processor
sends exactly one message to every other processor. The perfor-

Figure 5: Comparison of seven Split-C benchmarks on the
CM-5, the U-Net ATM cluster, and the Meiko CS-2. The exe-
cution times are normalized to the CM-5 and the computa-
tion/communication breakdown is shown for three
applications.
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The dip in performance at 4164 bytes is caused by the fact that
UAM uses buffers holding 4160 bytes of data and thus addi-
tional processing time is required. The peak bandwidth at
4Kbytes is 14.8Mbytes/s.

4. The block get bandwidth was measured by sending a series of
requests to a remote node to fetch a block of specified size and
waiting until all blocks arrive. The block get performance is
nearly identical to that of block stores.

 

5.3 Summary

 

The performance of Active Messages shows that the U-Net
interface is well suited for building higher-level communication
paradigms used by parallel languages and run-times. The main
performance penalty of UAM over raw U-Net is due to the cost of
implementing reliability and removing the restrictions of the com-
munication segment size: UAM must send acknowledgment mes-
sages and it copies data into and out of buffers in the
communication segment. For large transfers there is virtually no
bandwidth loss due to the extra copies, but for small messages the
extra overhead of the copies and the acknowledgments is notice-
able.

Overall, the performance of UAM is so close to raw U-Net that
using the raw interface is only worthwhile if control over every
byte in the AAL-5 packets is required (e.g., for compatibility) or if
significant benefits can be achieved by using customized retrans-
mission protocols.

 

6 Split-C application benchmarks

 

Split-C[7] is a simple parallel extension to C for programming
distributed memory machines using a global address space
abstraction. It is implemented on top of U-Net Active Messages
and is used here to demonstrate the impact of U-Net on applica-
tions written in a parallel language. A Split-C program comprises
one thread of control per processor from a single code image and
the threads interact through reads and writes on shared data. The
type system distinguishes between local and global pointers such
that the compiler can issue the appropriate calls to Active Mes-
sages whenever a global pointer is dereferenced. Thus, dereferenc-
ing a global pointer to a scalar variable turns into a request and
reply Active Messages sequence exchange with the processor
holding the data value. Split-C also provides bulk transfers which
map into Active Message bulk gets and stores to amortize the over-
head over a large data transfer.

Split-C has been implemented on the CM-5, Paragon, SP-1,
Meiko CS-2, IBM SP-2, and Cray T3D supercomputers as well as
over U-Net Active Messages. A small set of application bench-
marks is used here to compare the U-Net version of Split-C to the
CM-5[7,29] and Meiko CS-2[25] versions. This comparison is par-
ticularly interesting as the CM-5 and Meiko machines are easily
characterized with respect to the U-Net ATM cluster as shown in
Table 2: the CM-5’s processors are slower than the Meiko’s and

Machine
CPU
speed

message
overhead

round-trip
latency

network
bandwidth

CM-5
33 Mhz
Sparc-2

3!s 12!s 10Mb/s

Meiko
CS-2

40Mhz
Supersparc

11!s 25!s 39Mb/s

U-Net
ATM

50/60 Mhz
Supersparc

6!s 71!s 14Mb/s

Table 2: Comparison of CM-5, Meiko CS-2, and U-Net ATM 
cluster computation and communication performance charac-
teristics

 

the ATM cluster’s, but its network has lower overheads and laten-
cies. The CS-2 and the ATM cluster have very similar characteris-
tics with a slight CPU edge for the cluster and a faster network for
the CS-2.

The Split-C benchmark set used here is comprised of seven pro-
grams: a blocked matrix multiply[7], a sample sort optimized for
small messages[8], the same sort optimized to use bulk trans-
fers[25], two radix sorts similarly optimized for small and bulk
transfers, a connected components algorithm[20], and a conjugate
gradient solver. The matrix multiply and the sample sorts have
been instrumented to account for time spent in local computation
phases and in communication phases separately such that the time
spent in each can be related to the processor and network perfor-
mance of the machines. The execution times for runs on eight pro-
cessors are shown in Figure 5; the times are normalized to the total
execution time on the CM-5 for ease of comparison. The matrix
multiply uses matrices of 4 by 4 blocks with 128 by 128 double
floats each. The main loop multiplies two blocks while it
prefetches the two blocks needed in the next iteration. The results
show clearly the CPU and network bandwidth disadvantages of the
CM-5. The sample sort sorts an array of 4 million 32-bit integers
with arbitrary distribution. The algorithm first samples the keys,
then permutes all keys, and finally sorts the local keys on each pro-
cessor. The version optimized for small messages packs two values
per message during the permutation phase while the one optimized
for bulk transfers presorts the local values such that each processor
sends exactly one message to every other processor. The perfor-

Figure 5: Comparison of seven Split-C benchmarks on the
CM-5, the U-Net ATM cluster, and the Meiko CS-2. The exe-
cution times are normalized to the CM-5 and the computa-
tion/communication breakdown is shown for three
applications.
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Figure 7: UDP bandwidth as a function of message size.

allows for the buffering and staging strategies to depend on the

resources of the application instead of the scarce kernel network

buffers.

An example is the restricted size of the socket receive buffer

(max. 52Kbytes in SunOS), which has been a common problem
with the BSD kernel communication path: already at Ethernet

speedsbuffer overrun is the cause of message loss in the case of

high bandwidth UDP data streams. By removing this restriction,

the resources of the actual recipient, instead of those of the inter-
mediate processing unit, now become the main control factor and

this can be tuned to meet application needs and be efficiently

incorporated into the end-to-end flow-control mechanisms.

The deficiencies in the BSD kernel buffer (rnbufl mechanism

have been identified long ago [11] and the useof high-performance
networks seem to amplify the impact of this mechanism even
more, especially in combination with the Fore driver buffering
scheme. Figure 7 shows the UDP throughput with the saw-tooth
behavior that is causedby the buffer allocation scheme where first

large 1Kbyte buffers are filled with data and the remainder, if less

than 512 bytes, is copied into small mbufs of 112 bytes each. This

allocation method has a strong degrading effect on the perfor-

mance of the protocols because the smaller mbufs do not have a

reference count mechanism unlike the large cluster buffers.

Although an alternative kernel buffering mechanism would sig-
nificantly improve the message handling in the kernel and cer-

tainly remove the saw-tooth behavior seen in Figure 7, it is
questionable if it will contribute as significantly to latency reduc-
tion as, for example, removing kernel-application copies

entirely [18].

Base-level U-Net provides a scatter-gather messagemechanism
to support efficient construction of network buffers. The data

blocks are allocated within the receive and transmit communica-

tion segments and a simple reference count mechanism added by

the TCP and UDP support software allows them to be shared by

several messages without the need for copy operations.

7.4 Application controlled flow-control and feedback.

One the major advantages of integrating the communication
subsystem into the application is that the application can be made
aware of the state of the communication system and thus can take

application specific actions to adapt itself to changing circum-

stances.Kernel based communication systems often have no other

facility than to block or deny a service to an application, without

being able to communicate any additional information.

At the sending side, for example, feedback can be provided to

the application about the state of the transmission queues and it is

simple to establish a back-pressure mechanism when these queues

reach a high-water mark. Among other things, this overcomes

problems with the current SunOS implementation which will drop

random packets from the device transmit queue if there is overload
without notifying the sending application.

Other protocol specific information such as retransmission
counters, round trip timers, and buffer allocation statistics are all

readily available to the application and can be used to adapt com-

munication strategies to the status of the network. The receive win-
dow under U-NeWfCP, for example, is a direct reflection of the

buffer spaceat the application and not at the intermediate process-

ing unit, allowing for a close match between application level flow

control and the receive-window updates.

7.5 1P

The main functionality of the 1Pprotocol is to handle the com-

munication path and to adapt messages to the specifics of the

underlying network. On the receiving side IP-over-U-Net is liberal
in the messagesthat it accepts, and it implements most of the 1P
functionality, except for the forwarding of messagesand the inter-

facing to ICMP. A transport protocol is selected and the U-Net
demultiplex information is passed on to the transport module to

possibly assist in destination selection.

On the sending side the functionality of the 1P protocol is

reduced to mapping messages into U-Net communication chan-

nels. Becauseof this reduced functionality, this side of the protocol

is collapsed into the transport protocols for efficient processing,

1Pover U-Net exports an MTU of 9Kbytes and does not support

fragmentation on the sending side as this is known to be a potential

source for wasting bandwidth and triggering packet retransmis-
sion [19]. TCP provides its own fragmentation mechanism and
becauseof the tight coupling of application and protocol module it
is relatively simple for the application to assist UDP in achieving
the same functionality.

7.6 UDP

The core functionality of UDP is twofold: an additional layer of

demultiplexing over 1Pbased on port identifiers and some protec-
tion against corruption by adding a 16 bit checksum on the data

and header parts of the message. In the U-Net implementation the

demtdtiplexing is simplified by using the source endpoint informa-
tion passed-onby U-Net. A simple pcb caching scheme per incom-
ing channel allows for significant processing speedups, as
described by [23], The checksum adds a processing overhead of
1ws per 100 bytes on a SPARCStation 20 and can be combined
with the copy operation that retrieves the data from the communi-

cation segment, It can also be switched off by applications that use
data protection at a higher level or are satisfied with the 32-bit

CRC at the U-Net AAL5 level.

The performance of U-Net UDP is compared to the kernel based
UDP in Figures 7 and 9. The first shows the achieved bandwidth
while the latter plots the end-to-end round-trip latency as a func-

tion of message size. For the kernel UDP the bandwidth is mea-
sured asperceived at the sender and asactually received: the losses
can all be attributed to kernel buffering problems at both sending
and receiving hosts. With the same experimental set-up, U-Net

UDP does not experience any losses and only the receive band-
width is shown.
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U-Net TCP Bandwidth
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Figure 8: TCP bandwidth as a function of data generation by

the application.

7.7 TCP

TCP adds two properties that make it an attractive protocol to

use in a number of settings: reliability y and flow control. Reliability

is achieved through a simple acknowledgment scheme and flow

control through the use of advertised receive windows.

The performance of TCP does not depend as much on the rate

with which the data can be pushed out on the network as on the

product of bandwidth and round-trip time, which indicates the

amount of buffer space needed to maintain a steady reliable high

speed flow. The window size indicates how many bytes the module

can send before it has to wait for acknowledgments and window

updates from the receiver. If the updates can be returned to the

sender in a very timely manner only a relatively small window is

needed to achieve the maximum bandwidth. Figure 8 shows that in

most cases U-Net TCP achieves a 14-15 Mbytes/see bandwidtb

using an 8Kbyte window, while even with a 64K window the ker-

nel TCP/ATM combination will not achieve more than 9-

10 Mbytes/sec. The round-trip latency performance of both kernel

and U-Net TCP implementations is shown in Figure 9 and high-

lights the fast U-Net TCP round-trip which permits the use of a

small window.

7.8 TCP tuning.

TCP over high-speed networks has been studied extensively,

especially over wide-area networks [17] and a number of changes

and extensions have been proposed to make TCP function cor-

rectly in settings where a relatively high delay can be expected,

These changes need to be incorporated into the U-Net TCP imple-

mentation if it is to function across wide-area links where tbe high

latencies no longer permit the use of small windows,

It has been argued lately that the same changes are also needed

for the local area case in order to address the deficiencies that

occur because of the high latency of the ATM kernel software. U-

Net TCP shows that acceptable performance can be achieved in

LAN and MAN settings without any modifications to the general

algorithms, without the use of large sequence numbers, and with-

out extensive buffer reservations.

Tuning a number of the TCP transmission control variables is

not without risk when running over ATM [24] and should be done

with extreme caution. The low latency of U-Net allows for very
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Figure 9: UDP and TCP round-trip latencies as a function of

message size.

conservative settings, therefore minimizing the risk while still

achieving maximum performance.

An important tuning factor is the size of the segments that are

transmitted: using larger segments it is more likely that the maxi-

mum bandwidth can be achieved in cases where low latency is not

available. Romanov & Floyd’s work however has shown that TCP

can perform poorly over ATM if the segment size is large, due to

the fact that the underlying cell reassembly mechanism causes the

entire segment to be discarded if a single ATM cell is dropped. A

number of solutions are available, but none provide a mandate to

use large segment sizes. The standard configuration for U-Net TCP

uses 2048 byte segments, which is sufficient to achieve the band-

width shown in Figure 8.

Another popular approach to compensate for high latencies is to

grow the window size. This allows a large amount of data to be

outstanding before acknowledgments are expected back in the

hope to keep the communication pipe filled. Unfortunately,

increasing the window has a number of drawbacks. First of all, the

large amount of data must be buffered to be available for retrans-

mission. Furthermore, there is a risk of triggering the standard TCP

congestion control mechanism whenever there are two or more

segments dropped within a single window. Tuning the window size

to a large value will increase the chance of this situation occurring,

resulting in a drain of the communication pipe and a subsequent

slow-start. It seems unavoidable to run these risks, even in a LAN

setting, when the protocol execution environment is not able to

guarantee low-latency communication.

A final tuning issue that needed to be addressed within U-Net

TCP is the bad ratio between the granularity of the protocol timers

and the round-trip time estimates. The retransmission timer in TCP

is set as a function of the estimated round trip time, which is in the

range from 60 to 700 microseconds, but the BSD kernel protocol

timer @Y_slow_timeout) has a granularity of 500 milliseconds.

-When a TCP packet is discarded because of cell loss or dropped

due to congestion, the retransmit timer is set to a relatively i;rge

value compared to the actual round-trip time. To ensure timely

reaction to possible packet loss U-Net TCP uses a 1 millisecond
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Figure 8: TCP bandwidth as a function of data generation by

the application.

7.7 TCP

TCP adds two properties that make it an attractive protocol to

use in a number of settings: reliability y and flow control. Reliability

is achieved through a simple acknowledgment scheme and flow

control through the use of advertised receive windows.

The performance of TCP does not depend as much on the rate

with which the data can be pushed out on the network as on the

product of bandwidth and round-trip time, which indicates the

amount of buffer space needed to maintain a steady reliable high

speed flow. The window size indicates how many bytes the module

can send before it has to wait for acknowledgments and window

updates from the receiver. If the updates can be returned to the

sender in a very timely manner only a relatively small window is

needed to achieve the maximum bandwidth. Figure 8 shows that in

most cases U-Net TCP achieves a 14-15 Mbytes/see bandwidtb

using an 8Kbyte window, while even with a 64K window the ker-

nel TCP/ATM combination will not achieve more than 9-

10 Mbytes/sec. The round-trip latency performance of both kernel

and U-Net TCP implementations is shown in Figure 9 and high-

lights the fast U-Net TCP round-trip which permits the use of a

small window.

7.8 TCP tuning.

TCP over high-speed networks has been studied extensively,

especially over wide-area networks [17] and a number of changes

and extensions have been proposed to make TCP function cor-

rectly in settings where a relatively high delay can be expected,

These changes need to be incorporated into the U-Net TCP imple-

mentation if it is to function across wide-area links where tbe high

latencies no longer permit the use of small windows,

It has been argued lately that the same changes are also needed

for the local area case in order to address the deficiencies that

occur because of the high latency of the ATM kernel software. U-

Net TCP shows that acceptable performance can be achieved in

LAN and MAN settings without any modifications to the general

algorithms, without the use of large sequence numbers, and with-

out extensive buffer reservations.

Tuning a number of the TCP transmission control variables is

not without risk when running over ATM [24] and should be done

with extreme caution. The low latency of U-Net allows for very
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Figure 9: UDP and TCP round-trip latencies as a function of

message size.

conservative settings, therefore minimizing the risk while still

achieving maximum performance.

An important tuning factor is the size of the segments that are

transmitted: using larger segments it is more likely that the maxi-

mum bandwidth can be achieved in cases where low latency is not

available. Romanov & Floyd’s work however has shown that TCP

can perform poorly over ATM if the segment size is large, due to

the fact that the underlying cell reassembly mechanism causes the

entire segment to be discarded if a single ATM cell is dropped. A

number of solutions are available, but none provide a mandate to

use large segment sizes. The standard configuration for U-Net TCP

uses 2048 byte segments, which is sufficient to achieve the band-

width shown in Figure 8.

Another popular approach to compensate for high latencies is to

grow the window size. This allows a large amount of data to be

outstanding before acknowledgments are expected back in the

hope to keep the communication pipe filled. Unfortunately,

increasing the window has a number of drawbacks. First of all, the

large amount of data must be buffered to be available for retrans-

mission. Furthermore, there is a risk of triggering the standard TCP

congestion control mechanism whenever there are two or more

segments dropped within a single window. Tuning the window size

to a large value will increase the chance of this situation occurring,

resulting in a drain of the communication pipe and a subsequent

slow-start. It seems unavoidable to run these risks, even in a LAN

setting, when the protocol execution environment is not able to

guarantee low-latency communication.

A final tuning issue that needed to be addressed within U-Net

TCP is the bad ratio between the granularity of the protocol timers

and the round-trip time estimates. The retransmission timer in TCP

is set as a function of the estimated round trip time, which is in the

range from 60 to 700 microseconds, but the BSD kernel protocol

timer @Y_slow_timeout) has a granularity of 500 milliseconds.

-When a TCP packet is discarded because of cell loss or dropped

due to congestion, the retransmit timer is set to a relatively i;rge

value compared to the actual round-trip time. To ensure timely

reaction to possible packet loss U-Net TCP uses a 1 millisecond
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Some things to consider...

Is this really implemented on “off-the-shelf” 
hardware?

Firmware customizations.  

Memory requirements for end-points.  Pages getting 
pinned into memory.  

Virtual Interface Architecture (VIA) heavily influenced 
by U-Net.  



Summary

LRPC and U-Net seek to speed up applications by 
optimizing the common case.  

Both cases eliminated unneeded processing 
overheads, boosting efficiency.  


