
X-Ray:

Automatic Measurement of Hardware Parameters

http://iss.cs.cornell.edu/Software/X-Ray.aspx

Kamen Yotov
kamen@yotov.org

February 6, 2005

1 Introduction

This document explains how to use the X-Ray framework [1]. It does not provide
a detailed explanation on how X-Ray works internally, which is covered in the
X-Ray papers [2, 3]. It is my hope that over time, the current document will
contain all the relevant information about X-Ray.

2 Installation

X-Ray is available through CVS repository root :pserver:cvs@iss.cs.cornell.
edu:/software, module x-ray, branch b2. Work has started on X-Ray 2.0 and
this document will describe only this newer version. Note that instruction for
use are very different for prior versions. You can get the latest copy using the
following command line commands:

1. cvs -d :pserver:cvs@iss.cs.cornell.edu:/software login – this logs
you in to the Intelligent Software Systems CVS server. When asked for a
password enter “cvs”.

2. cvs -d :pserver:cvs@iss.cs.cornell.edu:/software co -r b2 x-ray
– note the -r b2, which is essential. If you skip it the command will com-
plete successfully but you will get a copy of X-Ray 1.0.

3. Pick a name for your machine/platform (e.g. foo) and create a file called
foo.platform in the root X-Ray folder using generic.platform as an
example. Typically this involves specifying the native C compiler on the
platform (with a reasonably high optimization level), and utilities to copy
and delete files (alternatives to the UNIX cp and rm).

1

3 Execution

X-Ray is a framework in which one implements micro-benchmarks. A micro-
benchmark determines a hardware parameter by running experiments on the
target machine. We call these experiments nano-benchmarks. A detailed de-
scription of micro- and nano-benchmarks and their relation to X-Ray is given
in [2].

3.1 Parameters

Benchmarks can accept parameters. For example one parameter for the micro-
benchmark for determining the number of registers is the type of registers to be
determined (i.e. integer, double, SSE2, etc.) X-Ray distinguishes between two
types of parameters – code parameters and data parameters.

• The code of the benchmark depends on the code parameters, and therefore
a change of the value of a code parameter requires code generation and
recompilation. For example, consider the nano-benchmark for measuring
the latency of an instruction. The operation O to be measured is a code
parameter for this nano-benchmark because different code needs to be
generated for different operations O.

• Data parameters are parameters which are passed to the already compiled
benchmark executable without the need for recompilation. For example,
consider the description of address sequences used to determine the pa-
rameters of the data cache. They are only used to initialize the memory
array before measurement and therefore do not require recompilation of
the code.

X-Ray distinguishes between code and data parameters for reuse purposes.
It compiles one executable for each set of code parameters for every bench-
mark. It then is able to reuse this executable for measuring with different data
parameters. Finally, all results of running benchmarks are cached in the file
out/storage.txt as a lookup table. The key in this table is the name of the
benchmark coupled with all supplied parameters (code and data).

3.2 Executing a benchmark

To execute a benchmark, issue the following command from the x-ray root
directory:

gmake run TYPE=<type> NAME=<name> <parameter1>=<value1> ...

Note that you can supply as many parameters as needed. The first two have
special meaning. <type> can only be MBM (micro-benchmark) or NBM (nano-
benchmark). <name> is the name of the corresponding benchmark. If you

2

supply at least these two parameters X-Ray will remind you what are the other
parameters needed to perform this benchmark.

% gmake run TYPE=MBM NAME=latency
** ERROR: Missing parameters: TYPE=[MBM] NAME=[latency] O=[] T=[]

This example shows that to run the “latency” micro-benchmark one needs
to specify an operation O and type T . Here is one correct invocation:

% gmake run TYPE=MBM NAME=latency O=ADD T=F32

Normally this will print nothing, but compute and store the result in out/
storage.txt. There are two special parameters you can use to modify this
default behavior. If you specify VERBOSE=1 measured results are also printed on
the screen:

% gmake run TYPE=MBM NAME=latency O=ADD T=F32 VERBOSE=1
** nbm latency O ADD T F32 -> 2.678
** nbm latency O ADD T I32 -> 0.672
** mbm latency O ADD T F32 -> 3.984

Notice that the first two results are from nano-benchmarks executed as part
of the latency micro-benchmark. The first one has measured the latency of
floating point add as 2.678 nanoseconds and the second one that of integer add
(which we assume is the clock cycle of the CPU) as 0.672 nano-seconds. The
micro-benchmark then divides the two to obtain the latency of floating point
add in clock cycles (3.984 ≈ 4 in this case).

If you want even more output, you can specify OUTPUT=1, in which case you
will also see the invocations of the compiler with the appropriate parameters.

The parameters of all benchmarks (micro and nano) are described in Sec-
tion 4.

4 Included Benchmarks Description

This section provides a very short reference of the meaning of the parameters
required for the different micro- and nano-benchmarks. I will not provide a
detailed description of the benchmarks for now. If you need it, please consult
the papers [2, 3].

4.1 Micro-benchmarks

4.1.1 mhz

Measures CPU frequency.
Parameters: none.

3

4.1.2 latency

Measures instruction latency.
Parameters:

• O: instruction (operation), e.g. ADD, MULTIPLY, etc.

• T : type of operands, e.g. I32, F32, F64, etc.

4.1.3 throughput

Measures instruction throughput.
Parameters: same as in “latency”.

4.1.4 registers

Measures the number of registers available for allocating variables into them.
Parameters:

• T : type of registers to measure, e.g. I32, F32, F64, etc.

4.1.5 fma

Checks for the presence of dedicated hardware for executing fused multiply-add
instructions.

Parameters:

• T : type of operands to check for, e.g. I32, F32, F64, etc.

4.1.6 cache sa

Measures the cache stride and the cache associativity. Please read [3] to get a
complete understanding of the meaning of the parameters.

Parameters:

• s: stride for the higher cache level. Use sizeof(void *) for measuring
parameters of the L1 data cache.

• a: associativity for the higher cache level. Use 1 for measuring parameters
for the L1 data cache.

• P : a big prime number to be used for shuffling the addresses in a sequence.
For measuring the parameters of the L1 data cache, 9973 is enough.

• V : because this micro-benchmark measures both cache stride and cache
associativity, while the X-Ray framework only allows one result per micro-
benchmark, this parameter specifies which result to return. If you specify
V=S stride is returned. If you specify V=A associativity is returned. Note
that running the micro-benchmark twice to get both values is not going
to double the runtime, because all intermediate measurements are cached.

4

• L: cache level being measured. This is only symbolic to differentiate the
cached results. Use 1 for measuring the parameters of the L1 data cache.

4.1.7 cache c

Measures the cache capacity.
Parameters: same as “cache sa” except for V which is obviously not needed

here.

4.1.8 cache b

Measures the cache block (line) size.
Parameters: same as “cache sa” except for V which is obviously not needed

here.

4.1.9 cache l

Measures the cache hit latency in cycles.
Parameters: same as “cache sa” except for V which is obviously not needed

here.
I have yet to write a complete script for measuring all cache levels automat-

ically. Currently to do all cache levels you need to execute the aforementioned
micro-benchmarks manually several times.

Also, I have not yet folded the OS support for super-pages in X-Ray 2.0, so
you will have to wait for L2 and below anyway.

4.2 Nano-benchmarks

This will have to wait.

5 Extending X-Ray

In this section I am planning to explain how to extend X-Ray, including how to
specify new operations, how to create new micro- and nano-benchmarks, etc.

References

[1] X-Ray: Automatic measurement of hardware parameters. http://iss.cs.
cornell.edu/Software/X-Ray.aspx.

[2] Kamen Yotov, Keshav Pingali, and Paul Stodghill. Automatic measurement
of hardware parameters for embedded processors. Technical Report TR2005-
1974, January 2005.

5

[3] Kamen Yotov, Keshav Pingali, and Paul Stodghill. Automatic measurement
of memory hierarchy parameters. In International Conference on Measure-
ment & Modeling of Computer Systems (SIGMETRICS), Banff, Canada,
2005.

6

