
Enhancing Server Availability and 
Security Through 

Failure-Oblivious Computing

presented by 
Dmitriy Levchenkov and Tudor Marian

Martin Rinard, Cristian Cadar, Daniel 
Dumitran, Daniel M. Roy, Tudor Leu, 

and William S. Beebee, Jr.



The problem

 The software that comes to the market is 
buggy

 Most of the errors are memory access ones

 They can result in
 program crashes (segmentation fault, etc.)
 infinite loops
 security holes (buffer overrun exploitation, etc.)



Why does this problem exist? 

 Unsafe languages (like C) are highly popu-
lar. They operate with arrays and pointers 
in sloppy ways with possibilities of out of 
bounds array accesses and invalid pointer 
accesses.

 Other languages exist which have built-in 
validity checks, but they lose in speed and 
flexibility.



Standard solution

 Use a safe modification of the compiler 
(e.g. safe-C). This modification has built-in 
checks for invalid accesses.

 If invalid access occurs the program throws 
an exception or restarts the program. 

 Downside: 
In some cases it's imperative to contin-

ue execution, not stop the program. Restart-
ing the program may be a slow process and 
may result in loss of data. 



Solution: 
Failure-Oblivious Computing

 If invalid memory access has been identi-
fied, instead of throwing an exception try to 
“ignore the error and continue execution 
normally”.

 The authors call this strategy a failure-obliv-
ious computation, “since it is oblivious to its 
failure to correctly access memory”.



Failure-Oblivious Computing: 
Details

 IF writing a value out of bounds 
DO nothing!

 IF reading a value out of bounds
DO return some manufactured value

 if we come up with a carefully manufactured 
value, the program will be able to continue 
execution in a normal way.



Goals

 Acceptable Continued Execution
 eliminate security vulnerability
 the server should continue to serve its cus-

tomers
 Acceptable performance

 Expected slowdown: 8-12 times
 Not crucial for interactive servers/applications

 Authors claim that the technique can 
achieve these goals



When we can expect this to work

 Program has short error propagation dis-
tances

 Program has short control flow error propa-
gation distances

 should work all right on servers
 bad idea for numerical computations



Advantages

 Availability
“we never stop working for you! (sm)”

 Security
no more buffer overruns!

 Minimal Adoption Cost
just compile it!

 Reduced Administration Overhead
To your admin: “U R fired!”



Disadvantages

 Unanticipated execution paths
 producing bogus results without an error mes-

sage
 getting stuck in an infinite loop

 The bystander effect
“ah, come on, it will fix the error itself...”



Example of success: 
Mutt mail client

 Contains a function to convert UTF-8 string 
into UTF-7 string.

 Size of the string may increase. The bound 
on the output string size is calculated incor-
rectly by Mutt. 

 Results in writing beyond the end of the al-
located string array.



Example of success: 
Mutt mail client (page 2)

 Standard Version: fails with a segmentation 
fault

 Version compiled by safe-C: terminates and 
report an error during initialization

 FO version: returns a truncated UTF-7 
string. The program later reports that the 
folder with such name cannot be found. Ex-
ecution of the program continues.



 Checking code
fairly standard (like in safe-C); uses a 

table of objects with corresponding bounds
 Continuation code

 ignore illegal writes
 manufacture values for illegal reads

 iterates through small integers (helps if the value 
affects loop bounds or loop termination conditions)

 returns 0 and 1 more often than others

Implementation

 Checking code
fairly standard (like in safe-C); uses a 

table of objects with corresponding bounds
 Continuation code

 ignore illegal writes
 manufacture values for illegal reads

 iterates through small integers (helps if the value 
affects loop bounds or loop termination conditions)

 returns 0 and 1 more often than others



Experiments I

 Versions
 Standard
 Bounds Check version compiled with CRED 

safe-C compiler
 Failure-Oblivious version

 Behaviour
 Security and Resilience
 Performance
 Stability



Experiments II

 Programs
 Pine
 Apache
 Sendmail
 Midnight Commander
 Mutt

 Hardware and OS
 Dell workstation, 2 CPUs P4 2.8GHz, 2Gb RAM
 Red Hat 8.0 Linux



Pine 4.44

 The memory error
 while processing From field, inserts '\' before 

special symbols. Doesn't correct the string 
length appropriately

 Security and Resilience
 Standard version crashes
 Bounds Check version detects an error and 

terminates during initialization
 Failure Oblivious version truncates the string 

and that doesn't affect the visible part on the 
screen. Pine continues to work properly



Pine 4.44 continued

 Performance
 Slowdown for 

Read – 6.9 times
Compose – 8.1 times
Move – 1.34 times

 Not really noticeable by a user
 Stability

 FO version was used by authors on a regular 
basis. No unexpected behavior noticed.



Apache HTTP server 2.0.47

 The memory error
 automatic redirection routine has only space for 

10 substrings; if more present in the URL, the 
routine writes beyond allocated space

 Security and Resilience
 Standard version corrupts the stack and may be 

remotely exploited
 Bounds Check version detects an error and 

terminates the faulting process. Apache restarts 
the process automatically (takes time).

 Failure Oblivious version blocks illegal writes, 
uses 10 substrings and continues execution 
normally



Apache continued

 Performance
 Slowdown 

1.03-1.06 times
 Not noticeable by a user

 Stability
 was running and serving 

www.flexc.csail.mit.edu
for 9 months. 

 No complaints received from users



Sendmail v8.11.6

 The memory error
 while parsing a mail address a certain combina-

tion of 0xFF and '\' characters may trigger writ-
ing arbitrarily many characters into the output 
buffer

 Security and Resilience
 Standard version corrupts the stack and may be 

remotely exploited
 Bounds Check version terminates during the ini-

tialization (there are some other memory access 
errors).

 Failure Oblivious version blocks illegal writes, 
the program later rejects the offending letter.



Sendmail continued

 Performance
 Slowdown 

3.6-3.9 times
 Not noticeable at all – mail processing is not 

time-critical operation 
 Stability

 was used on a regular basis by the authors
 rejected occasionally sent offending e-mails



Midnight Commander v4.5.55

 The memory error
 while processing links in tgz files MC puts them 

in a stack-allocated buffer without checking if it 
has enough space

 Security and Resilience
 Standard version corrupts the stack and termi-

nates with a segmentation fault
 Bounds Check version detects the error and 

terminates 
 Failure Oblivious version blocks illegal writes, 

the program later rejects incorrect links, reports 
that to the user and continues to execute.



Midnight Commander continued

 Performance
 Slowdown for procedures like Copy/Move/Del

1.4-1.8 times
 Not really noticeable by a user

 Stability
 was used on a regular basis by the authors
 rejected opening offending tgz files
 turned out that MC has other memory access 

errors (e.g. when processing configuration files)



Mutt (concluded)

 Fails to allocate appropriate buffer for UTF-
7 string. FO-code truncates the string. The 
truncated string is later rejected by the pro-
gram.

 Performance
 Slowdown for procedures like Read/Move

1.4-3.6 times
 Not really noticeable by a user

 Stability
 was used on a regular basis by the authors
 rejected offending strings



Related work

 Using boundless memory blocks (if out of 
bound write occurs, extend the array). Elim-
inates size-calculation errors.

 Terminate a function in which an error has 
occurred and return default value

 FO computing may be applied to safe lan-
guages (like Java)

 Compilers community developed only “un-
sound heuristics” to analyze the code direct-
ly for memory errors.



Related work (continued)

 Run-time detection of buffer overrun
 Rebooting
 Repairing data structures

 “Automatic Detection and Repair of 
Errors in Data Structures”

by Brian Demsky and Martin Rinard
(to be presented next time)



Conclusions

 Memory errors happen
 Sometimes it's better to continue execution
 Failure-Oblivious Computing might help
 FO computing upgrades a safe compiler
 It tries to ensure program's continuation by

 discarding invalid writes
 manufacturing values for invalid reads

 May be successfully applied for servers and 
other applications with short distances of 
error propagation.



\end{document}

Thank you all for coming!


