Goals of lecture

- Understand computational requirements of scientific applications.
- $\bullet\,$ Introduce the notions of regular and irregular problems.

2

Computational Requirements of Scientific Applications

__

Computational Science Applications

Simulation of physical phenomena

- fluid flow over aircraft (Boeing 777 designed by simulation)
- fatigue fracture in aircraft bodies
- bone growth
- evolution of galaxies

Two main approaches

- continuous methods: fields and partial differential equations (pde's) (eg. Navier-Stokes equations, Maxwell's equations, elasiticity equations..)
- discrete methods: particles and forces between them (eg. Gravitational/Coulomb forces)

We will focus on pde's in this lecture.

Choice of known functions:

- periodic boundary conditions: can use sines and cosines
- finite element method: generate a mesh that discretizes the domain use low degree piecewise polynomials on mesh

2-D example

Mesh generation

6

Modeling physical phenomena using pde's

PDE:
$$Lu = f$$

eg:
$$\left(\frac{\delta^2}{\delta x^2} + \frac{\delta^2}{\delta y^2}\right) u$$

Domain: Ω

Boundary conditions: on $\delta\Omega$

 $u(x,y) = x + y \mid (x,y) \text{ on } \partial\Omega$

General technique: find an approximate solution that is a linear combination of known functions

$$u^*(x,y) = \sum_{i} c_{i} \Phi_{i}(x,y)$$

Question: How do we choose the known functions?

How do we find the best choice of c's, given the functions?

Weighted Residual Technique:

Residual:
$$(L u^* - f) = (L (\sum_{i=1}^{N} c_i \phi_i) - f)$$

Weighted Residual =
$$(L (\sum_{i=1}^{N} c_{i} \phi_{i}) - f) \phi_{k}$$

Equation for
$$k$$
 unknown:
$$\int\limits_{\Omega}^{\varphi_{*}} (L(\sum_{i=1}^{N} \varphi_{i}) - f) \ dV = 0 \quad \Rightarrow \quad$$

If the differential equation is linear:

$$c \int_{\Omega} \phi * L \phi_1 dV + \dots + c \int_{N} \phi * L \phi_N dV = \int_{\Omega} \phi_k f c$$

This system can be written as

$$K_c = b$$
 where

$$K(i,j) = \int_{\Omega_{i}} \phi_{i} L \phi_{j} dV \qquad b(i) = \int_{\Omega} \phi_{i} f dV$$

linear algebra problem of solving K c=b where K is sparse Key insight: Calculus problem of solving pde is converted to

œ

Finding the best choices of the coefficients:

Analogy with Fourier series:

$$f(x) = a_0 + \sum_{i} a_i \cos(ix) + \sum_{i} b_i \sin(ix)$$

 $f(x) \cos(kx) dx =$ $(\mathbf{a}_0 + \sum_{i} \mathbf{a}_i \cos(i\mathbf{x}) + \sum_{i} \mathbf{b}_i \sin(i\mathbf{x}))\cos(k\mathbf{x})d\mathbf{x}$

Key idea: -residual f(x) - a_0 + $\sum_i a_i \cos(ix)$ + $\sum_i b_i \sin(ix)$

 $=a_k\pi$

- weight residual by known function and integrate to find corresponding coefficient

Jacobi: a (slow) iterative solver

Example:

$$4x + 2y = 8$$

$$3x + 4y = 11$$

Iterative system:

 $y_{n+1} = (11 - 3x_n)/4$ $x_{n+1} = (8 - 2y_n)/4$

H 1 H 0 1 H 0.625 1.375 0.8594 1.1406 0.9473 1.0527 ...

1.250 2.281 1.7188 2.1055 1.8945 2.0396 ...

10

Solving system of linear algebraic equations:

- $\mathbf{K} \mathbf{c} = \mathbf{b}$
- Orders of magnitude for realistic problems
- large (~ 10 million unknowns) (roughly equal to number of mesh points)
- sparse (~ 100 non-zero entries per row)

- (roughly equal to connectivity of a point)

 same K, many b's in some problems
- iterative methods (Jacobi,conjugate gradient, GMRES)

and keep refining it till you get close enough start with an initial approximation to solution

factorization methods (LU, Cholesky, QR)

factorize K into LU where L is lower triangular and U is upper triangular

Solve for c by solving two triangular systems

Matrix view of Jacobi Iteration

Iterative method for solving linear systems Ax = b

Jacobi method: $M * X_{k+1} = (M - A) * X_k + b$ (M is DIAGONAL(A))

Matrix-vector product: O(N 2) work

check convergence

Inner product of vectors

X[i] = Y[i]/A[i,i] + X[i]

vector operations: O(N) work

Most of the time is spent in matrix-vector product.

Lesson for software systems people: optimize MVM

12

11

Tangential Discussion

- Calculus problem $Lu = f \Rightarrow$ linear algebra problem Kc = b.
- In some problems, we need to solve for multiple variables at each mesh point (temperature, pressure, velocity etc.)
- => solve many linear equations with same K, different b's.
- This is viewed as matrix equation KC = B where C and B are matrices.
- Algorithms for solving single system can be used to solve multiple systems as well.
- Key computation in iterative methods: matrix-matrix multiplication (MMM) rather than matrix-vector multiplication (MVM).
- Non-linear pde's lead to non-linear algebraic systems which are solved iteratively (Newton's method etc.).

Key computation: MMM or MVM.

4

14

Reality check:

- Jacobi is a very old method of solving linear systems iteratively.
- More modern methods: conjugate gradient (CG), GMRES, etc converge faster in most cases.
- However, the structure of these algorithms is similar: MVM is the key operation.
- Major area of research in numerical analysis: speeding up iterative algorithms further by *preconditioning*.

 ${
m lgorithms}$ further by ${\it preconditioning}.$

16

Computational Requirements

Let us estimate storage and time requirements

- Assume 10⁶ mesh points (rows/columns of A)
- Assume iterative solver needs 100 iterations to converge
- Assume simulation runs for 1000 time steps.

One MVM requires roughly 10^{12} flops

Overall simulation requires 10^{17} flops and 10^{12} bytes of storage! Can we do better?

Exploiting sparsity

Store sparse matrices in special formats to avoid storing zeros

=> storage costs are reduced!

Avoid computing with zeros when working with sparse matrices

=> MFlops needs are reduced!

compute with them? Question: How do we represent sparse matrices and how do we

18

For our example, K is

000××

 \times \times \circ

Half the entries are zero! In 2-D and 3-D, an even larger percentage of matrix is zero!

Typical 3-D numbers: 10^6 rows but only 100-500 non-zeros per row!

Matrix 18 sparse.

MVM for CRS

for I = 1 to N do

for JJ = A.rowptr(I) to A.rowptr(I+1) -1 do

Y(I) = Y(I) + A.val(JJ)*X(A.column(JJ))

 $_{\rm od}$

 $_{\rm od}$

MVM for Co-ordinate storage

for P = 1 to NZ do

 $Y(A.\operatorname{row}(P)) = Y(A.\operatorname{row}(P)) + A.\operatorname{val}(P) * X(A.\operatorname{column}(P))$

Sparse matrix computations introduce subscripts with indirection.

20

Flow-chart of Adaptive Finite-element Simulation of Fracture Fracture Mesh Mechanics Generator Generator Gisplacements Solver Kc = f Formulation

22

Computational Requirements with sparse matrices

- Assume 10^6 mesh points (rows/columns of A).
- Assume roughly 100 non-zeros per row
- Assume iterative solver needs 100 iterations to converge.
- Assume simulation runs for 1000 time steps.

One MVM requires roughly 10⁸ flops

|| \

Overall simulation requires 10^{13} flops and 10^{8} bytes of storage!

This is roughly 100 seconds on a 100 Gflop supercomputer.

Doable!

Summary

- Computational science applications: solving pde's or pushing particles
- PDE's are solved using approximate techniques such as finite-element method
- Time-consuming part: mesh generation and solving large linear algebraic systems
- \bullet Mesh generation: graph manipulation. Example of irregular problem
- Solving linear systems: matrix may be dense or sparse. Dense matrix manipulations are examples of regular problems. Sparse matrix manipulations are examples of irregular problems.

24

Time-consuming Portions of Simulation

- Mesh generation: Takes many hours to produce meshes of sizes of interest to applications people (10⁶ to 10⁷ elements). From CS perspective, this is a problem that involves building, traversing, and modifying large graphs. Example of what compiler people call *irregular codes*.
- Solving linear systems Ax = b: Takes many hours to solve large systems. Matrix A can be dense or sparse. Manipulations of dense matrices are called *regular codes*. Manipulations of sparse matrices are somewhere in between regular and irregular.

Characteristics of regular problems: dense array codes in which loop bounds and array subscripts are affine functions of loop variables and loop constants.

- Two approachs to solving linear systems: iterative methods and direct (factorization) methods
- Factorization methods
- Cholesky factorization
- LU factorization with pivoting
- QR factorization
- Key operations in iterative methods:

Basic Linear Algebra Subroutines (BLAS)

- Level-1 BLAS: inner-product of vectors, saxpy
- $\bullet\,$ Level-2 BLAS: matrix-vector product, triangular-solve
- multiple right-hand-sides Level-3 BLAS: matrix-matrix product, triangular-solve with
- Exploiting sparsity complicates code.