
Kamen Yotov 02/26/2003  
 

1/2 
 

C# Omega Interface 
(overview) 

1 INTRODUCTION 
This document describes a C# object-oriented interface to the Omega library. The interface is not 
complete in the sense that it does not allow you to use the full potential of the library, but it is complete 
enough to be able to do the assignment. Please refer to the file Original_Omega.pdf included to study the 
original (C/C++) interface to the library. Please read and study Original_Omega.pdf before you continue 
with this document. 

2 DESIGN 

2.1 EXAMPLE 

After you have solved problem 1 using the Omega Calculator and you have read the original Omega 
Library interface you will probably find out that it is much easier to use the calculator than to program 
omega directly. Indeed, a relatively simple relation looking like 

 {[i1,j1,k1] -> [i2,j2,k2]: i2 = i1 && j1 < j2 || i2 = i1 && j2 = j1 && k1 <= k2 || i1 < i2 } 

in the calculator need to be constructed with the library interface in the following way: 
void main () 
{ 
 char *_1[3] = {"i1", "j1", "k1"}; 
 char *_2[3] = {"i2", "j2", "k2"}; 
 Variable_ID id1[3]; 
 Variable_ID id2[3]; 
 Variable_ID &i1=id1[0], &j1=id1[1], &k1=id1[2]; 
 Variable_ID &i2=id2[0], &j2=id2[1], &k2=id2[2]; 
 
 Relation s(3,3); 
 
 for (int i=0; i<3; i++) 
 { 
  s.name_input_var(i+1,_1[i]); 
  s.name_output_var(i+1,_2[i]); 
  id1[i]=s.input_var(i+1); 
  id2[i]=s.output_var(i+1); 
 } 
 
 F_And *a1 = s.add_and(); 
 
 F_Or *o1 = a1->add_or(); 
 F_And *a2 = o1->add_and(); 
 GEQ_Handle h1 = a2->add_GEQ(); 
 h1.update_coef(i1,1); 
 h1.update_coef(i2,-1); 

 h1.negate(); 
 
 F_And *a3 = o1->add_and(); 
 EQ_Handle h2 = a3->add_EQ(); 
 h2.update_coef(i1,1); 
 h2.update_coef(i2,-1); 
 
 F_Or *o2 = a3->add_or(); 
 
 F_And *a4 = o2->add_and(); 
 GEQ_Handle h3 = a4->add_GEQ(); 
 h3.update_coef(j1,1); 
 h3.update_coef(j2,-1); 
 h3.negate(); 
 
 F_And *a5 = o2->add_and(); 
 EQ_Handle h4 = a5->add_EQ(); 
 h4.update_coef(j1,1); 
 h4.update_coef(j2,-1); 
 GEQ_Handle h5 = a5->add_GEQ(); 
 h5.update_coef(k1,-1); 
 h5.update_coef(k2,1); 
 
 s.print(); 
}

There is no obvious need for using such an elaborate interface for creating relations. Furthermore the 
Bernoulli Compiler Construction Kit is developed in C# and we cannot just use the available C interface 
for incompatibility reasons. Therefore I have developed a C# interface to the Omega Library which is 
almost as intuitive as the Omega Calculator interface. The “almost” here is because C# has limited 
operator overloading capabilities. Here is how this relation needs to be constructed using the C# 
interface: 
 Variable i1 = new Variable("i1"); 
 Variable j1 = new Variable("j1"); 
 Variable k1 = new Variable("k1"); 
 Variable i2 = new Variable("i2"); 
 Variable j2 = new Variable("j2"); 
 Variable k2 = new Variable("k2"); 
 
 Relation r = new Relation( 
  VariableTuple.Create(i1, j1, k1), 
  VariableTuple.Create(i2, j2, k2), 
  (i1 < i2) | (i1 == i2) & ((j1 < j2) | (j1 == j2) & (k1 <= k2))); 
 
 r.Print(); 
 r.Finalize(); 
 r.Simplify(); 
 r.Print(); 

And the result from executing this snippet is: 



Kamen Yotov 02/26/2003  
 

2/2 
 

 {[i1,j1,k1] -> [i2,j2,k2] (  not ( i2 <= i1 ) or i2 = i1 and (  not ( j2 <= j1 ) or j2 = j1 and k1 <= k2 ) ) } 

 {[i1,j1,k1] -> [i2,j2,k2] i1 = i2 && j1 < j2 OR i1 = i2 && j1 = j2 && k1 <= k2 OR i1 < i2 } 

2.2 SUPPORTED OPERATIONS 

2.2.1 BUILDING RELATIONS 

You noticed how straight-forward it is to create a new relation using the C# interface (above). Here are the 
operations you can use in the body of the relation: 

• & – creates an F_And node in the relation body as described in Original_Omega.pdf; 

• | – creates an F_Or node 

• ! – creates an F_Not node 

• == – creates a EQ_Handle constraint 

• >= – creates a GEQ_Handle constraint 

• <, >, <=, != – uses the above two constraints and “!” to emulate these constraints 

• +, -, * – builds affine expressions that translate to updating coefficients and constants in EQ and 
and GEQ constraints (these are the calls to <handle>.update_coef(<variable_id>, <value>)) 

There are several notes that need to be made. First, C# does not allow overloading of the && and || 
operators. Therefore & and | were used. Because && has lower precedence than ==, which in turn has 
lower precedence than &, we need to enclose == and other relational constraints in parenthesis, as in the 
C# example above. Study the C# operator precedence (which is the same as C and Java) and figure out for 
yourself what you need to do to ensure the proper order of operations. Second, there are limitations to the 
type of expressions you can build. These limitations (e.g. only affine expressions) are the same as in the 
Omega Calculator. If you try to build an expression that is not acceptable, an Exception will be thrown 
upon the construction of the relation. Finally, there are a number of constructs that are not yet supported, 
like Exists and Every and some more… You don’t need them to do the assignment, but if for any reason 
you cannot live without them, drop me a line of what you want and I will try to add it as soon as possible. 

2.2.2 OPERATING WITH RELATIONS 

The C# interface supports the following operations on relations: 

• * – intersection, e.g. r1 = r2 * r3; 

• + – union, e.g. r1 = r2 + r3; 

• [] – composition, e.g. r1 = r2[r3]; 

Read about these relation operations in Original_Omega.pdf. 

2.2.3 QUERYING RELATIONS 

This feature of the library lets you examine some features of relations, constructed using the above 
methods. Make sure you read the corresponding section in the original Omega interface document. One 
important feature is that it is able to convert a relation to DNF, examine the different conjuncts separately 
and within each conjunct query the lower and upper bounds for a free variable. Here are the operations 
that you need: 

• r.Conjuncts returns an array of integers, each one being a handle to a conjunct; 

• r.GetVariableBounds(c, v, out lb, out ub) accepts a conjunct handle (c), a variable handle (v) and 
returns the lower and upper bounds of the variable in lb and ub… 

To get a variable handle from a Variable object v you need to cast it to int, i.e. (int)v. Any questions are 
welcome, but in the newsgroup. This way it will be made sure that I answer them only once! 


