To infinity, and beyond!

Kiyan Ahmadizadeh
CS 614 - Fall 2007




LRPC - Motivation

® Small-kernel operating systems used RPC as the
method for interacting with OS servers.

® |Independent threads, exchanging (large?) messages.

® Great for protection, bad for performance.




Table II. Cross-Domain Performance (times are in microseconds)

Null
(theoretical Null
Processor minimum) (actual) Overhead

PERQ 444 2,300 1,856

Firefly C-VAX 109 464 355
C-VAX 90 754 664
68020 170 730 560
68020 170 800 630
68020 170 1,590 1,420




Where’s the problem?

® RPC implements cross-domain calls using cross-
machine facilities.

® Stub, buffer, scheduling, context switch, and
dispatch overheads.

® This overhead on every RPC call diminishes
performance, encouraging developers to sacrifice
safety for efficiency.

® Solution: optimize for the common case.




What’s the common case!

300

250

Number 200 -

of Maximum Single Cumulative
0 L] L] L]
Calls 150 Packet Call Distribution

Size (1448
(thousands) 100 4 (1448)

500 750 14
Total Argument/Result Bytes Transferred

Fig. 1. RPC size distribution.

Table I. Frequency of Remote Activity

Most RPCs are cross-domain T p———
and have small arguments. Opersing e

boundaries
\Y 3.0

Taos 5.3
Sun UNIX+NFS 0.6




LRPC Binding

Server’s
Clerk

Shared Memory

Kernel Memory




LRPC Binding

Server’s
Clerk

Shared Memory

Kernel Memory




LRPC Binding

Server’s
Clerk

Shared Memory

Kernel Memory




Kernel Memory

Shared Memory

Server’s
Clerk

PDL

PD:

Entry Addr
Sim Call Limit
A-Stack Size

PD...




Server’s
Clerk

(
PDL
PD:

Entry Addr
Sim Call Limit
A-Stack Size

PD...

Shared Memory

Kernel Memory




Server’s
Clerk

(
PDL
PD:

Entry Addr
Sim Call Limit
A-Stack Size

PD...

Shared Memory

o [l I

I A =1 I

A-Stack A-Stack

Kernel Memory




Server’s
Clerk

(
PDL
PD:

Entry Addr
Sim Call Limit
A-Stack Size

PD...

Shared Memory

o [l I

I A =1 I

A-Stack A-Stack

Kernel Memory

Linkage Record




LRPC Binding

Server’s
Clerk

(
PDL
PD:
Entry Addr
Sim Call Limit

Binding Object Size

Fl)

A-Stack List...

Shared Memory

A V=1

A =] '] I A V=] L I

A o [l I A o 1 I

P PP
A-Stack A-Stack

Kernel Memory

|
|
|
[ .
Linkage Record




Server’s
Clerk

(
PDL
PD:

Entry Addr
Sim Call Limit
A-Stack Size

PD...

Shared Memory
Client av—— ——1

A =] V=]

A o [l I A o 1 I

P PP
A-Stack A-Stack

Kernel Memory

Binding Object

A-Stack List... L‘_‘_L =
|
|
Linkage Record




LRPC Calls - The Client Stub

® Client calls client stub with procedure arguments, A-
Stack List, and Binding Object. If call is cross-
machine, stub takes traditional RPC path.

» Otherwise, client stub finds next A-Stack for this
procedure and pushes procedure’s arguments.

» A-Stack, Binding Object, and Procedure ldentifier
addresses placed in registers.

® Kernel trap.




LRPC Calls - The Kernel

» Kernel executes in client’s context.

® Verifies binding object. Finds the linkage record linked
with the A-Stack.

® Place caller’s return address and stack pointer in
linkage record. Push linkage onto TCB.




| RPC Calls - Procedure
~ Execution

® Kernel finds new E-Stack in server’s domain. The
thread’s SP is updated to point to this stack.

® Processor’s virtual memory registered loaded with
the server’s domain.

® Control transferred to server stub’s entry address
from process descriptor.

® Server puts results on A-Stack, traps to kernel. Kernel
uses linkage record to return to client.




Major Advantage: Copy
Dot i 5 2

Table III. Copy Operations for LRPC versus
Message-Based RPC

Restricted
Message message
Operation passing passing

Call (mutable ABCE ADE

parameters)
Call (immutable ABCE | ADE

parameters)
Return BCF BF

Code Copy operation
Copy from client stack to message (or A-stack)
Copy from sender domain to kernel domain
Copy from kernel domain to.receiver domain
Copy from sender/kernel space to receiver/kernel domain
Copy from message (or A-stack) into server stack
Copy from message (or A-stack) into client’s results




Issues / Optimizations

® What about large arguments of variable size! What if
A-Stack size cannot be determined in advance!?

® Stub generator generates stubs in assembly language.
Generator must be ported from machine to machine.

® Multiprocessor systems can use idle processors to
eliminate context switch cost.




Performance - Taos Comparison

Table IV. LRPC Performance of Four Tests (in microseconds)

Test Description

LRPC/MP LRPC Taos

Null The Null cross-domain call
Add A procedure taking two 4-byte

arguments and returning one
4-byte argument

Bigln A procedure taking one 200-byte
argument

BigInOut A procedure taking and returning

one 200-byte argument

125 157 464
130 164 480

192

227

Averaged over 100,000 runs

on the C-VAX Firefly




Performance - LRPC Overhead

Table V. Breakdown of Time (in microseconds) for
Single-Processor Null LRPC

LRPC
Operation Minimum overhead

Modula2+ procedure call 7 —
Two kernel traps 36
Two context switches 66

c‘-iilﬁﬁ
WLLULLID —

Kernel transfer —

Total 109

A 307 microsecond improvement over Taos.




Performance - Throughput

LRPC Optimal
LRPC Measured

Calls
per
Second
RPC Optimal

RPC Measured

l
4

Number of Processors

L ess contention over shared resources increases
throughput.




U-Net: More Optimizing For The
ELRRIAL

® For small messages in a LAN, processing overhead
dominates network latency.

® New applications demand high bandwidth and low
latencies for small messages.

® Remote file systems, RPC, object-oriented
technologies, distributed systems, etc.




Is this possible on traditional
LINIX?

® Protocol stack is in the kernel:

® Increased overhead when sending messages
(especially from copies)

® New protocols have to be built on top of
protocols kernel provides. Bad for efficiency and
optimizing buffer management.




U-Net’s Solution

® Move the entire protocol stack into user space.
Applications access the network interface directly.

® Network must be multiplexed among processes.

® Processes cannot interfere with each other.




U-Net Design

® Processes wishing to use the network create an
endpoint, and associate a communication segment, send
queue, receive queue, and free queue with it.

recv free o send
queue queue communication segment queue

""\LJ_

h&—

U-Net endpoint




Sending a message

recv free
queue queue

communication segment

Endpoint




Sending a message

recv free
queue queue

communication segment

Message Data

Endpoint




Sending a message

recv free
queue queue

communication segment

Message Data

Endpoint




Sending a message

recv free
queue queue

communication Segment ;\
Message Data

Endpoint




Sending a message

recv free
queue queue

communication segment

Message Data

Endpoint




Sending a message

recv free
queue queue

communication segment

Endpoint




Sending a message

recv free
queue queue

communication segment

Endpoint




Receiving a message

® Much the same. U-Net demultiplexes messages,
transferring data to the correct communication
segment.

® Space in segment found using free queue. Message
descriptor placed in receive queue.

® Process can poll the receive queue, block, or U-
Net can perform upcall on two events.

® Receive queue non-empty and almost full.




Multiplexing

® Process calls OS to create communication channel
based on destination. Uses this in sends and receives.

® On send, OS maps communication channel to a
message tag (such as ATM virtual channel identifier).
This tag is placed on message.

® Incoming message’s tag mapped to channel identifier:
message delivered to endpoint indicated by identifier.




Base-level U-Net

® Communication segments are pinned to physical
memory so network interface can access them.

® Buffers and segments can be scarce resources.
Kernel-emulated U-Net endpoints can be used:
application endpoints are multiplexed into a single
real endpoint.

® Represents zero-copy, which is really one copy (from
process address space to communication segment)




Direct-Access U-Net

® Let communication segment span entire address
space! Network interface can transfer data directly
into data structures (true zero-copy).

® But then NI needs to understand virtual memory, and
needs enough I/O bus address lines to reach all of
physical memory.




Iwo Implementations

® Implemented using SPARCstations and two Fore
Systems ATM interfaces.

® SBA-100 implemented with loadable device driver
and user-level library.

® SBA-200 firmware rewritten to implement U-Net
directly. The interface’s processor and DMA capability
make this possible.




Performance - Round Trip Times

. Raw. U-J\lét

Small round-trip times for messages under |-cell in size.
This case is optimized in the firmware.




~

J S T A S S N T U S T |
! L

120 I |

SR L |

0

)
O
c
(qo]
-
&l
O
S
Q
0
* G
=)
O
3
O
an
(qe]
af
=
)
<
i)




|1 128x128
blocks

|

matrix multiply
16x16
blocks

!

sample sort, 512K

sml msg

bulk msg

Onetw.
mcpu

L]

2 CM-5 OATM

Sl

B

Meiko

= 9
S = o
o < s
radix sort

small msg

o =
S =
S <C
radix sort

=
> £
2 <

connected

= £
=Kk
o < =
conjugate

bulk msg components gradient

Machine

CPU
speed

message
overhead

round-trip
latency

network
bandwidth

CM-5

33 Mhz
Sparc-2

3us

12us

10Mb/s

Meiko
CS-2

40Mhz
Supersparc

25us

39Mb/s

U-Net
ATM

50/60 Mhz
Supersparc

6us

Tlus

14Mb/s

Table 2: Comparison of CM-5, Meiko CS-2, and U-Net ATM
cluster computation and communication performance charac-

teristics

Graph normalized to

execution time of

CM-5.




matrix multiply

|1 128x128
blocks

|

16x16
blocks

sample’sort, 512K

I_ .
o < =
radix sort

= £
o)

w =

S =
S <C
connected

= £
=Kk
o < =
conjugate

bulk msg components gradient

Machine

CPU
speed

message
overhead

round-trip
latency

network
bandwidth

CM-5

33 Mhz
Sparc-2

3us

12us

10Mb/s

Meiko
CS-2

40Mhz
Supersparc

25us

39Mb/s

U-Net
ATM

50/60 Mhz
Supersparc

6us

Tlus

14Mb/s

Table 2: Comparison of CM-5, Meiko CS-2, and U-Net ATM
cluster computation and communication performance charac-

teristics

Graph normalized to

execution time of
CM-5.




U-Net UDP Performance

140 MPItS/S - -;--;--T-M-b—yf“?S/s Saw-tooth effect
:@f?UNetUDPf""TWS d = ,
120 S — e, _ 0
T o[y 14 cause. oy orgs.
100 | / Fore UDP" w (P e buffering restrictions.
\w

] ~ sender S T
R /\w f—-‘:—%~-i--%-~%-.1o
N ] ;
0 1 1yl fe%ree,\}é?" SR 8 U-Net buffers are in
L E R R user-space, relaxing
size restriction on

socket receive buffer.

bytes ’_

_,_E.
Q
-
Q
o .

Figure 7. UDP bandwidth as a function of message size.




U-Net TCP Bandwidth

140 Moits/s - Mbytes/s

120 o U Net TCP 116

. {ijf,ﬁgﬂfiﬂ“: T+ 14
a2
_ 10

. bytes |

- Q
o -
Q -
M~ «Q

Figure 8: TCP bandwidth as a function of data generation by
the application.




U-Net and Fore Latencies

- \Fore TeP.

\ Fore UDP S

S UNetTCP

./"'”

u Net UDP




Some things to consider...

® |Is this really implemented on “off-the-shelf”
hardware!

® Firmware customizations.

® Memory requirements for end-points. Pages getting
pinned into memory.

® Virtual Interface Architecture (VIA) heavily influenced
by U-Net.




Summary

® LRPC and U-Net seek to speed up applications by
optimizing the common case.

® Both cases eliminated unneeded processing
overheads, boosting efficiency.




