Transforming Imperfectly Nested Loops

R_mmmmm of loop transformations:
e Iteration re-numbering: (eg) loop interchange

All statements in body affected identically.

e Statement re-ordering: (eg) loop distribution/jamming

Example
DO 10 T = 1,100 DO 10 T = 1,100
Y(I) = 10 Y(I) =
10 Z(I) = ...Y(I)... vs. DO 20 J = 1,100

/ Statement re-ordering can be static or dynamic

20 Z(I) = ...Y(I).

~

Example
DO 10 J = 1,100 DO 10 I = 1,100
DO 10 I = 1,100 VS DO 10 J = 1,100
Y(I) = Y(I)+A(I,J)*X(J) Y(I) = Y(I) + A(I,J)*X
10 Z(I) = 10 Z(I) =

(J)

4 A

e Statement transformation:

Example: scalar expansion

DO 10 I = 1,100 DO 10 I = 1,100
T = £(I) Vs TLI] = £(I)
10 X(I,J) = Tx*T 10 X(I,J) = T[I]*TI[I]

Statements themselves are altered.

-~

Iteration renumbering transformations

We have already studied linear loop transformations.

Index set splitting: N — N1+ N2

DO 10 I =1, N DO 10 T =1, N1
10 S 10 S
VS
DO 20 I = N1+1, N
10 S

Special case: loop peeling - only the first /last/both first and last
iterations are done separately from main loop.

Legality: always legal

.

\H%Eo& use: Eliminate a ‘problem iteration’

DO 10 I =1, N
10 X(aI + b) = X(c) + \AS)

Weak SIV subscript: dependence equation is al, + b = c
= I, =(c—0b)/a

Split index set of loop into 3 parts:
- DO-ALL loop that does all iterations before I,
- Iteration I,, by itself
- DO-ALL loop that does all iterations after I,

. .%\.\9. 6 o o (o o o
/_ DO-ALL DO-ALL

Original Loop After Index-set Splitting

/Zogn distance/direction are not adequate abstractions

5

\mﬁiw-ﬁiasm“ N =N1xN2

Cny?

S

.

DO 10 I
10 Y(I) = X(D)+1 =>

1, N DO 10 Is =1, N, s
DO 10 I = Is, min(Is + s - 1, N)

10 Y(I) = X(I) + 1
_

Original Loop

= vector register length

Strip-mining is always legal.

Stripmined Loop: strip size =2

Is

Inner loop does ‘s’ iterations at a time.

Important transformation for vector machines:

~

-~

To get clean bounds for inner loop, do last ‘N mod s’ iterations

separately: index-set splitting

DO 10 Is =1, N, s
DO 10 I = Is, min(Is + s - 1, N)
10 Y(I) = X(I) + 1

DO 10 Is 1, s*(N div s)
DO 10 I Is, Is + s - 1
10 Y(I) = X(I) + 1

DO 20 I = (N div s)*s + 1 to N

20 Y(I) = X(I) + 1

~

('

1

ling: multi-dimensional strip-mining N1X N2 =¢t1 xt2 « N3 x

,u.......
I
DO Ti =
=> DO Tj =
DO I =
DO J =
S

/OE names for tiling: stripmine and interchange, loop quantization

v

_/

\mgﬁmgmsﬁ Sinking: useful for converting some imperfectly-nested /
loops into perfectly-nested ones

do k =1, N
A(k,k) = sqrt (A(k,k))
do i = k+1, N
A(i,k) = A(i,k) / A(k,k) <---- sink into inner loop
do j = k+1, i
A(i,j) -= A(i,k) * A(j,k)

do k =1, N
A(k,k) = sqrt (ACk,k))
do i = k+1, N
do j =k, 1
if (j==k) A(i,k) = A(i,k) / A(k,k)

///r if (j!=k) A(i,j) -= A(i,k) * A(j,k) \\\\

-~

.

Basic idea of statement sinking;:

1. Execute a pre/post-iteration of loop in which only sunk

statement is executed.

2. Requires insertion of guards for all statements in new loop.

Singly-nested loop (SNL): imperfectly-nested loop in which each
loop has only one other loop nested immediately within it.

Locality enhancement of SNL’s in MIPSPro compiler:

e convert to perfectly-nested loop by statement sinking,
e locality-enhance perfectly-nested loop, and
e convert back to imperfectly-nested loop in code generation.

10

s

Example

DO 10 I =1
Y(I) =
10 Z(I)

DO 10 I =1
Y(I) =
10 Z(I)

, 100

W Y(D) .

, 100

Y(I-1)....

VS.

VS.

atement Reordering Transformations

loop jamming/fusion <=> loop distribution /fission

DO 10 I = 1,100
10 Y(I) = ...
DO 20 J = 1,100
20 Z(I) = ...Y(D)..

Utility of distribution: Can produce parallel loops as below

DOALL 10 I = 1,100

10 Y(I) =

DOALL 20 I’ = 1,100

20 Z2(1’) = Y(I’-1)

/ﬁoow fusion: promote reuse, eliminate array temporaries

/

11

-~

Legality of loop fission: build the statement dependence graph

.

DOI=1N
A(l) = A(l) + B(I-1) loop2
B(1) = C(-1)*X + 1 1
() = UB() 1(g 0 loopl
D(I) = sgrt(C(1)) o0 loop3
Program Statement Dependence Acyclic Condensate
_Graph

- Build the statement dependence graph:
nodes. assignment statements/if-then-else’s
edges: dependences between statements (distance/direction is irrelevant)

- Find the acyclic condensate of statement dependence graph
- Each node in acyclic condensate can become one loop nest

- Order of new loop nests: any topological sort of condensate

- Nested loop fission: do in inside-out order, treating inner loop nests as black boxes

DOI=1N

B(1) = C(I-1)*X +1
c(l) = UB())
DOI=1N

A(1) = A()+B(I-1)
DOI=1,N

D(1) = sart(C(1))

New Code

12

-~

Legality of loop fusion:

DO I=1N _ illegal
X(1) = ... 4\\H\ o o DO I =1N \
X(1) = ...

DOJ=1N _

Y = X(3HD) .. 93 o o o o Y(1) = X(1+1) ...
Usually, we do not compute dependences across different loop nests.
Easy to compute though:

Flow dependence: test for fusion preventing dependence
lw = J+1
J<lw Loop fusion islegal if
1< Iw< N (i) loop bounds are identical
1< ¥ <N (i1) loops are adjacent
) ’ (i11) no fusion-preventing dependence

13

4 A

Statement transformation:

Example: scalar expansion

DO 10 I = 1,100 DO 10 I = 1,100
T = £(I) VS TLI] = £(I)
10 X(I,J) = T*T 10 X(I,J) = T[I]*T[I]

Anti- and output-dependences (resource dependences)arise from

”storage reuse” in imperative languages (cf. functional languages).
Eliminating resource dependences: eliminate storage reuse.

Standard transformations: scalar/array expansion (shown above)

N _/

14

4 A

We got into perfectly-nested loop transformations by studying the
effect of interchange and tiling on key kernels like matrix-vector

product and matrix-matrix multiplication.

Let us study how imperfectly-nested loop transformations can be
applied to other key routines to get a feel for the issues in applying
these transformations.

N _/

15

4 A

Automatic Blocking of Cholesky Factorization

“There are some things which cannot be learned quickly, and time,
which is all we have, must be paid heavily for their acquiring. They
are the very simplest things and because it takes a man'’s life to
know them the little new that each man gets from life is very costly
and the only heritage he has to leave.”

Hemingway in ”Death in the afternoon”

N _/

16

4 A

Cholesky factorization from a numerical analyst’s viewpoint:

e used to solve a system of linear equations Az = b
e A must be symmetric positive-definite

e compute L such that L * LT = A, overwriting lower-triangular
part of A with L

e obtain x be solving two triangular systems

17

-~

Cholesky factorization from a compiler writer’s viewpoint:

e Cholesky factorization has 6 loops like MMM, but loops are
imperfectly-nested.

e All 6 permutations of these loops are legal.

e Variations of these 6 basic versions can be generated by

transformations like loop distribution.

.

18

hor:bs Cholesky: kij, right-looking versions

A

square-root ———= update

scale ——

do k =1, N

A(k,k) = sqrt (A(k,k)) //square root statement
do i = k+1, N
A(i,k) = A(i,k) / A(k,k) //scale statement
do 1 = k+1, N
do j = k+1, 1
A(i,j) -= A(i,k) * A(j,k) //update statement

Three assignment statements are called square root, scale and
update statements.

Compute columns of L column-by-column (indexed by k).
Eagerly update portion of matrix to right of current column.
Note: most data references and computations in update.

19

-~

Interchanging 1 and j loops in kij version gives kji version.
Update is performed row by row.

do k =1, N
A(k,k) = sqrt (A(k,k))
do i = k+1, N
A(i,k) = A(i,k) / A(k,k)
do j = k+1, N
doi=j, N
A(i,j) -= A(i,k) * A(j,k)

.

20

-~

Fusion of the two i loops in kij version produces a SNL.

do k=1, N
ACk,k) = sqrt (A(k,k))
do i = k+1, N
A(i,k) = A(i,k) / A(k,k)
do j = k+1, i
A(i,j) -= A(i,k) * A(j,k)

21

hor:bs Cholesky: jik left-looking versions /

A

sguare-root
scale

update —~

do j =1, N
doi=j, N //interchange i and k loops for jki version

do k =1, j-1
A(i,j) -= A(i,k) * A(j,k)
A(j,j) = sqrt (A(j,3))
do i = j+1, N
A(i,j) = A(4,3) / A(G§,3)

e Compute columns of L. column-by-column.

e Updates to column are done lazily, not eagerly.

e To compute column j, portion of matrix to left of column is used to

/ update current column. K

22

-~

Row Cholesky versions

A for each element inrow i

- find inner-product of two blue vectors
- update element x

T - scale

[— - take square-root at end

These compute the matrix L row by row. Here is ijk-version of

row Cholesky.

doi=1, N
do j =1, 1
dok =1, j-1
A(i,j) -= AGi,k) * A(j,k)
if (j < i) A(Gi,j) = A(i,3)/A(5,3)
else A(i,i) = sqrt (A(i,i))

.

23

4 A

Locality enhancement in Cholesky factorization

e Most of data accesses are in update step.

e Ideal situation: distribute loops to isolate update and tile
update loops.

¢ Unfortunately, loop distribution is not legal because it requires
delaying all the updates till the end.

N _/

24

\aown?z

A(k,k) = sqrt (A(k,k)) //square root statement
do i = k+1, N
A(i,k) = A(i,k) / A(k,k) //scale statement
do i = k+1, N
do j = k+1, 1
A(i,j) -= A(i,k) * A(j,k) //update statement

=> loop distribution (illegal because of dependences)

do k =1, N
A(k,k) = sqrt (A(k,k)) //square root statement
do i = k+1, N
A(i,k) = A(i,k) / A(k,k) //scale statement
do k=1, N
do 1 = k+1, N
do j = k+1, 1
//// A(i,j) -= A(i,k) * A(j,k) //update statement

25

-~

After distribution, we could have tiled update statement, and
obtained great performance....

do k =1, N
do i = k+1, N
do j = k+1, i
A(i,j) -= A(i,k) * A(j,k) //update statement

Dependence vectors:

APAH».UV -> PAHuuvv A+uOuOv
(A(i,j) -> A(i,k)): (+,0,+)
(A(i,j) > A(j,k)): (+,0+,+)

.

~

26

-~

.

~

Let us study two distinct approaches to locality enhancement of
Cholesky factorization:

e transformations to extract MMM computations hidden within
Cholesky factorization: improvement of BLAS-3 content

e transformations to permit tiling of imperfectly-nested code

27

AA@% idea used in LAPACK library: ”partial” distribution /

A

update block-column

e do processing on block-columns
e do updates to block-columns lazily

e processing of a block-column:

1. apply all delayed updates to current block-column
2. perform square root, scale and local update steps on current
block column

e Key point: applying delayed updates to current block-column
can be performed by calling BLAS-3 matrix-matrix

/ multiplication. K

28

How do we think about this in terms of loop transformations?

29

-~

Intermediate representation of Cholesky factorization

Perfectly-nested loop that performs Cholesky factorization:

do k =1, N
do i = k, N
do j =k, 1
if (i == k && j == k) A(k,k) = sqrt (A(k,k));
if (i < k & j == k) A(i,k) = A(i,k) / A(k,k);
if (i > k & j > k) A(i,j) -= A(i,k) * A(j,k);

Easy to show that

e loop nest is fully permutable, and
e guards are mutually exclusive, so order of statement is irrelevant.

.

30

-~

Generating intermediate form of Cholesky:

Converting kij-Fused version: only requires code sinking.

Converting kji version:

e interchange i and j loops to get kij version,
e apply loop fusion to i loops to get SNL, and

e use code sinking.

Converting other versions: much more challenging....

.

31

-~

Convenient to express loop bounds of fully permutable perfectly

nested loop in the following form:

do {i,j,k} in 1 <= k <= j <=1 <= N

if (i == k && j == k) A(k,k) = sqrt (A(k,k));
if (i > k && j == k) A(i,k) = A(i,k) / A(k,k);
if (1 > k && j > k) A(i,j) -= A(i,k) * A(j,k);

.

32

a4 A

LAPACK-style blocking of intermediate form

. _A o
A
1 Computation 1: MMM

| 2 Computation 2: unblocked Cholesky

. Computation 3: MMM

H 4 Computation 4: Triangular solve

block
column

Two levels of blocking:

1. convert to block-column computations to expose BLAS-3

computations

2. use handwritten codes to execute the BLAS-3 kernels

N _/

33

\GV Stripmine the j loop into blocks of size B: /

do js = 0, N/B -1 //js enumerates block columns
do j = B*js +1, Bxjs+B
do {i,k} in 1 <=k <= j <=1i <= N

if (i == k && j == k) A(k,k) = sqrt (A(k,k));
if (i > k & j == k) A(i,k) = A(i,k) / A(k,k);
if (1 > k & j > k) A(i,j) -= A(L,k) * A(j,K);

(2) Interchange the j loop into the innermost position:

do js = 0, N/B -1
do i = Bxjs +1, N
do k = 1, min(i,B*js+B)
do j = max(B*js +1,k), min(i,B*js+B)
if (i == k && j == k) A(k,k) = sqrt (A(k,k));
if (i > k && j == k) A(i,k) = A(i,k) / A(k,k);

///r if (i > k & j > k) A(i,j) -= A(i,k) * A(j,k); \\\\

34

\AwV Index-set split i loop into B*js +1:B*js +B and B*js +w+?2/
(4) Index-set split k loop into 1:B*js and B*js +1:min(i,B*js+B).

do js = 0, N/B -1

//Computation 1: an MMM
do i= Bxjs +1, B*xjs +B
do k = 1,B%*js
do j = Bxjs +1,i
A(i,j) -= A(i,k) * A(§,k);

//Computation 2: a small Cholesky factorization
do i = Bxjs +1,Bxjs +B
do k = Bxjs+1,i
do j = k,1i
if (i == k && j == k) A(k,k) = sqrt (A(k,k));
if (i > k && j == k) A(i,k) = A(i,k) / A(k,k);
///r if (> k& j > k) A(i,j) -= A(i,k) * A(3,k);

35

//Computation 3: an MMM
do i = B*js+ B+1,N
do k = 1,B*js
do j = B*js+1,B*xjs+B
A(i,j) -= A(i,k) * A(j,k);

//Computation 4: a triangular solve
do i = Bxjs+ B+1,N
do k = B*xjs+1,B*xjs+B
do j = k,B*js+B
if (j == k) A(i,k) = A(i,k) / A(k,k);
if (j > k) A(i,j) -= A(i,k) * A(j,k);

36

4 A

Observations on code:

e Computations 1 and 3 are MMM. Call BLAS-3 kernel to

execute them.

e Computation 4 is a block triangular-solve. Call BLAS-3 kernel

to execute 1t.

e Only unblocked computations are in the small Cholesky

factorization.

N _/

37

4 A

Critique of this development from compiler perspective:

e How does a compiler where BLAS-3 computations are hiding in
complex codes?

e How do we recognize BLAS-3 operations when we expose them?

e How does a compiler synthesize such a complex sequence of

transformations?

N _/

38

-~

Compiler approach:

.

Tile the fully-permutable intermediate form of Cholesky:

do {is,js,ks} 0 <= ks <= js <= is <= N/B -1

do {i,j,k} B*xis < i <= B*is + B
Bxjs < j <= Bxjs + B
Bxks < k <= Bxks + B

if (i == k && j == k) A(k,k) = sqrt (A(k,k));
if (1 > k && j == k) A(i,k) = A(i,k) / A(k,k);
if (i > k && j > k) A(i,j) -= A(i,k) * A(j,k);

e Loop nest is,js,ks is fully permutable, as is i,j,k loop nest.

e Choose k,j,i order to get good spatial locality.

39

-~

Strategy for locality-enhancement of imperfectly-nested loops:

1. Convert an imperfectly-nested loop into a perfectly-nested
intermediate form with guards by code sinking/fusion/etc.

2. Transform intermediate form as before to enhance locality.

3. Convert resulting perfectly-nested loop with guards back into
imperfectly-nested loop by index-set splitting/peeling.

How do we make all this work smoothly?

.

40

