Story so far

- Cache performance can be improved by tiling and permutation
- Permutation of perfectly nested loop can be modeled as a *linear transformation* on the iteration space of the loop nest.
- Legality of permutation can be determined from the dependence matrix of the loop nest.
- Transformed code can be generated using ILP calculator.

2

Linear Loop Transformations for Locality Enhancement

Overview of lecture

- Linear loop transformations: permutation, skewing, reversal, scaling
- Compositions of linear loop transformations: matrix viewpoint
- Locality matrix: model for temporal and spatial locality
- Two key ideas:
- 1. Height reduction
- 2. Making a loop nest fully permutable
- A unified algorithm for improving cache performance
- $\bullet\,$ Lecture based on work we did for HP's compiler product line

4

Theory for permutations applies to other loop transformations that can be modeled as linear transformations: skewing, reversal, scaling.

Transformation matrix: T (a non-singular matrix)

Dependence matrix: D

Matrix in which each column is a distance/direction vector

Legality: T.D > 0

Dependence matrix of transformed program: T.D

Small complication with code generation if scaling is included.

Example: M*U = L

$$\begin{pmatrix} 1 & 0 & 2 \\ 0 & 2 & 2 \\ 1 & -1 & 1 \end{pmatrix} * \begin{pmatrix} 1 & 0 & -2 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 1 & -1 & 0 \end{pmatrix}$$

Basis for null space of $M = U^* (0\ 0\ 1)' = (-2\ -1\ 1)'$

6

Key algorithm: finding basis for null space of an integer matrix

Definition: A vector x is in null space of a matrix M if Mx = 0.

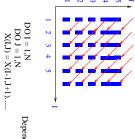
It is easy to find a basis for null space of matrix in column-echelon

Null space basis:

General matrix M:

- column-echelon form. Find unimodular matrix U so that MU = L is in
- If x is a vector in null space of L, Ux is in null space of M
- If B is basis for null space of L, UB is basis for null space of M

Motivating example: Wavefront code



Dependence matrix =

Dependence between two iterations

- => iterations touch the same location
- => potential for exploiting data reuse!

N iteration points between executions of dependent iterations. Can we schedule dependent iterations closer together?

œ

Some observations:

- \bullet We have used reduction to column-echelon form: MU = L.
- We can also view this as a matrix decomposition: M = LQwhere Q is inverse of U from previous step.
- Analogy: QR factorization of real matrices.

Unimodular matrices are like orthogonal matrices in reals.

- \bullet Special form of this decomposition: M = LQ where all diagonal elements of L are non-negative.
- This is called a psuedo-Hermite normal form of matrix.

Exploiting temporal locality in wavefront

Tiling is illegal!

We have studied two transformations: permutation and tiling.

Permutation is illegal!

Permutation and tiling are both illegal.

10

For now, focus only on reuse opportunities between dependent iterations.

This exploits only one kind of temporal locality.

There are other kinds of locality that are important:

- iterations that read from the same location: input dependences
- spatial locality

Both are easy to add to basic model as we will see later.

One solution: schedule iterations along 45 degree planes!

Note:

- Transformation is legal.
- \bullet Dependent iterations are scheduled close together, so good for locality.

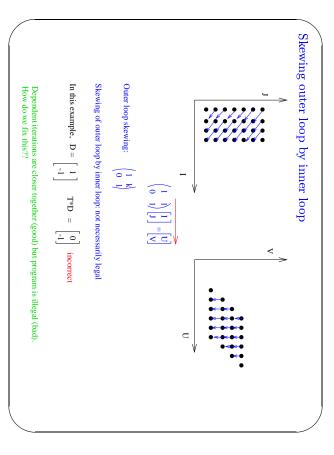
Can we view this in terms of loop transformation?

Loop skewing followed by loop reversal

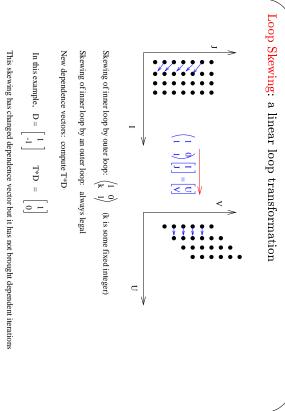
12

Height Reduction

9

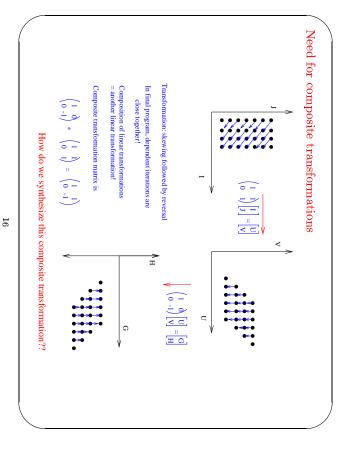


14



closer together....

13



Code generation: easy

Legality of loop reversal: Apply transformation matrix to all dependences & verify lex +ve

Synthesizing composite transformations using matrix-based approaches

- Rather than reason about sequences of transformations, we can transformation. reason about the single matrix that represents the composite
- Enabling abstraction: dependence matrix

18

Some facts about permutation/reversal/skewing

- Transformation matrices for permutation/reversal/skewing are
- Any composition of these transformations can be represented by a unimodular matrix.
- Any unimodular matrix can be decomposed into product of permutation/reversal/skewing matrices. Legality of composite transformation T: check that $T.D \succ 0$.
- Code generation algorithm:

(Proof: $T_3 * (T_2 * (T_1 * D)) = (T_3 * T_2 * T_1) * D.$)

- Original bounds: $A * \underline{I} \leq b$
- Transformation: $\underline{U} = T * \underline{I}$
- New bounds: compute from $A * T^{-1}\underline{U} \le b$

Second row of T (call it s) should satisfy the following properties:

- ullet s should be linearly independent of first row of T (non-singular
- T*D should be a lexicographically positive vector
- Determinant of matrix should be +1 or -1 (unimodularity).

One choice: (0 - 1), giving $T = \begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix}$.

20

Height reduction: move reuse into inner loops

Dependence vector is $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$

Prefer not to have dependent iterations in different outer loop iterations

So dependence vector in transformed program should look like $\begin{pmatrix} 0 \\ ?? \end{pmatrix}$

So
$$T * \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 0 \\ ?? \end{pmatrix}$$

This says first row of T is orthogonal to $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$

So first row of T can be chosen to be $(1\ 1)$.

What about second row?

Choosing first few rows of transformation matrix:

For now, assume dependence matrix D has only distances in it.

Algorithm:

- Let B be a basis for null space of D'.
- Use transpose of basis vectors as first few rows of transformation matrix.

Example: study running example in previous slides.

22

General questions

- 1. How do we choose the first few rows of the transformation matrix to push reuses down?
- 2. How do we fill in the rest of the matrix to get unimodular matrix?

21

Filling in rest of matrix:

- Turns out to be easier if we drop unimodularity requirement
- \bullet Completion procedure: generate a non-singular matrix T given first few rows of this matrix
- Problem: how do we generate code if transformation matrix is a general non-singular matrix?

24

Extension to direction vectors: easy

Consider
$$D = \begin{pmatrix} + & 1 \\ 0 & - \\ 1 & 2 \\ -1 & -2 \end{pmatrix}$$

Let first row of transformation be $(r_1 r_2 r_3 r_4)$.

If this is orthogonal to D, it is clear that r_1 and r_2 must be zero. Ignore 1st and 2nd rows of D and find basis for null space of remaining rows of D: (1 1)

Pad with zeros to get partial transformation: (0 0 1 1)

General picture: knock out rows of D with direction entries, use algorithm for distance vectors, and pad resulting null space vectors with 0's.

Completion algorithm: iterative algorithm

- From D, delete all dependences d for which Pd > 0.
 If D is now empty, use null space basis determination
- 2. If D is now empty, use null space basis determination to add more rows to P to generate a non-singular matrix.
- 3. Otherwise, let k be the first row of (reduced) D that has a non-zero entry. Use e_k (unit row vector with 1 in column k and zero everywhere else) as the next row of the transformation.
- 4. Repeat from step (i).

Proof: Need to show that e_k is linearly independent of existing rows of partial transformation, and does not violate any dependences. Easy (see Li/Pingali paper).

26

Completion Procedure

Goal: to generate a complete transformation from a partially specified one

$$\begin{pmatrix} 1 & 1 \\ ? & ? \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 0 \\ ?? \end{pmatrix}$$

Given:

- ullet a dependence matrix D
- \bullet a partial transformation P (first few rows)

generate a non-singular matrix T that extends P and that satisfies all the dependences in D $(TD\succ 0)$.

Precondition:

- rows of P are linearly independent
- $P*D \succeq 0$ (no dependences violated yet)

All dependences are now satisfied, so we are left with the problem of completing transformation with a row independent of existing ones.

Basis for null space of partial transformation = $(0 \ 1 \ -1)$,

$$T = \left(\begin{array}{cccc} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & -1 \end{array} \right)$$

28

Example:

$$\begin{pmatrix} 0 & 1 & 1 \\ ? & ? & ? \\ ? & ? & ? \end{pmatrix} \begin{pmatrix} 1 & + & + \\ 1 & 0 & 1 \\ -1 & 0 & -1 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

No dependence is satisfied by partial transformation.

Next row of transformation = $(1 \ 0 \ 0)$

New partial dependence matrix is

$$\begin{pmatrix}
0 & 0 & 0 \\
1 & + & + \\
? & ? & ?
\end{pmatrix}$$

Loop scaling:change step size of loop

10 D0 10 I = 1,100

S

DO 10 U = 2,200,2

10 Y(U/2) = U/2

Y(I) = I

Scaling matrix: non-unimodular transformation

30

may not be unimodular. Problem: transformation matrix T we obtain is non-singular but

decomposition where L is lower-triangular with positive diagonal Two solutions: based on T = LQ pseudo-Hermite normal form

- Develop code generation technology for non-singular matrices.
- Use Q as transformation matrix.

Question: How do we know this is legal, and is good for locality?

non-singular matrices that are not unimodular. First, let us understand what transformations are modeled by

Code generation with a non-singular transformation T

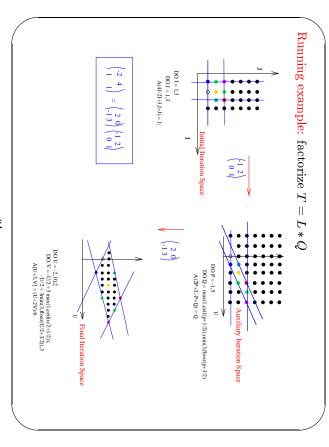
Code generation for unimodular matrix U:

- Original bounds: $A * \underline{I} \leq b$
- Transformation: $\underline{J} = U * \underline{I}$
- New bounds: compute from $A*U^{-1}\underline{J} \leq b$

Key problem here: T^{-1} is not necessarily an integer matrix.

32

- Scaling, like reversal, is not important by itself.
- Nonsingular linear loop transformations: permutation/skewing/reversal/scaling
- Any non-singular integer matrix can be decomposed into product of permutation/skewing/reversal/scaling matrices.
- Standard decompositions: (pseudo)-Hermite form T = L * Qwhere U,V are unimodular and D is diagonal with positive diagonal elements, (pseudo)-Smith normal form T=UDVwhere Q is unimodular and L is lower triangular with positive
- Including scaling in repertoire of loop transformations makes it easier to synthesize transformations but complicates code generation.



34

Key problems:

How do we determine integer lower and upper bounds? (rounding up from rational bounds is not correct) How do we determine step sizes?

Solution: use Hermite normal form decomposition T = L * Q

- Step sizes of loops: diagonal entries of L
- Change of variables in body

$$\begin{vmatrix} i \\ j \end{vmatrix} = \begin{pmatrix} -1/6 & 4/6 \\ 1/6 & 2/6 \end{pmatrix} \begin{pmatrix} u \\ v \end{vmatrix}$$

 Good to use strength reduction to replace the integer divisions by additions and multiplications.

Complete transformation with non-singular matrix is needed for generating code for distributed-memory parallel machines and similar problems (see Wolfe's book).

Bottom line: transformation synthesis procedure can focus on producing non-singular matrix. Unimodularity is not important.

36

Using non-singular matrix T as transformation matrix.

Running example:

• Given T = L * Q where L is triangular with positive diagonal elements and Q is unimodular.

$$\begin{pmatrix} -2 & 4 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} -1 & 2 \\ 0 & 1 \end{pmatrix}$$

ullet Use Q as the transformation to generate bounds for auxiliary space.

$$-1 \le p \le 5$$

 $max(1, ceil((p+1)/2)) \le q \le min(3, floor((p+3)/2))$

- Read off bounds for final iteration space from ${\cal L}$

$$\left(\begin{array}{cc} 2 & 0 \\ -1 & 3 \end{array}\right) \left(\begin{array}{c} p \\ q \end{array}\right) = \left(\begin{array}{c} u \\ v \end{array}\right)$$

$$\leq u \leq 10$$

 $-u/2 + 3max(1, ceil((u/2+1)/2)) \le v \le -u/2 + 3 * min(3, floor((u/2+3)/2))$

For memory system optimization, we can use a non-singular transformation matrix T as follows: compute Hermite normal form of T=L*Q and use Q as transformation matrix!

38

Solution 2 to code generation with non-singular transformation matrices

Lemma: If L is a $n \times n$ triangular matrix with positive diagonal elements, L maps lexicographically positive vectors into lexicographically positive vectors.

Intuition: L does not change the order in which iterations are done

but just renumbers them!

Proof: Consider $d = L * \Delta$ where Δ is a lexicographically positive vector and show that d is lexicographically positive as well.

- Auxiliary space iterations are performed in same order as corresponding iterations in final space.
- Memory system behavior of auxiliary program is same as memory system behavior of final program!

General picture:

Exploit dependences + spatial locality + read-only data reuse

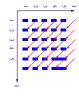
- 1. a dependence matrix D with dependence vectors
- 2. a locality matrix $L \supseteq D$ with locality vectors

Locality matrix has additional vectors to account for spatial locality and read-only data reuse.

Intuitively, we would like to scan along directions in L in innermost loops, provided dependences permit it.

40

Putting it all together for wavefront example:



DO I = 1,N Dependence matrix X(I,J) = X(I-I,J+1).....

- Find rows orthogonal to space spanned by dependence vectors, and use them as the partial transformation. In this example, the orthogonal subspace is spanned by the vector (1 1).
- Apply completion procedure to partial transformation to generate full transformation. We would add row (10). So transformation is

 $\left(\begin{array}{cc} 1 & 1 \\ 1 & 0 \end{array}\right)$

37

Example: array stored in column-major order, reference $X[A\underline{i}+\underline{a}]$

Suppose we do iteration \underline{i}_1 and then iteration \underline{i}_2 .

Array element accessed in iteration $\underline{i}_1 = X[A\underline{i}_1 + \underline{a}]$

Array element accessed in iteration $\underline{i}_2 = X[A\underline{i}_2 + \underline{a}]$

We want these two accesses to be within a column of A. So

$$A*(\underline{i}_1-\underline{i}_2)=\left(egin{array}{c}0\\ \ldots\\0\end{array}
ight)$$

Let A' = A with first row deleted. So we want to solve

 $A' * R = \underline{0}$ where R is "reuse direction".

Solution: R is any vector in null space of A'.

Spatial locality matrix: matrix containing a basis for null space of

42

unit stride accesses (or some multiple thereof) Modeling spatial locality: scan iteration space points so that we get

Example: from Assignment 1

$$C[I,J] = A[I,J] + B[J,I]$$

$$C[I,J] = A[I,J] + B[J,I]$$

If arrays are stored in column-major order, we should interchange the two loops. How do we determine this in general?

matrix accesses Example from Assignment 1: exploiting spatial locality in MVM

for
$$I = 1,N$$

for $J = 1,N$

$$Y(I) = Y(I) + A(I,J)*X(J)$$

Reference matrix is
$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Truncated matrix is $\begin{pmatrix} 0 & 1 \end{pmatrix}$

So spatial locality matrix is

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
.

44

Example: for i,j,k ...A[i+j+k,k+j,2k+2j] ...

dimension of A for the most part? In what direction(s) can we move so we get accesses along first

$$\mathbf{l}' = \left(\begin{array}{ccc} 0 & 1 & 1 \\ 0 & 2 & 2 \end{array} \right)$$

Spatial locality matrix is
$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & -1 \end{pmatrix}$$

Read-only data reuse: add reuse directions to locality matrix

$$DO J = 1, N$$

D0 K = 1,N

$$C[I,J] = C[I,J] + A[I,K]*B[K,J]$$

Consider reuse vector for reference A[I,K]:

$$1 \leq I_1, I_2, J_1, J_2, K_1, K_2 \leq N$$

$$(I_1,K_1) \prec (I_2,J_2,K_2)$$

$$I_1 = I_2$$

$$_1 = K_2$$

$$1 = I_2 - I_1$$

$$3 = K_2 - K_1$$

$$K_2 - K_2 - K_2$$

46

Enhancing spatial locality: perform height reduction on locality

For our example, we get the transformation

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

That is, we would permute the loops which is correct.

General Algorithm for Height Reduction

- \bullet Compute the locality matrix L which contains all vectors along $read-only\ data\ reuse\ +\ spatial\ locality)$ which we would like to exploit locality (dependences +
- Determine a basis B for the null space of L^T and use that B^T as the first few rows of the transformation.
- Call the completion algorithm to generate a complete transformation.
- Do a pseudo-Hermite form decomposition of transformation matrix and use the unimodular part as transformation.

vectors and spatial locality vectors from consideration. be good to drop some of the "less important" read-only reuse Flexibility: if null space of L^T has only the zero vector in it, it may

48

Reuse vector is
$$\begin{pmatrix} 0 \\ + \\ 0 \end{pmatrix}$$
.

Considering all the references, we get the following locality matrix:

Linear loop transformations to enable tiling

50

entire space. In some codes, height reduction may fail since locality vectors span

we want to exploit locality in both matrix A and vectors x,y) Example: MMM as shown in previous slide (actually even MVM if

We can still exploit most of the locality provided we can tile loops

Tiling is not always legal...

Solution: apply linear loop transformations to enable tiling.

49

convert entire loop nest into a fully permutable loop nest. Theorem: If all dependence vectors are distance vectors, we can

Example: wavefront

Dependence matrix is

entries. Dependence matrix of transformed program must have all positive

So first row of transformation can be (10).

Second row of transformation (m 1) (for any m > 0).

all negative entries non-negative. General idea: skew inner loops by outer loops sufficiently to make

52

In general, tiling is not legal

Tiling is illegal!

loops are legal). Tiling is legal if loops are fully permutable (all permutations of

Tiling is legal if all entries in dependence matrix are non-negative.

- Can we always convert a perfectly nested loop into a fully permutable loop nest?
- When we can, how do we do it?

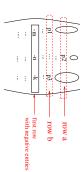
General algorithm for making loop nest fully permutable:

Otherwise, If all entries in dependence matrix are non-negative, done.

- 1. Apply algorithm on previous slide to first row with non-negative entries.
- 2 Generate new dependence matrix
- ယ If no negative entries, done.
- 4. Otherwise, go step (1).

54

with non-negative entries Transformation to make first row with negative entries into row



(a) for each negative entry in the first row with negative entries, find the first positive number in the corresponding column assume the rows for these positive entries are a,b etc as shown above

(b) skew the row with negative entries by appropriate multiples of For our example, multiple of row a = ceiling(n/p2) multiple of row b = ceiling(max(m/p1,k/p3))

0 0 ..0 ceiling(n/p2) 0 0 ceiling(max(m/p1,k/p3))0...0 I

What happens with direction vectors?

In general, we cannot make loop nest fully permutable.

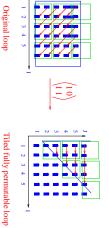
Example:
$$D = \begin{pmatrix} + \\ - \end{pmatrix}$$

interchange the second and third loops, and then tile the first two We try to make outermost loops fully permutable, so we would Best we can do is to make some of the loops fully permutable.

Idea: algorithm will find bands of fully permutable loop nests.

56

Result of tiling transformed wavefront



Tiling generates a 4-deep loop nest

Not as nice as height reduction solution, but it will work fine for points small compared to number of interior points) locality enhancement except at tile boundaries (but boundary

$$\begin{pmatrix}
0 & 1 & 0 \\
1 & 3 & 4 \\
-2 & -3 & -1 \\
- & + & -2 \\
+ & - & +
\end{pmatrix}$$

third row. Knock out -ve distances in third row by adding 2*second row to New second loop can be part of first fully permutable band.

58

Example for general algorithm:

Begin first band of fully permutable loops with first loop.

can interchange fifth row with second row to continue band. Second row has -ve direction which cannot be knocked out. But we

operations? How do we determine transformation matrix for performing this

If you have n loops, start with $T = I^{n \times n}$.

apply same transformation to T. Every time you apply a transformation to the dependence matrix,

At the end, T is your transformation matrix.

Proof sketch:
$$(U_2 * (U_1 * D)) = (U_2 * (U_1 * I)) * D$$

60

$$\begin{pmatrix}
0 & 1 & 0 \\
1 & 3 & 4 \\
0 & 3 & 7 \\
- & + & -2 \\
+ & - & +
\end{pmatrix}$$

dependences, and start second band. Cannot make band any bigger, so terminate band, drop all satisfied

second band of fully permutable loops In this case, all dependences are satisfied, so last two loops form

Add 2*second row to third.

 $\begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 2 \\
0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0
\end{pmatrix}$

62

For the previous example, we get

Interchange the second and fifth rows to get

guard rows to be added to that row (treating + guard entries as 1) to convert all negative entries in row r to strictly positive. Update transformation matrix and add row r to current band. Current-row = r+1 Go to step 3.

6. Otherwise, see if a row below current row without both positive and negative directions can be interchanged legally with current row.

If so, perform interchange, update transformation matrix and go to step 4.

Otherwise, terminate current fully permutable band, drop all satisfied dependence vectors, and go to step 2.

64

Conversion to fully permutable bands

- 1. Compute dependence matrix D. Current-row = row 1.
- Begin new fully permutable band.
- 3. If all entries in D are non-negative, add all remaining loops to current band and exit.
- 4. Otherwise, find first row r with one or more negative entries. Each negative entry must be guarded by a positive entry above it in its dependence vector. Add all loops between current-row and row (r-1) to current band.
- 5. If row does not both positive and negative directions, fix it as follows.

If all direction entries are negative, negate row.

At this point, all direction entries must be positive, and any remaining negative entries must be distances. If there are negative entries remaining, determine appropriate multiple of

o unimar y

- Height reduction can also be viewed as outer-loop parallelization: if no dependences are carried by outer loops, outer loops are parallel!
- First paper on transformation synthesis in this style: Leslie Lamport (1969) on multiprocessor scheduling.
- Algorithm here is based on Wei Li's Cornell PhD thesis (Wei is now a compiler hot-shot at Intel!).
- A version of this algorithm was implemented by us in HP's compiler product line.
- It is easy to combine height reduction and conversion to fully permutable band form into a single transformation matrix synthesis, but you can work it out for yourself.

66

Ye Grande Locality Enhancement Algorithm

- 1. Compute locality matrix L.
- 2. Perform height reduction by finding a basis for null space of L^T . If null space is too small, you have the option of dropping less important locality vectors.
- 3. Compute resulting dependence matrix after height reduction. If all entries are non-negative, declare loop nest to be fully permutable.
- 4. Otherwise, apply algorithm to convert to bands of fully permutable loop nests.
- 5. Perform pseudo-Hermite normal form decomposition of resulting transformation matrix, and use unimodular extract to perform code transformation.
- 6. Tile fully permutable bands choosing appropriate tile sizes.