Goals of lecture

e Understand computational requirements of scientific
applications.

e Introduce the notions of regular and irregular problems.

Computational Requirements
of
Scientific Applications

_

\

\ Computational Science Applications

Simulation of physical phenomena

fluid flow over aircraft (Boeing 777 designed by simulation)

fatigue fracture in aircraft bodies
e bone growth
e evolution of galaxies

Two main approaches

e continuous methods: fields and partial differential equations
(pde’s) (eg. Navier-Stokes equations, Maxwell’s equations,
elasiticity equations..)

o discrete methods: particles and forces between them (eg.
Gravitational/Coulomb forces)

/<<m will focus on pde’s in this lecture.

~

3

- periodic boundary conditions: can use sines and cosines

- finite element method : generate a mesh that discretizes the domain
use low degree piecewise polynomials on mesh

1-D example

\

=

Mesh generation

\ Choice of known functions: /

\ Modeling physical phenomena using pde’s /

PDE: Lu=f mm”A% +%vc =0

Y
Domain: Q @

Boundary conditions: on 8Q

X

ux,y)=x+y Il(x,y)ondQ

General technique: find an approximate solution
that is a linear combination of known functions

u* (xy) = 2 ¢; ®(xy)
1

Question: How do we choose the known functions?
/ How do we find the best choice of ¢’s, given the functions? K

5

\ Weighted Residual Technique: J

Residual: (Lu*-f) MQLAzMohe_v-wv

Weighted Residual =(L(Zc@)-f) o,

h

t N
Equation for k unknown: Heri L(zc @)-f)av=0 =
Q

If the differential equation is linear:

o_%ew H\ﬁ%\ + ot OZ%ew ﬁ€zm< = H ewmm,\
Q Q Q
: . k=12,.N
This system can be written as

Kc = b where

KG,j) = %ev* L@ av b@) = % @ fav
Q' Q
Wovl:mmmwﬂ“Omﬂoz_:mE.oEoBomw&ib@ﬁ&mwmooc<m§mmﬁo

linear algebra problem of solving K ¢ = b where K is sparse

- /

\ Finding the best choices of the coefficients: /
Analogy with Fourier series:

flx) = a + 2 a, cos(ix) +2 b, sin(ix)

How do you find ‘best’ choices for a’s and b’s?

+TT M
T.CQ cos(kx) dx = H (a ot .me cos(ix) +.MFmEQNv)eos(kx)dx
-TT =TT
+TT
= H a cos(kx)cos(kx)dx
-
=a, Tt

W@M idea: -residual fx)-a ot 2 a, cos(ix) +2 b, sin(ix)

- weight residual by known function and integrate

/ to find corresponding coefficient \

4 N

Jacobi: a (slow) iterative solver

Example:

]
[eo]

4x + 2y
3x + 4y

]
[y
N

Tterative system:

Tn+l = Am - M@ﬁv\&
Ynt+1 = (11 — 3z,)/4

n 1 2 3 4 5 6 7 8

X o 2 0.626 1.376 0.8594 1.1406 0.9473 1.0527

y 0 2.75 1.250 2.281 1.7188 2.1056 1.8945 2.0396

10

(s

olving system of linear algebraic equations:

* Kec=b

¢ large (~ 10 million unknowns) (roughly equal to number of mesh points)

e sparse (~ 100 non-zero entries per row)
(roughly equal to connectivity of a point)
¢ same K, many b’s in some problems

o Algorithms:
o iterative methods (Jacobi,conjugate gradient, GMRES)

start with an initial approximation to solution
and keep refining it till you get close enough

o factorization methods (LU,Cholesky,QR)

factorize K into LU where L is lower triangular and U is upper triangular
LUc=b

/ Solve for ¢ by solving two triangular systems \

\ Matrix view of Jacobi lteration J

Iterative method for solving linear systems Ax = b

Jacobi method: M *X wr =(M-AFX |, +b (M is DIAGONAL(A))

while (not converged) do

doj=1.N
Y[i] = b[i]
doi=1..N
YIil = Y[i] - ALLjI*X]

-

Matrix-vector product

doi=1..N
X[i] = Y[/ALL] + Xi]

=

vector ope rations

check convergence. <————(Inner product of vectors

Matrix-vector product: O(N mv work

vector operations: O(N) work
Most of the time is spent in matrix-vector product.
Lesson for software systems people: optimize MVM

12

11

\H@dmozim_ Discussion /

Calculus problem Lu = f = linear algebra problem Kc¢ = b.

In some problems, we need to solve for multiple variables at
each mesh point (temperature, pressure, velocity etc.)

=> solve many linear equations with same K, different b’s.
This is viewed as matrix equation KC = B where C and B are
matrices.

Algorithms for solving single system can be used to solve
multiple systems as well.

Key computation in iterative methods: matrix-matrix
multiplication (MMM) rather than matrix-vector
multiplication (MVM).

Non-linear pde’s lead to non-linear algebraic systems which are

/

solved iteratively (Newton’s method etc.).
Key computation: MMM or MVM.

14

-~

~

Reality check:

Jacobi is a very old method of solving linear systems iteratively.

More modern methods: conjugate gradient (CG), GMRES, etc.

converge faster in most cases.

However, the structure of these algorithms is similar: MVM is
the key operation.

Major area of research in numerical analysis: speeding up
iterative algorithms further by preconditioning.

13

_

16

-

Computational Requirements
Let us estimate storage and time requirements.
e Assume 10° mesh points (rows/columns of A)

e Assume iterative solver needs 100 iterations to converge

e Assume simulation runs for 1000 time steps.
One MVM requires roughly 10'2 flops
=>
Overall simulation requires 1017 flops and 10'? bytes of storage!

Can we do better?

\

15

4 N

Exploiting sparsity

Store sparse matrices in special formats to avoid storing zeros
=> storage costs are reduced!

Avoid computing with zeros when working with sparse matrices.
=> MFlops needs are reduced!

Question: How do we represent sparse matrices and how do we
compute with them?

o /

18

R-U case /

@
FI g C»
0 X 19 X 1
L H Y
0 X 1 9 X 1

93 0 1
Ex 1

K(ij) = H @ * L(®) dQ
Q

Structure of the K matrix for any pde: KI[i,j]is O if e_ and e_. do not overlap!

For our example, K is

x x 0 0 O
X x x 0 0
0 x x x O Half the entries are zero!
0 0 x x X In 2-D and 3-D, an even larger percentage of matrix is zero!
0 0 0 x x
/ Typical 3-D numbers: 10”6 rows but only 100-500 non-zeros per row! K

Matrix 1§ sparse.

4 N

MVM for CRS
forI=1to N do
for JJ = A.rowptr(I) to A.rowptr(I+1) -1 do
Y(I) = Y(I) + A.val(JJ)*X(A.column(JJ))
od
od

MVM for Co-ordinate storage
for P =1 to NZ do

Y(A.row(P)) = Y(A.row(P)) + A.val(P)*X(A.column(P))
od

Sparse matrix computations introduce subscripts with indirection.

- \

20
\ Three Sparse Matrix Representations /
[a[b]c[d[e[f]g[h] A.val
CRS [1[3]2]4[1]3][3]4] A.column Indexed access to arow
1234 % A.rowptr
1lal |b
2l |c| |d
el |f
w glh [ale[c]b[f]g[d[h] A.val
A ccs [1[3]2[1[3]4]2]4] A.row Indexed access to a column
W poo
alh|c/bje| flg|d] A.va)
Co-ordinate 1lal21113]3]4 A.row Indexed access to neither
Storage 1lal2131113131 4 A.column rows nor columns

N \

19

4 N

Flow-chart of Adaptive Finite-element Simulation of Fracture

J
| |

m‘amnd:wm Moesh
gmnwﬂgom Generator
| Error - h/p refinement |
i Estimation; .- ”
&mw_wﬂmamdﬂm
Solver |—— Kec=f-~———| Formulation

22

4 N

Computational Requirements with sparse matrices

e Assume 10° mesh points (rows/columns of A).
e Assume roughly 100 non-zeros per row.
e Assume iterative solver needs 100 iterations to converge.
e Assume simulation runs for 1000 time steps.
One MVM requires roughly 10® flops
=>
Overall simulation requires 10'3 flops and 10® bytes of storage!

This is roughly 100 seconds on a 100 Gflop supercomputer.
Doable!

- /

21

4 N

Summary

e Computational science applications: solving pde’s or pushing
particles

e PDE'’s are solved using approximate techniques such as
finite-element method

e Time-consuming part: mesh generation and solving large linear
algebraic systems

e Mesh generation: graph manipulation. Example of irregular
problem

e Solving linear systems: matrix may be dense or sparse. Dense
matrix manipulations are examples of regular problems. Sparse

matrix manipulations are examples of irregular problems.

- /

24

Time-consuming Portions of Simulation /

e Mesh generation: Takes many hours to produce meshes of sizes
of interest to applications people (10° to 107 elements). From
CS perspective, this is a problem that involves building,
traversing, and modifying large graphs. Example of what
compiler people call irregular codes.

e Solving linear systems Ax = b: Takes many hours to solve large
systems. Matrix A can be dense or sparse. Manipulations of
dense matrices are called reqular codes. Manipulations of sparse

matrices are somewhere in between regular and irregular.

Characteristics of regular problems: dense array codes in which
loop bounds and array subscripts are affine functions of loop

variables and loop constants. \

\

23

Two approachs to solving linear systems: iterative methods
and direct (factorization) methods
Factorization methods

e Cholesky factorization
e LU factorization with pivoting
¢ QR factorization

Key operations in iterative methods:
Basic Linear Algebra Subroutines (BLAS)

e Level-1 BLAS: inner-product of vectors, saxpy

e Level-2 BLAS: matrix-vector product, triangular-solve

e Level-3 BLAS: matrix-matrix product, triangular-solve with
multiple right-hand-sides

Exploiting sparsity complicates code.

k

25

