Is Search Really Necessary to Generate
High-Performance BLAS?

Kamen Yotov, Xiaoming Li, Gang Ren, Maria Garzaran,
David Padua, Keshav Pingali, Paul Stodghill

Abstract— A key step in program optimization is the estimation 43] and loop unrolling [4,32] for enhancing locality and
of optimal values for parameters such as tile sizes and loop parallelism. Other work has focused on algorithms for esti-
unrolling factors. Traditional compilers use S|_mple analytical mating optimal values for parameters associated with these
models to compute these values. In contrast, library generators . . -
like ATLAS use global search over the space of parameter values transformations, such as tile sizes (7,13, 36_] and loop unroll
by generating programs with many different combinations of factors [4]. Nevertheless, performance-conscious programmers
parameter values, and running them on the actual hardware must still optimize their programs manually [15, 19].
to determine which values give the best performance. It is The simplest manual approach to tuning a program for a
widely belleved_that traditional model_—c_:lrlven optimization can- given platform is to write different versions of that program,
not compete with search-based empirical optimization because)
tractable analytical models cannot capture all the complexities evaluate the performance of these versions on the target plat-
of modern high-performance architectures, but few quantitative form, and select the one that gives the best performance. These
comparisons have been done to date. different versions usually implement the same algorithm, but

To make such a comparison, we replaced the global search giffer in the values they use for parameters such as tile
engine in ATLAS with a model-driven optimization engine, gjza5 and loop unroll factors. The architectural insights and
and measured the relative performance of the code produced d in k led f th d to limit th
by the two systems on a variety of architectures. Since both Omalf KNowW e, ge of the programmer are used to imi - N
systems use the same code generator, any differences in thenumber of versions that are evaluated. In Eﬁect, the analytlcal
performance of the code produced by the two systems can techniques used in current compilers to derive optimal values
come only_ from differences in optimi_zation p_arameter values. for such parameters are replaced byeanpirical searchover
Our experiments show that model-driven optimization can be 5 gitaply restricted space of parameter values (by empirical
surprisingly effective, and can generate code with performance) : .
comparable to that of code generated by ATLAS using global search, we mean a three Ste.p process: (1) gengrat!ng a version
search. of the program corresponding to each combination of the
parameters under consideration, (2) executing each version on
the target machine and measuring its performance, and (3)
selecting the version that performs best). This approach has
been advocated most forcefully by Fred Gustavson and his co-
workers at IBM, who have used it for many years to generate

. INTRODUCTION the highly optimized ESSL and PESSL libraries for IBM ma-

The sciences do not try to explain, they hardly chines [34]. Recently, a number of projects such as FFTW [17,
even try to interpret, they mainly make models. By 18], PhiPAC [2, 6], ATLAS [1,41], and SPIRAL [26, 33] have
a model is meant a mathematical construct which, automated the generation of the different program versions
with the addition of certain verbal interpretations, whose performance must be evaluated. Experience shows that
describes observed phenomena. The justification of these library generators produce much better code than native
such a mathematical construct is solely and precisely compilers do on modern high-performance architectures.
that it is expected to work. Our work was motivated by a desire to understand the

John Von Neumann performance gap between the BLAS codes produced by AT-

It is a fact universally recognized that current restructuring®S and by restructuring compilers, with the ultimate goal
compilers do not generate code that can compete with ha®di-improving the state of the art of current compilers. One
tuned code in efficiency, even for a simple kernel like matrif€ason why compilers might be at a disadvantage is that they
multiplication. This inadequacy of current compilers doe@re general-purpose and must be able to optimize any program,
not stem from a lack of techno|ogy for transforming highWhereaS a Iibrary generator like ATLAS can focus on a partic-
level programs into programs that run efficiently on moder#ar problem domain. However, this is somewhat implausible
high-performance architectures; over the years, the compif@cause dense numerical linear algebra, the particular problem
community has invented innumerable techniques such as lindamain of ATLAS, is precisely the area that has been studied

loop transformations [5,11,14,29,42], loop tiling [27,28Most intensely by the compiler community, and there is an
extensive collection of well-understood transformations for

0085969, ACI-0090217, ACI-0103723, and ACI-012140. K. Yotov, K. Pingali

and P. Stodghill are with Cornell University; X. Li, G. Ren, M. Garzaran any']e 'na;dequacy of current Comp"?rs might be_ that new tr_ans'
D. Padua are with University of lllinois at Urbana-Champaign formations, unknown to the compiler community, are required

Index Terms—program optimization, empirical optimization,
model-driven optimization, compilers, library generators, BLAS,
high-performance computing

Execute

MFLOPS &
Measure
A
\ 4
——L1Size—p NB——p|
Detect ATLAS Search —MU, NU, KU ATLAS MM Code mini-MMM
Hardware LS—p Engine LS—» Generator > Source
Parameters ——NR—p> (mmsearch) ——FF, IF, NF—p»| (mmcase)
——FMA—p FMA—p
——L1Size—p NB———p
Detect —L1 I-Cached Model Parameter —MU, NU, KU ATLAS MM Code mini-MMM
Hardware —L*, |ALUgp|> Estimator LS——» Generator » Source
Parameters NR—P, (mmmodel) ——FF, IF, NF—p»| (mmcase)
——FMA—p FMA—Pp

Fig. 1. Architecture of ATLAS and of Model-driven ATLAS

to produce code of the same quality as the code producedrbgult of applying standard compiler transformations to high-
ATLAS. Finally, it is possible that the analytical models usetével BLAS codes. As we describe in Section II, the code
by compilers to estimate optimal values for transformatigoroduced by ATLAS is similar to what we would get if we

parameters are overly simplistic, given the complex hardwaapplied cache tiling, register tiling, and operation scheduling
of modern computers, so they are not able to produce gomdthe standard three-loop matrix multiplication code. This

values for program optimization parameters. exercise ruled out the possibility that ATLAS incorporated
No definitive studies exist to settle these matters. Osome transformation, unknown to the compiler community,
research is the first quantitative study of these issues. that was critical for obtaining good performance. We then

Figure 1 shows our experimental set-up, which makes usmdified ATLAS by replacing the search module, described
of the original ATLAS system (top of the figure) and an more detail in Section Ill, with a module (mmmodel) that
modified version (bottom of the figure) that uses analyticakes standard analytical models to estimate optimal values
models instead of empirical search. Like any system that uges the optimization parameters, as described in Section IV.
empirical search, ATLAS has (i) a module that controls th8ince both ATLAS and the modified ATLAS use the same
search, which is used to determine optimal values for codede generator, we are assured that any difference in the
optimization parameters (mmsearch), and (ii) a module thag¢rformance of the generated code results solely from different
generates code, given these values (mmcase). The paramefenices for optimization parameter values. In Section V,
used by ATLAS are described in more detail in Section live present experimental results on ten different platforms,
for example,Ng is the tile size to be used when optimizingcomparing
code for the L1 dgta cache. In general, there is_ an uanundeg the time spent to determine the parameter values,
number of possible values fqr a parameter likg so it . the values of the parameters, and
is_necessary to bou.nd. the size of the search space. When . olative performance of generated code.

ATLAS is installed, it first runs a set of micro-benchmarks)

to determine hardware parameters such as the capacity of th@ur results show that on all ten platforms, a relatively

L1 data cache and the number of registers. These hardwglféPle and very intuitve model is able to estimate near-
parameters are used to bound the search space. The mmse2pifal values for the optimization parameters used by the
module enumerates points within this bounded search spatELAS Code Generator. We conclude in Section VI with a

invokes the mmcase module to generate the appropriate cHigeussion of our main findings, and suggest future directions
(denoted by mini-MMM in the figure), runs this code on théOr research.

actual machine, and records its execution time. At the end ofOne feature of ATLAS is that it can make use of hand-

the search, the parameter values that gave the best performd#@ed BLAS routines, many of which are included in the

are used to generate the library code. This library is coded if¥aLAS distribution. When ATLAS is installed on a machine,

simple subset of C, which can be viewed as portable assemifigse hand-coded routines are executed and evaluated. If the
code, and it is compiled to produce the final executable. Pperformance of one of these hand-coded routines surpasses
We first studied the code generation moduland deter- the performance of the code generated by the ATLAS Code
mined that the code it produces can be viewed as the ea@nerator, the hand-coded routine is used to produce the
library. For example, neither the ATLAS Code Generator nor
1The description of ATLAS in this paper was arrived at by studyin_g thﬁ—](? C compilers on the Pentium IV exploit the SSE2 vector
ATLAS source code. In case of any discrepancy between this description an tensions to the x86 instruction set, so ATLAS-generated

how the ATLAS system is actually implemented, the documentation of tfeX) e HR !
ATLAS project should be considered to be authoritative [39-41]. matrix multiplication code on the Pentium IV runs at around

1.5 GFLOPS. However, the matrix multiplication routine in ATLAS implements an MMM as a sequence wfini-

the library produced by ATLAS runs at 3.3 GFLOPS because MMMSs, where each mini-MMM multiplies sub-matrices
it uses carefully hand-coded kernels, contributed by expert of size Ngx Ng. Np is an optimization parameter whose
programmers and part of the ATLAS distribution, which use value must be chosen so that the working set of the mini-
these vector extensions. MMM fits in the cache.

Our concern in this paper is not with handwritten code, but In the terminology of restructuring compilers, the triply-
with the code produced by the ATLAS Code Generator and nested loop of Figure 2 is tiled with tiles of siZég x
with the estimation of optimal values for the parameters that Np x Npg, producing anouter and aninner loop nest.
are inputs to the code generator. To make clear distinctions, For the outer loop nest, code for both the JIK and 1JK
we use the following terminology in the rest of this paper. loop orders are implemented. When the MMM library

« ATLAS CGW/S:This refers to the ATLAS system in routine is called, it uses the shapes of the input arrays to
which all code is produced by tH&TLAS Code Generator decide which version to invoke, as described later in this
with Searchto determine parameter values. No hand- Section. For the inner loop nest, only the JIK loop order
written, contributed code is allowed. is used, with(j’,¢', k") as control variables. This inner

« ATLAS ModelThis refers to the modified ATLAS system l00p nest multiplies sub-matrices of si2é; x N, and
we built in which all code is produced by the ATLAS ~ We call this computation anini-MMM.

Code Generator, using parameter values produced frome Optlmlzatlon for the rengter fileATLAS represents each
analytical models. mini-MMM into a sequence ofmicro-MMMs, where each

« ATLAS UnleashedThis refers to the complete ATLAS micro-MMM multiplies an M x 1 sub-matrix ofA by
distribution which may use hand-written codes and prede- & 1 x Ny sub-matrix of B and accumulates the result
fined parameter valuesrchitectural defaultsto produce into an My x Ny sub-matrix of C. My and Ny are
the library. Where appropriate, we include, for complete- ~ Optimization parameters that must be chosen so that

ness, the performance graphs for the libraries produced & micro-MMM can be executed without floating-point
by ATLAS Unleashed. register spills. For this to happen, it is necessary that

My + Ny + My x Ny < Ng, whereNg, is the number
1. ATLAS CoODE GENERATOR of floating-point register;. . .

In terms of restructuring compiler terminology, the

In this section, we use the framework of restructuring (4,4, k') loops of the mini-MMM from the previous step
compilers to describe the structure of the code generated by gzre tiled with tiles of sizeNy x My x Ky, producing
the ATLAS Code Generator. While reading this deSCI’iption, it an extra Knner) |00p nest. The JIK |oop order is chosen
is important to keep in mind that ATLAS is not a compiler. for the outer loop nest after tiling, and the KJI loop order
Nevertheless, thinking in these terms helps clarify the signifi- for the loop nest of the mini-MMM after tiling.
cance of the code Optimization pal‘ametel’s used in ATLAS. The resuiting Code after the two tiiing Steps iS shown in
We concentrate on matl’ix-matl’iX multiplication (MMM), Figure 3. To keep th|S Code Simpie’ we have assumed

which is the key routine in the BLAS. Nlee MMM code that all step sizes in these loops divide the appropriate
is shown in Figure 2. In this, and all later codes, we use the loop bounds exactly (saVy divides M, N, and K,
MATLAB notation [First : Step : Last] to represent the set etc). In reality, code should also be generated to handle
of all integers betweet'irst and Last in steps ofStep. the fractional tiles at the boundaries of the three arrays;
we omit this clean-up code to avoid complicating the
description. The strategy used by ATLAS to copy blocks
of the arrays into contiguous storage is discussed later in
this section. Figure 4 is a pictorial view of a mini-MMM
computation within which a micro-MMM is shown using
Fig. 2. N&ve MMM Code shaded rectangles. In this figure, the values assigned to

variable K are produced by executing the tfeo loops

in Figure 3 corresponding to indicés and k",

for i€[0:1: N —1]
for je[0:1:M—1]
for kel0:1:K —1]
Ci; = Cij + Air X Byj

A. Memory Hierarchy Optimizations To perform register allocation for the array variables ref-

The code shown in Figure 2 can be optimized for localitgrenced in the micro-MMM code, ATLAS uses techniques
by blocking for the L1 data cache and registers. Blockingmilar to those presented in [8]: the micro-MMM loop nest
is an algorithmic transformation that converts the matrie&"” Z’”) in Figure 3is fu”y unrolled, producing/[U x Ny mul-
multiplication into a sequence of small matrix multiplicationst,ip|y and add statements in the body of the middle loop nest. In
each of which multiplies small blocks of the original matriceshe unrolled loop body, each array element is accessed several
Blocking matrix multiplication for memory hierarchies wasimes. To enable register allocation of these array elements,
discussed by McKellar and Coffman as early as 1969 [31]. TRg| AS uses scalar replacement [9] to introduce a scalar
effect of blocking can be accomplished by a loop transformgsmporary for each element f B, andC that is referenced in
tion called tiling, which was introduced by Wolfe in 1987 [43]the unrolled micro-MMM code, and replaces array references
« Optimization for the L1 data cache in the unrolled micro-MMM code with references to these

/I MMM loop nest (5,4, k)
/I copy full A here
for je€[l:Np:M]
/I copy a panel of
for ie€[l:Np:N]

B here

/I possibly copy a tile of C here
for ke[l:Np:K]
/I mini-MMM loop nest (§',4' k")

for jIE[j:NU:j+NBfl]
for Z'/G[Z‘:MUZ’L‘#»NBfl]
for k’e[k:KUtk-i-NB—l]

« Construct two sequences of lendth/;; x Ny;), one con-

taining the multiply operations (we will denote them by
muly, muls, ..., muly, xn,) and the other containing
the add operations (we will denote them &yd;, adds,,

ey addMuxNU).

Interleave the two sequences as shown below to create a
single sequence that is obtained by skewing the adds by
a factor of L, where L, is an optimization parameter.
Intuitively, this interleaving separates most dependent
multiplies and adds b$ x L, —1 independent instructions

to avoid stalling the processor pipeline.

for kK'elk:1:k+ Ky —1]

/I micro-MMM loop nest (5", muly

for 7 €[f:1:5 + Ny —1] muls

for " €[i':1:9+ My —1]
Ci”j” = Ci//jll + Ai//ku X Bk/lj// mulLS

add1

mulr, 41

<NU> adds

mulr, 42

Fig. 3. MMM tiled for L1 data cache and Registers

A

MUl x Ny —1
addyr, x Ny —L,
mular, x Ny
addpyry, x Ny —La+1
addpr; x Ny —L,+2

< NB———>

addMUXNU

. « Inject the My + Ny loads of the elements oA and
B into the resulting sequence of arithmetic operations

by scheduling a block of z (Initial Fetch) loads in the
beginning and blocks oNy loads thereafter as needed.
Ir and Ny are optimization parameters.

« Unroll the ¥ loop completely. The parametéf;; must
be chosen to be large enough to reduce loop overhead,
but not so large that the body of thé loop overflows

scalars. Appropriate assignment statements are introduced to the L1 |n_struct|or/1 cache.)
initialize the scalars corresponding foand B elements. In~ ° Reorganize thek’ loop to enaple th_e target ”?aCh'”.e
addition, assignment statements are introduced before and to overlap the loads _from_one .|terat|on W't,h arithmetic
after the i’ loop to initialize the scalars corresponding to ~ CPerations from previous iterations. Techniques for ac-
C elements, and to write the values back into the array complishing this are known as software pipelining or

respectively. It is expected that the back-end compiler will modulo sched'ulmg [35]. o
allocate floating-point registers for these scalars. Note that skewing of dependent adds and multiplies in-
creases register pressure; in particular, the following inequality

must hold to avoid register spills (that is, saving in memory
the value stored in a processor register):

<MU—>
.

— K>

<—NB———>

A

Fig. 4. mini-MMM and micro-MMM

B. Pipeline scheduling

The resulting straight-line code in the body of tké loop
is scheduled to exploit instruction-level parallelism. Note that
the operations in thé” loop are theM; + Ny loads ofA and
B elements required for the micro-MMM, and the correspon% Additional details
ing My x Ny multiplications and additions. On hardware™
architectures that have a fused multiply-add instruction, theThere are several details we have not discussed so far.
scheduling problem is much simpler because multiplies ande ATLAS considers a primitive form of L2 cache tiling,
adds are executed together. Therefore, we only discuss the driven by a parameter calle@acheEdge. ATLAS em-
more interesting case when a multiply-add instruction is not pirically finds the best value of'ache Edge and uses it
present. An optimization parametdriM/ A tells the code to computeK p, based on Inequality 2.
generator whether to assume that a fused multiply-add exists.
The scheduling of operations can be described as follows.

My x Ny + My + Ny + Ls < Np 1)

2 x Kp x Ng 4+ N3 < CacheEdge (2)

Kp is further trimmed to be a multiple ofNg. The D. Discussion

computed value ofCp is used to block thét dimension type | jists the optimization parameters for future reference.
of the original problem for one additional level of the

memory hierarchy. We will not discugSache Edge and Name Description
Kp in further detail as they are outside the scope of the | V& L1 data cache tile size _ _
aper NCNg L1 data cache tile size for non-copying version

paper. My, Ny Register tile size
ATLAS chooses the outermost loop order (shown as JIK | g, Unroll factor for &/ loop
in Figure 3) during runtime. This technique is known as f?sj\/[A iaﬁncygm C?mrut%t(ijon SQP%?U“BQ heri

. if fused multiply-a avallaple, otherwise
versioning, because it requires both versions of the code Fp, Iy, N || Scheduling of loads

to be compiled in the library.
The decision of which loop order to choose is based on
the size of matrices andB. If A is smaller tharB (IV <

M), ATLAS chooses the JIK loop order. This guarantees
that if A fits completely in L2 or higher cache level, it
is reused successfully by the loop nest. Similarlyg ifs

TABLE |
SUMMARY OF OPTIMIZATION PARAMETERS

It is intuitively obvious that the performance of the gener-
: ated mini-MMM code suffers if the values of the optimization
the smaller matrix ¥ < N), ATLAS chooses the JK parameters in Table | are too small or too large. For example, if
loop ordgr. . . My and Ny are too small, thé{y; x Ny block of computation
For brevity, we consider only the JIK loop order in thEfnstructions might not be large enough to hide the latency of
rest of the papef- the My + Ny loads. On the other hand, if these parameters
Unlt_ass t_he matnce; are too small or too Iarge, ATI"L\§1re too large, register spills happen. Similarly, if the value of
copies files of matrices, B and C to_ Squent'al mem- K is too small, there is more loop overhead, but if this value
ory to redupe the numbgr of confhgt [MISSES and TLITD!; too big, the code in the body of the loop will overflow
misses during the execution of a mini-MMM. COpymgthe instruction cache. The goal now is to determine optimal

is performed in a manner_that allows the copied tiles_‘i?alues of these parameters for obtaining the best mini-MMM
be reused by different mini-MMMs. The comments N ode

Figure 3 and the discussion below explain how this goa

is achieved for the JIK loop order.
Ill. EMPIRICAL OPTIMIZATION IN ATLAS

— Copy all tiles of A before the beginning of the ATLAS performs a global search to determine optimal
outermost;j loop. This is necessary as these tilesalues for the optimization parameters listed in Table I. In
are fully reused ireachiteration of thej loop. principle, the search space is unbounded because most of the
Copy all tiles from thej*" vertical panel oB before parameters, such &g, are integers. Therefore, it is necessary
the beginning of thé loop. This is necessary as thisto bound the search space, using parameters of the machine
panel is fully reused byachiteration of the: loop. hardware; for example)/;; and Ny, the dimensions of the
The single (¢,7) tile of C is copied before the register tile, must be less than the number of registers.
beginning of thek loop if J{%’ > 12. This may Since ATLAS is self-tuning, it does not require the user to
reduce TLB misses which may be beneficial sincgrovide the values of such machine parameters; instead, it runs
this tile is reused byeachiteration of thek loop, simple micro-benchmarks to determine approximate values for
provided that the cost of copying the tile Gfto a these parameters. It then performs a global search, using the
temporary buffer and back, can be amortized by thmachine parameter values to bound the search space.
computation (large enougR p).

If the matrices are very small or if there is insufficienfa" Est|mat|nq machine parameters
memory for copying tiles, the cost of copying might out- The machine parameters measured by ATLAS are the
weigh the benefits of reducing conflict misses during tHellowing.

computation. Therefore, ATLAS generates non-copying e
versions of mini-MMM as well, and decides at runtime «
which version to use. Without copying, the number of «
conflict misses and TLB misses may rise, so it makes
sense to use a smaller tile size for the non-copying mini- «
MMM. In ATLAS, this tile size is another optimization
parameter calledVC' Np (non-copying Ng). Roughly
speaking, the non-copy version is used if (i) the amount
of computation is less than some threshald ¥ N x K

Cy: the size of L1 data cache.

Ng: the number of floating-point registers.

FM A: the availability of a fused multiply-add instruc-
tion.

L, although this is not a hardware parameter per se,
it is directly related to the latency of floating point
multiplication, as explained in Section 1I-B. ATLAS
measures this optimization parameter directly using a
micro-benchmark.

in Figure 2 is less than some threshold), and (i) at leastThe micro-benchmarks used to measure machine parameters
one dimension of one of the three matrices is smaller thafe independent of matrix multiplication. For example, the
3xNCNg. The non-copy version is used also when thei@jcro-benchmark for estimating’; is similar to the one

is insufficient memory to perform the copying. discussed in Hennessy and Patterson [23].

Two other machine parameters are critical for performanocghen M;; or Ny is 1 are treated specially. A test is performed
(i) the L1 instruction cache size, and (ii) the number db see ifl x 9 unrolling or9 x 1 unrolling is better thar$ x 3
outstanding loads that the hardware supports. ATLAS does mmtrolling. If not, unrolling factors of the formh x U andU x 1
determine these explicitly using micro-benchmarks; insteady values ofU greater thar8 are not checked.
they are considered implicitly during the optimization of 3) Find bestKy: This step is another simple search. Unlike
matrix multiplication code. For example, the size of the L}y and Ny, Ky does not depend on the number of available
instruction cache limits thé(;; parameter in Figure 3. Ratherregisters, so it can be made as large as desired without causing
than estimate the size of the instruction cache directly bggister spills. The main constraint is instruction cache size.
running a micro-benchmark and using that to determine tB&LAS tries values for Ky between4 and % as well
amount of unrolling, ATLAS generates a suite of mini-MMMas the special values and Ng. The value that gives best
kernels with differentK;; values, and selects the kernel thaperformance (based aNg, My and Ny as determined from
achieves best performance. the previous steps) is declared the optimal valueKer.

4) Find bestL;: In this step, ATLAS used., values in
the interval[l, 6] to schedule the computations in the micro-
MMM of Figure 3 to determine the best choice fér,. It

To find optimal values for the optimization parameters igiso ensures that the chosen value dividiés x Ny x Ky to
Table I, ATLAS usesorthogonal line searchwhich finds tggilitate instruction scheduling.
an approximation to the optimal value of a functign= 5) Find bestFr, I, and Nz In this step, ATLAS searches
f(z1,22,...,z,), ann-dimensional optimization problem, bytor the values ofFy, I and Ny. First, ATLAS determines
solving a sequence of 1-dimensional optimization problemsine valye ofFr (0 or 1). Then, it searches for the best value
corresponding to each of the parameters. When optimizing of the pair (=, N») whereIr is in the interval [2My+Ny]
the value of parameter;, it uses reference values for paramzq N is in the interval [LMy+Ny-Ix].
eters fi+1,Zi+2,...,2n) that have not yet been optimized. g Find bestNC'Ny: For the non-copying version of mini-
Orthogonal line search is heuristic because it does not necgfiam, ATLAS uses the same values oy, Ny, Fr, I, and
sa_lrily find _the_optimal value even for a convex function, buk;,. that it uses for the copying version. Without copying, the
with luck, it might come close. o likelihood of conflict misses is higher, so it makes sense to

To specify an orthogonal line search, it is necessary {fe a smaller L1 cache tile size than in the version of mini-
specify (i) the order in which the parameters are optimized, (\)MM that performs copying. ATLAS searches for an optimal
the set of possible values considered during the optimization\gfiye of NC' N in the range N : —4 : 4]. We would expect
each parameter, and (iii) the reference value used for paramejgfformance to increase initially as the tile size is decreased,

B. Global search for optimization parameter values

k during the optimization of parametets 2, ..., k — 1. but decrease when the tile size becomes too small. ATLAS
The optimization sequence used in ATLAS is the followingerminates the search when the performance falls by 20% or
1) Find bestNp. more from the best performance it finds during this search.
2) Find bestMy and Ny . Finally, some restricted searches for better value& pfand
3) Find bestKy. L, are done.

4) Find bestL,. 7) Find best clean-up codedf the tile size is not a multiple

5) Find bestFr, Ir, and Nr. of the original matrix size, there may be left-over rows and
6) Find bestNCNpg: a non-copy version oNg. columns, at the boundaries of the matrices, forming fractional
7) Find best clean-up codes. tiles. To handle these fractional tiles, ATLAS generates clean-

We now discuss each of these steps in greater detail. Up code — a special mini-MMM in which one or more of the
1) Find bestNg: In this step, ATLAS generates a numbeflimensions of the three tiles is smaller thaig. For M/ and
of mini-MMMs for matrix sizesNg x Nz where Ng is a [NV clean-up only the corresponding dimension is smaller than

multiple of 4 that satisfies the following inequality: Np, while for K cleanup, any of the three dimensions can be
smaller thanVp.
16 < Nz < min (80, /Cl) (3) For example, ATLAS generate& clean-up codes as fol-

lows. For each value of., representing the size of th&

The reference values adff;; and Ny are set to the values dimension, starting with, = Ng — 1 and going down, it
closest to each other that satisfy (1). For each matrix sizgenerates a specialized version of the mini-MMM code in
ATLAS tries two extreme cases fdtf;; — no unrolling ((;y = which some of the loops are fully unrolled. Full unrolling
1) and full unrolling (Ky = NBg). is possible because the shapes of the operands are completely

The Np value that produces highest MFLOPS is chosémown. When the performance of the general version falls
as “bestNg” value, and it is used from this point on in allwithin 1% of the performance of the current specialized
experiments as well as in the final versions of the optimizegrsion, the generation process is terminated. The cufrémt
mini-MMM code. declared to be th€rossover PointAt runtime, the specialized

2) Find bestMy and Ny: This step is a straightforward versions are invoked when the dimension of the left-over tile
search that refines the reference valued\fhf and Ny that is greater tharl., while the general version is invoked for tile
were used to find the besVg. ATLAS tries all possible sizes smaller thatd.
combinations of\f;; and Ny that satisfy inequality (1). Cases For M and N clean-up ATLAS produces only a general

r j€f0:1:Np—1]
for i €[0:1:Ng—1]
for kK €[0:1:Np—1]
Ciryr = Cuyr + Aygr X Brryr

version, as these are outer loops in the outermost loop nest™
in Figure 3 and they are not as crucial to performancéd(as
clean-up is. The use of clean-up code in ATLAS is discussed
in more detail in [39].

Fig. 5. Schematic Pseudo-Code for mini-MMM

C. Discussion

In optimization problems, there is usually a trade-off be- The working set in memory of the mini-MMM loop nest in
tween search time and the quality of the solution. For examplggure 5 consists of thre&s x Ny tiles, one from each of
we can refine the parameters found by ATLAS by repeating thgs matricesA, B, andC. For the rest of this section, we will

orthogonal line search some number of times, using the valygser to these tiles just a&, B, and C. This working set fits
determined by one search as the reference values for the n&irely in the cache if Inequality (4) holds.

search. It is also possible to use more powerful global search
algorithms like simulated annealing. However, the potential for 3N < Cy 4)
obtaining better solutions must be weighed carefully against

the increase in installation time. We will address this point in A more careful analysis shows that it is not actually neces-
the conclusions. sary for all threeNp x Np blocks to reside in the cache for

the entire duration of the mini-MMM computation. Consider
the mini-MMM code shown in Figure 5. Becaugé is the
innermost loop, elements df are computed in succession;
In this section, we present analytical models for estimagnce a given element of has been computed, subsequent
ing optimal values for the parameters in Table I. To avoigerations of the loop nest do not touch that location again.
overwhelming the reader, we first present models that ignofierefore, with this loop order, it is sufficient to hold a single
interactions between different levels of the memory hierarcliyement ofC in the cache, rather than the entire array. The
(in this case, L1 data cache and registers). Then, we refine #igne reasoning shows that it is sufficient to hold a single

IV. M ODEL-BASED OPTIMIZATION

models to correct for such interactions. column of B in the cache. Putting these facts together, we see
that with this loop order, there will be no capacity misses if
A. Estimating hardware Parameters the cache can hold all &, a single column oB, and a single

Model-based optimization requires more machine parameel?ment ofC. This leads to Inequality (5).

ters than the ATLAS approach because there is no search. The
hardware parameters required by our model are as follows.

e C1,B;: the capacity and the line size of the L1 data 1) Correcting for non-unit line sizetn reality, caches have

N3+ Np+1<Cy (5)

cache. non-unit line size. Assume that the line size 5. If the

« Cr: The capacity of the L1 instruction cache. three tiles are stored in column major order, bBtAndC are

o L,: hardware latency of the floating-point multiply in-walked by columns and is in cache for the entire duration
struction of the mini-MMM. This leads to the refined constraint shown

e |ALUpp|: number of floating-point functional units in Inequality (6).

o Ng: the number of floating-point registers. NZ Np 4

o FMA: the availability of a fused multiply-add instruc- {31-‘ + "Bl-‘ +1< B, (6)
tion.

Empirical optimizers use the values of machine parameter:) Correctmg for LRU replacement pollgyNt_a can further
only to bound the search space, so approximate values relax the restrictions of our cache organization to allow for
these parameters are adequate. In contrast, analytical mob‘g St Recentl}ll_ Ujed (L_RU) Leplafc;ement f|r|1_th(laJad 0{ optimal
require accurate values for these parameters. Therefore, rgilacement. To determine the effects o replacement

have developed a tool called X-Ray [44], which accurate%‘ the optimal tile sizeVg, we must examine the hlstory Of .
measures these values. emory accesses performed by the loop nest. This analysis is

in the spirit of Mattson et.al. [30], who introduced the notions
o of stack replacement and stack distance.
B. EstimatingNp We start with the innermost loop of the mini-MMM loop
We present our model for estimatingz using a sequence nest. A single iteratior{j, i, k) of this loop touches elements
of refinements for increasingly complex cache organizations. Air:Bpo:Cor:
We start with the mini-MMM code in Figure 5, and then adjust iy Bk g
the model to take register tiling into account. where the most recently accessed element is written rightmost
The goal is to find the value aWg that optimizes the use in this sequence.
of the L1 data cache. First, we consider a simple cache ofExtending this analysis to the middle loop, we see that the
capacityCy, which is fully-associative with optimal replace-sequence of memory access for a given value of the outer loop
ment policy and unit line-size. There are no conflict missemdices (j,i) is the following (as before, the most recently
and spatial locality is not important. accessed element is rightmost):

be replaced by considerations of horizontal panels, vertical
panels, and register tiles instead. Taking this into account, we
get Inequality (8).

Note that the locatiorC;; is touched repeatedly, so the
corresponding history of memory accesses from least recently [N%] 43 [NB X NUW n [Mﬂ

Ai0: Boji Cijs Ains Biy; Cijs oo Ai N —15 B —1,55 Cijs

«Ny< (g

accessed to most recently accessed is the following: B B B, B
3) Correcting to avoid micro-MMM clean-up codeNlote
Aio; Boji Ai1; Bujs oo Ai g —13 Bg 1,53 Cijs that estimatingVg using Inequality (7), it is possible to get a

Extending this to a single iterationof the outermost loop, Value for N which is not an exact multiple af/y; and Ny

we see that the sequence of memory accesses is the followlflS réauires the generation of clean-up code for fractional
(in left-to-right, top-to-bottom order): register tiles at the boundaries of mini-MMM tiles. This com-

plicates code generation, and generally lowers performance.
We avoid these complications by trimming the valueof
Aoo; Boj; o AoNg-13 B Cojs determined from Inequality (7) so that it becomes a multiple
Aio; Bojs o ALNg-13BNg-1j Cujs of My and Ny;. The ATLAS Code Generator requir@és to
: be an even integer, so we enforce this constraint as well.
If N3 is the tile size obtained by using Inequality (7), we

Np
Note that the column oB is reusedNy times, and thus the SetNp to the value| 7z Prr 5y | % Lem (My, Ny, 2).

corresponding history of memory accesses from least recent h}\lottla this ﬁuwesagr\}at rt]he vr;lue D’;B tbe d'eteémln::‘jd aft%r q
accessed to most recently accessed is € values ofily and.Ny have been determined as describe

ANp-1,0;Boj; - Ang—1,N5-1;Bng—1; Cnp—1;;

below.
Aoo; Ao,Np-1; Coy; 4) Other cache organizationsif the cache organization
Aio; A1 Np-1; Cuj; is not fully-associative, conflict misses must be taken into

account. Although there is some work in the literature on

modeling conflict misses [10, 12], these models are not com-

putationally intractable. Therefore, we do not model conflict
We do not want to evict the oldest element of this historisses, although there are some general remarks we can make.

(Ago) because, as we discussed befdrés completely reused If A, B, and C are copied to3N7 contiguous storage

in all iterations of the outermost loop. Therefore we need tocations, Inequality (4) can also be viewed as determining the

chooseNg is such a way that this whole history fits in thdargest value ofVz for which there are no capacity or conflict

cache. misses during the execution of the mini-MMM any cache
Furthermore, after thg'" iteration of the outermost loop organization. Although ATLAS usually copies tiles, the code

is complete, thej + 15 iteration will bring in thej + 15° in Figure 3 shows that the three copied tiles are not necessarily

column of B, which participates in an inner product with alladjacent in memory. However, if the set-associativity of the L1

the rows ofA. Because of LRU, this new column will not bedata cache is at least 3, there will be no conflict misses.

able to “optimally” replace the olg'" column ofB, since the Inequality (5) determines the largesi; for which there are

old column of B has been used quite recently. For the sanm® capacity misses during the execution of the mini-MMM,

reason the new element @f namelyC, ;11, will not be able although there may be conflict misses if the cache is direct-

to optimally replace the ol€,;. To account for this, we need mapped or set-associative. Notice that these conflict misses

extra storage for an extra column Bfand an extra elementarise even if data from all three matrix tiles is copied into

of C. contiguous memory, because the amount of the data touched
Putting this all together, we see that if the cache is fullypy the program is more than the capacity of the cache, and

associative with capacity’;, line size B; and has an LRU some elements will map to the same cache set.

replacement policy, we need to cache alkoftwo columns of

B and a column plus an element ©f This result is expressedC. EstimatingMy and Ny

ANp-1,0;Boj; - Ang—1,N5-1;Bng—-1; Cnp—1j;

formally in Inequality (7). One can look at the register file as a software-controlled,
N2 C fully-associative cache with unit line size and capacity equal
[BB] +3 [BBW +1< B—l (7) tothe number of available registeh&;. Therefore we can use
1 1 1

a variant of Inequality (5), to estimate the optimal register file
Finally, to model the mini-MMM code of Figure 3, whichtile size value.

includes register tiling, we need to take into account inter- The ATLAS Code Generator uses the KlJ loop order to tile

actions between the register file and the L1 cache. Thus fan the register file, and thus we need to cache the complete

we implicitly assumed that the computation works directiW/y; x Ny tile of C, an1 x Ny row of B and a single element

on the scalar elements of the tiles. As Figure 3 shows, th& A. Therefore the analog of Inequality (5) for registers is

mini-MMM loop nest actually works on register tiles. Welnequality (9), shown below.

refine Inequality (7) by recognizing that considerations of

rows, columns, and elements Af B, andC respectively must My x Niy + Ny +1 < Np (9)

Because the register file is software controlled, the ATLAS
Code Generator is free to allocate registers differently than L, = [LX x |[ALUpp| + 1} (13)
Inequality (9) prescribes. In fact, as discussed in Section II, ‘ 2

it allocates to registers &fy; x 1 column of A, rather than a Of the machines in our study, only the Intel Pentium
single element oA. Furthermore, it needs, registers to store machines have floating-point units that are not fully pipelined;
temporary values of multiplication operations to schedule fg§ particular, multiplications can be issued only once every
optimal use of the floating point pipelines. Taking into account cycles. Nevertheless, this does not introduce any error
these details, we refine Inequality (9) to obtain Inequality (10h our model because ATLAS does not schedule back-to-
My x Ny + Ny + My + L. < Ng (10) back multiply instru_ctions, but intermixes them with additions.
Therefore, Inequality (11) holds.

Npg is a hardware parameter, which is measured by the
micro-benchmarks. The value of the optimization parametgr
L, is estimated as discussed in Section IV-E. Therefore the
only unknowns in Inequality (10) aré/y and Ny. We Our experience shows that performance is insensitive to the
estimate their values using the following procedure. values of Fr, I, and N optimization parameters. Therefore
we setFr = 1(true), Ir =2 and Np = 2.

FMA is a hardware parameter, independent of the specific
application. If our micro-benchmarks determine that the archi-
tecture supports a fused multiply-add instruction, we set this
parameter appropriately.

o Finally, we setNCNp = Np. That is, we use the same
D. EstimatingKy tile size for the non-copying version of mini-MMM as we

Although Ky is structurally similar toMy and Ny, it is do for the copying version. In our experiments, ATLAS
obviously not limited by the size of the register file. Thereforalways decided to use the copying version of mini-M&M
the only practical limit forKy is imposed by the size of theso the value of this parameter was moot. A careful model
instruction cache. To avoid micro-MMM clean-up code, wéor NCNp is difficult because it is hard to model conflict
trim Ky so thatNpg is a multiple of K;. Note that if Ky = misses analytically. There is some work on this in the compiler
Np it is left unchanged by this update. literature but most of the models are based on counting

Therefore our model for estimatingy; is to unroll the integer points within certain parameterized polyhedra and
loop as far as possible within the size constraints of ttappear to be intractable [10, 12]. Fraguela et. al. have proposed
L1 instruction cache, while ensuring th&f;; divides Ng. another approach to modeling conflict misses when the sizes
On most platforms, we found that the loop can be unrollesf matrices are known [16]. In some compilers, this problem

Estimating other parameters

o Let My = Ny = u. Solve Inequality (10) for.

e Let My = max (u,1). Solve Inequality (10) forVy.
e Let Ny = max (JVU7 1)

o Let <MU7 NU> = (max (MU, NU) ,min (MU, NU)>

completely Ky = Np). is dealt with heuristically by using theffectivecache capacity,
defined to be a fraction (such §$of the actual cache capacity,
E. EstimatingL, when computing the optimal tile size. In our context, we

. S could setNC Np to the value determined from Inequality (7)
L, is the optimization parameter that represents the skew O .
.with C; replaced with=L. We recommend this approach
factor the ATLAS Code Generator uses when schedulin . 3 S
L " : ould it become necessary to use a smaller tile size on some
dependent multiplication and addition operations for the CP .
N architectures.
pipeline.
Studying the description of the scheduling in Section I, ' _
we see that the schedule effectively executesndependent G. Discussion
multiplications andZ, — 1 independent additions between a We have described a fairly elaborate sequence of models
multiplication mul; and the corresponding additiomld;. The for estimating the optimal value dfs. In practice, the value
hope is that thesgx L, —1 independent instructions will hide found by using Inequality (6), a relatively simple model, is
the latency of the multiplication. If the floating-point units arelose to the value found by using more elaborate models such
fully pipelined and the latency of multiplication 5, we get as Inequalities (7) and (8).
the following inequality, which can be solved to obtain a value

for L. V. EXPERIMENTAL RESULTS

9% L,—1>1L, (11) Models are to be.useq, not believed. '
H. Theil ‘Principles of Econometrics’
On some machines, there are multiple floating-point units.
If |JALUpp| is the number of floating-point ALUs, Inequal-
ity (11) gets refined as follows.

1
2xLe—1 (12)

|ALUpp| =" . o - .
. . . . 2Using the non-copy version is mainly beneficial when the matrices
Solving Inequality (12) forL,, we obtain Inequality (13). involved in the computation are either very small or are long and skinny [37].

In this section, we present the results of running ATLAS
CGw/s and ATLAS Model on ten common platforms. For all
experiments we used the latest stable version of ATLAS, which
as of this writing is 3.6.0. Where appropriate, we also present

10

numbers for ATLAS Unleashed and vendor supported, native The input to the FORTRAN compiler is the standard

BLAS. triply-nested loop shown in Figure 2.
We did our experiments on the following platforms. For vendor supported, native BLAS (labeled “BLAS”
« RISC, Out-of-order on all figures) we used to following libraries and
— DEC Alpha 21264 corresponding versions, which were current at the
— IBM Power 3 time of our experiments:
— IBM Power 4 x DEC Alpha: CXML 5.2
— SGI R12K * |BM Power 3/4: ESSL 3.3
« RISC In-order * SGlI R1|2K: SCSL 6.5 ;
. x SUN UltraSPARC llli: Sun One Studio 8
— Sun UltraSPARC i « Intel Itanium 2, Pentium I11/4: MKL 6.1

— Intel Itanium?2

x AMD Opteron, Athlon: ACML 2.0
o CISC, Out-of-order

« Sensitivity Analysisthis describes the relative change

— AMD Opteron 240 of performance as we change one of the optimization
— AMD Athlon MP parameters, keeping all other parameters fixed to the
— Intel Pentium Il values found by ATLAS CGw/S. Sensitivity analysis
— Intel Pentium 4 explains how variations in the values of optimization
For each platform, we present the following results. parameters influence the performance of the generated
o Times: mini-MMM kernel.
— X-Ray time taken by X-Ray to determine hardware — Np: change in mini-MMM performance when the
parameters. value of N is changed
— ATLAS Micro-benchmarksime taken by the micro- — My, Ny: change in mini-MMM performance when
benchmarks in ATLAS to determine hardware pa- values of My and Ny are changed. Because optimal
rameters. values of My and Ny depend on the same hardware
— ATLAS Optimization Parameter Seardime taken resource NVr), we vary them together.
by global search in ATLAS for determining opti- — Ky: change in min-MMM performance when value
mization parameter values. of Ky is changed.

We do not report the actual installation time of any of the ~ — Ls: change in mini-MMM performance wheh; is

versions of ATLAS because most of this time is spent in changed.

optimizing other BLAS kernels, generating library code, ~ — £ {r and Np: we do not show sensitivity graphs
building object modules, etc. for these parameters because performance is rela-

We do not discuss the timing results in detail as they are tively insensitive to their values.

not particularly surprising. X-Ray is faster than ATLAS
in measuring hardware parameters on nine out of the tdn DEC Alpha 21264

platforms, and has comparable timing (10% slower) on 1) mini-MMM: On this machine the model-determined
one (IBM Power 3). Moreover, while ATLAS CGW/S optimization parameters provided performance of about 100
spends considerable amount of time, ranging between= OPS (7%) slower than the ones determined by search.
minutes on the DEC Alpha to more than 8 hours on thene reason of the difference is the suboptimal selection of the
Intel Itanium 2, to find optimal values for optimization parameter (84 for Atlas Model vs. 72 for ATLAS CGw/S),
parameters, the model-based approach takes no meagircan be seen in th¥z sensitivity graph of Figure 12(g).
able time. 2) MMM Performance: Figure 12(d) shows the MMM
« Performance: performance.

— Optimization parameter valuesalues determined ATLAS Unleashed produces the fastest BLAS implemen-
by ATLAS CGw/S and ATLAS Model. Where ap-tation because it uses highly-optimized, hand-tuned BLAS
propriate, we also report these values for ATLA%ernels written by Goto. A newer version of these kernels is
Unleashed. described in [25]. The native BLAS library is only marginally

— mini-MMM performance performance of mini- slower.

MMM code produced by ATLAS CGw/S, ATLAS Although the gap in performance of the mini-MMM codes
Model and ATLAS Unleashed. produced by ATLAS CGw/S and ATLAS Model is 100

— MMM performancefor matrices sized 00 x 100 to MFLOPS, the gap in performance of complete MMM com-
5000 x 5000. We report performance of completeputations is only about 50 MFLOPS (4%) for large matrices.
MMM computations using (i) vendor supported, naFinally, we note that the GNU FORTRAN compiler is unable
tive BLAS, and the code produced by (ii) ATLASto deliver acceptable performance. We did not have access to
CGw/S, (iii) ATLAS Model, (iv) ATLAS Unleashed, the Compaq FORTRAN compiler, so we did not evaluate it.
and (v) the native Fortran compiler. On each plat- 3) Sensitivity AnalysisFigure 12(e) shows the sensitivity
form, the code produced by ATLAS is compiled withof performance to the values dffy; and Ny. The optimal
the best C compiler we could find on that platformvalue is (4, 4), closely followed by(3,6), and (6, 3). These

11

match our expectations that optimal unroll factors are as closealed-up version of this graph in the region of the optimal

to square as possible, while dividing the tile siXg; = 72 Np value.

without reminder. Figure 13(e) shows the sensitivity of performance to the
Figure 12(f) shows the sensitivity of performance to thealues ofMy and Ny;.

value of Np. Figure 12(g) shows a scaled-up version of this Figure 13(h) shows the sensitivity of performance to the

graph in the region of the optimaVp value. The optimal value of Ki;. On this machine, the entire mini-MMM loop

value for N is 88. ATLAS does not find this point becauseyody can fit into the L1 instruction cache for valuesif up

it does not explore tile sizes greater than 80, as explainedtinNz. Performance is relatively insensitive i6; as long as

Section IlI, but it chooses a tile size of 72, which is close tthe value of this parameter is sufficiently large > 5). We

optimal. If we use Inequality (8) to determiiég analytically, do not understand the sudden drop in performandg;at= 3.

we obtain Np = 84. Note that using the simpler model of Figure 13(i) shows the sensitivity of performance to the

Inequality (6), we obtainVz = 90, which appears to be almostyalue of L,. The Power 3 platform has a fused multiply-add

as good as the value determined by the more complex modgktruction, which the ATLAS micro-benchmarks and X-ray
The N sensitivity graph of Figure 12(g) has a saw-tooth aind, and the Code Generator exploits, so performance does

periodicity 4, with notable peaks occurring with a periodicity,ot depend on the value df..

of 8. The saw-tooth of periodicity 4 arises from the interaction

between cache tiling and register tiling - the register tile is

(4,4), so wheneveiN g is divisible by 4, there is no clean-upC. IBM Power 4

code for fractional register tiles in the mini-MMM code, and 1) mini-MMM: On this machine, mini-MMM code pro-

performance is good. We do not yet understand why there are . 0
notable peaks in the saw-tooth with a periodicity of 8. %ruced by ATLAS Model is about 70 MFLOPS (2%) slower

Figure 12(h) shows the sensitivity of performance to igan mini-MMM code produced by ATLAS CGWI/S. Fig-

value of K. On this machine the entire mini-MMM loop ure 14(9) ShOWS.that One_ reason for this difference is a slightly
o . : sub-optimal choice ofVg; fixing the values of all parameter
body can fit into the L1 instruction cache for values I&f; -
. . . . other thanV g to the ones chosen by ATLAS CGw/S and using
up to Np. Performance is relatively insensitive 6, as long

as the value of this parameter is sufficiently largé,(> 7). the model-predicted value of 56 fo¥g results in mini-MMM

: . L code that performs slightly worse than the mini-MMM code
Figure 12(i) shows the sensitivity of performance to theroduced by ATLAS CGWIS.

value of L,. The graph is convex upwards, with a peak at P .
2) MMM Performance:Figure 14(d) shows MMM perfor-

The multiplier on this machine has a latency of 4 cycles, so i
the model forL, in Section IV, computes., — 5, which is mance. For large matrices, the hand-tuned BLAS perform

- ; ; best, although by a small margin. The code produced
close to optimal. The inverted-U shape of this graph follovx}"g1e
our expectations. For very small values 6f, dependent by ATLAS Model, ATLAS CGW/S and ATLAS Unleashed

multiplications and additions are not well separated and C%g_n;)rm almost |_(|1Ient|cac;Iy. %n tlh's. mlachlnz the lnatflve IBN:l
pipeline utilization is low. AsL; grows, the problem gradually ortran compiler produced relatively good resuits for sma

disappears, until the performance peak is reached when the Rfrices. o o o
latency of the multiplication is hidden. Increasidg further ~ 3) Sensitivity AnalysisFigure 14(e) shows the sensitivity
does not improve performance as there is no more latencyXoPerformance to changes in the values\é; and Ny. The
hide. On the contrary, more temporary registers are needed®@ameter valuegi, 4) perform best, and these are the values

save multiplication results, which causes more register spi§ed by both ATLAS CGw/S and ATLAS Model.

value of Ng. Figure 14(g) shows a scaled-up version of this
graph in the neighborhood of th&z value determined by
B. IBM Power 3 ATLAS CGW/S. Figure 14(f) shows that on this machinés
1) mini-MMM: On this machine, mini-MMM code pro- values between 150 and 350 give the best performance of
duced by ATLAS Model is about 40 MFLOPS (3%) sloweroughly 3.5 GFLOPS. Using Inequality (4) for the L2 cache
than mini-MMM code produced by ATLAS CGw/S. Fig-(capacity of 1.5 MB) givesNg= 254, while Inequality (8)
ure 13(g) shows that one reason for this difference is the sigives Ng= 436, showing that on this machine, it is better to
optimal choice ofNp; fixing the values of all parameter othettile for the L2 cache rather than the L1 cache.
than N to the ones chosen by ATLAS CGw/S and using the Figure 14(h) shows the sensitivity of performance to the
model-predicted value of 84 folNg results in mini-MMM value of K. The L1 instruction cache on this machine is
code that performs about 100 MFLOPS worse than the mim&rge enough that we can sk, to Ng. As on the Power 3,
MMM code produced by ATLAS CGw/S. unrolling by 3 gives poor performance for reasons we do not
2) MMM Performance:For multiplying large matrices, the understand.
handwritten BLAS as well as the codes produced by ATLAS Figure 14(i) shows the sensitivity of performance to the
CGw/S, ATLAS Model, and ATLAS Unleashed perform alvalue of L,. The Power 4 platform has a fused multiply-add
most identically. instruction, which the ATLAS micro-benchmarks find and the
3) Sensitivity AnalysisFigure 13(f) shows the sensitivity Code Generator exploits, so performance does not depend on
of performance to the value aVg. Figure 13(g) shows a the value ofL,.

12

D. SGI R12K 2) MMM Performance: Figure 16(d) shows the MMM
1) mini-MMM: On this machine, mini-MMM code pro- Performance. On this machine, the hand-coded BLAS and AT-

duced by ATLAS Model is about 20 MFLOPS (4%) slowet-AS Unleashed performed roughly 50% better than the code
than mini-MMM code produced by ATLAS CGw/S. TheProduced by ATLAS CGw/S. The reason for this difference is
performance of both codes is similar to that of mini-MMmhat the mini-MMM code in ATLAS Unleashed (and perhaps

code produced by ATLAS Unleashed. the hand-coded BLAS) pre-fetches portions of theand B

2) MMM Performance: Figure 15(d) shows MMM per- matrices required for the next mini-MMM. This may be related
formance. The hand-coded BLAS perform best by a smifl the Level-3 pre-fetching idea of Gustavson et. al. [3].
margin. On this machine the native compiler (in this case, the3) Sensitivity AnalysisFigure 16(e) shows the sensitivity
SGI MIPSPro) generated relatively good code that was orf§ performance to the values aff; and Ny .

20% lower in performance than the hand-coded BLAS, at leastFigure 16(f) shows the sensitivity of performance to the
for small matrices. value of theNg. Figure 16(g) shows a scaled-up version of
3) Sensitivity AnalysisFigure 15(e) shows the sensitivitythis graph in the region of the optimaVz value. On this
of performance to the values off;y and Ny. This machine machine, as on many other machines, it is better to tile for the
has a relatively large number of registers (32), so there id-2 cache, as can be seen in Figure 16(f). Using Inequality (4)

fairly broad performance plateau in this graph. for the L2 cache (capacity of 1 MB), we obtailig = 208,
Figure 15(f) shows the sensitivity of performance to thehich gives roughly 1380 MFLOPS. Using Inequality (8),
value of theNg. Figure 15(g) shows a scaled-up version ofve obtain Ng = 356, which is close to theNp value in
this graph in the region of the optimalp value. Figure 15(f) Figure 16(f) where the performance drops rapidly.
shows that on this machin&/s values between 300 and 500 Figure 16(h) shows the sensitivity of performance to the
give the best performance of roughly 510 MFLOPS. Usingalue of the Ky;. On this machine, the instruction cache is
Inequality (4) for the L2 cache (capacity of 4MB) givé&g = large enough that full unrollingi(;;=Ng) is possible.
418, while Inequality (8) givesVp = 718, showing that on Figure 16(i) shows the sensitivity of performance to the
this machine, it is better to tile for the L2 cache rather tharalue of theL,. This machine does not have a fused multiply-
the L1 cache. add instruction, so the value of the, parameter affects
Figure 15(h) shows the sensitivity of performance to thgerformance. Both the model and ATLAS CGw/S find good
value of the Ky. On this machine, the instruction cache iwalues for this parameter.
large enough that full unrollingKy=Ng) is possible.
Figure 15(i) shows the sensitivity of performance to th ;
value of theL,. The R12K processor has a fused muItipIy—E' Intel.lt.anlum 2)) .
add instruction, so we would expect performance of the 1) Mini-MMM: On this machine, the mini-MMM code
generated code to be insensitive to the valueLof While Produced by ATLAS Model is about 2.2 GFLOPS (55%)
this is borne out by Figure 15(j), notice that Table 15(gj/ower than mini-MMM code produced by ATLAS CGw/S.
shows that the micro-benchmark used by ATLAS did n his is a rather substantial difference in performance, so it is
discover the fused multiply-add instruction on this machirf@®cessary to examine the sensitivity graphs to understand the
(FMA = 0)! It is worth mentioning that on this platform réasons why ATLAS Model is doing so poorly.
the FMA instruction, while present in the ISA, is not backed Figure 17(g) shows that one reason for this difference
up by a real FMA pipeline in hardware. Instead it allows thi§ that ATLAS Model usedNp = 30, whereas ATLAS
two separate functional units (for multiplication and additiofCW/S usedNp = 80. ATLAS CGw/S usesNp = 80
respectively) to be used sequentially saving one latency cydRgcause it disregards the L1 data cache size (16KB) and
Therefore, in theory, peak performance is achievable evepnsiders directly the L2 cache size (256KB), and therefore
by using separate multiply and add instructions. Although€ expressiomin (80, \@) in Inequality (3) evaluates to
ATLAS Code Generator schedules code using= 3, the SGI 80, the largest possible value dfg in the search space used
MIPSPro compiler is clever enough to discover the separatiey ATLAS.
multiplies and adds, and fuse them. In fact the compiler is While the valueNg = 30 used by ATLAS Model is correct

able to do this even wheh, = 20, which is impressive. with respect to the L1 data cache size, Intel Itanium 2 does
. not allow storing floating point numbers in the L1 data cache,
E. Sun UltraSPARC llli and thus L2 has to be considered instead. Once we incorporate

1) mini-MMM: On this machine, mini-MMM code pro- in X-Ray the ability to measure this specific hardware feature,
duced by ATLAS Model is about 160 MFLOPS (17%8)ster the shortcoming of ATLAS Model will be resolved.
than mini-MMM code produced by ATLAS CGw/S. The main 2) MMM Performance:Figure 17(d) shows MMM perfor-
reason for this is that the micro-benchmarks used by ATLABance. The hand-written BLAS and ATLAS Unleashed give
incorrectly measured the capacity of the L1 data cache asth& best performance. The code produced by ATLAS CGw/S
KB, rather than 64 KB. Therefore ATLAS only searched foruns about 1.5 GFlops slower than the hand-written BLAS,
Np values less thad4. Our micro-benchmarks on the othewhile the code produced by ATLAS Model runs about 3.5
hand correctly measured the capacity of the L1 cache, so tBElops slower.
model estimatedVp = 84, which gave better performance as 3) Sensitivity AnalysisFigure 17(e) shows the sensitivity
can be seen in Figure 16(g). of performance to the values &f;; and Ny;. The Itanium has

13

128 general-purpose registers, so the optimal register tiles &ietion of the computations of thé’ loop (less than 1%
relatively large. There is a broad plateau o8f(,/Ny/) values compared to about 5% faVz = 80).
that give excellent performance.

Figure 17(f) shows the sensitivity of performance to the wmrors
value of the Ng. Figure 17(g) shows a scaled-up version of
this graph in the region of the optimals value. Figure 17(f) 4
shows that on this machine, the best performance is obtained
by tiling for the L3 cache! Indeed, using Inequality (4) for the
L3 cache (capacity of 3 MB), we obtaiVg = 360, which 2000 —+— NB=t0
gives roughly 4.6 GFLOPS. Figure 17(f) shows that this value
is close to optimal. Using Inequality (8), we obtdif; = 610,
which is close to theNg value in Figure 17(f) where the KU
performance starts to drop.

Figure 17(h) shows the sensitivity of performance to the
value of Ky. On the Itanium, unlike on other machines in) _ o
our study, performance is highly sensitive to the value 59 ¢ Intel ftanium 2: Sensitivity of performance 10y
Ky . The main reason is the large register {ile/y;, Ny) =
(18’ 10); after unrolling the micro-gMMl\/?Ioopg wgvge[t]; very Figure 17(i) shows thg sensitivity of performance to 'the
long straight-line code sequence. Furthermore, unrolling }S?IUG_Of the L,. The Itanlqm_ has g_fused multiply-add in-
the k" loop creates numerous copies of this code sequenég.ucuon' so performance is insensitive to the parameter.)
Unfortunately, the L1 instruction cache on this machine has aIn summary, the code produced by ATLAS Model on this
capacity of 32 KB, so it can hold only about 9 copies of th@achme did not perform as well as the code produced by AT-

micro-MMM code sequence. Therefore, performance drops (I#\SL(llGW/ﬁ. H0\;1vever, this E_becaui_e ATIt_r,]ASbMotdeI t'f|8d for
dramatically for values of{;; greater than 9 or 10. the L1 cache, whereas on this machine, the best performance

Since this is the only machine in our study in which e is obtained by tiling for L3 cache. ATLAS CGw/S gets better

parameter mattered, we decided to investigate the Sensiti\ﬁ%formance because the tile size is set to a larger value than

graph more carefully. Figure 6 shows a magnified version value used by ATLAS Model.

Figure 17(h) in the intervak(y; € [0, 15]. We would expect the

Ky sensitivity graph to exhibit the typical inverted-U shapd3- AMD Opteron 240

and it more or less does. However, performanceKer = 7 1) mini-MMM: Table 18(c) shows that on this machine, the

is significantly worse than the performance f§f; = 6, and mini-MMM code generated by ATLAS Model runs roughly

Ky = 8, which appears anomalous. 38% slower than the code generated by ATLAS CGw/S. The
The anomaly arises from clean-up code that is requiredlues of almost all optimization parameters determined by

when Ky does not divideNg evenly (see thet’ loop in the two systems are different, so it is not obvious where the

the tiled code in Figure 3). If we unroll thé’ loop by problem is. To get some insight, it is necessary to look at the

Ky, the number of times the completely unrolled microsensitivity graphs.

MMM code is replicated inside the mini-MMM is naky, Figure 18(f) shows the performance sensitivity graph for

but Ky + Ng% Ky (% is the reminder from integer division). Nz. Both 60 and 88 appear to be reasonable values, so

The first term in the sum is the expected number of repetitiottee problem with ATLAS Model is not in its choice of

inside the unrolled:’ loop, while the second part is the cleanNg. BecauseKy is bound to the value ofVg, the only

up code which takes care of the case wiién does not divide remaining differences are those betwekf;, Ny, L, and

Np exactly. This second piece of code is still part of the mini£’AM A. Table 18(b) shows that ATLAS Model chodé;, = 2,

MMM loop nest, and it has to be stored in the L1 instructio&vy; = 1, FM A = 0, while ATLAS CGw/S chosell;; = 6,

cache during execution to achieve optimal performance. Ny =1, FMA = 1. We verified experimentally that if the
For Np = 80, performance increases initially a&y model had chosedly = 6 and FMA = 1, keeping the

increases because loop overhead is reduced. Vihen= 6, rest of the parameters the same, the mini-MMM performance

there are 8 copies of the unrolled micro-MMM code in thbecomes 2050 MFLOPS, closing the performance gap with

mini-MMM, and this is close to the I-cache limit. WhenATLAS CGw/S.

Ky = 7, there are7 + 80%7 = 10 copies of the micro- The parameters values used by ATLAS CGw/S are puzzling

MMM code, which exceeds the I-cache limit, and performander several reasons. First, the Opteron does not have an FMA

drops substantially. However, whéfy; = 8, there is no clean- instruction, so it is not clear why ATLAS CGw/S chose to set

up code, and there are only 8 copies of the unrolled micré-M A = 1. Second, choosing 6 and 1 for the valuesidf;

MMM code, so performance goes up again. Beyond this poirind Ny violates Inequality (10) since the Opteron has only 8

the code sizes overflows the |-cache and grows larger, amgjisters.

performance degrades gradually. Ultimately, performance isWe address the problem of the register-tile size first. Recall

limited by the rate at which L1 I-cache misses can be servicdtat Inequality (10) stems from the fact that ATLAS uses

For Ng = 360, the trends are similar, but the effect of cleanregisters to multiply ad{;; x 1 vector-tile of matrixA (which

up code is less because the clean-up code performs a smallercall a) with a 1 x Ny vector-tile of matrix B (which

1000 —%*— NB=360

14

we call b), accumulating the result into at/y; x Ny tile larger register tiles and leave instruction scheduling to the

of matrix C (which we call¢). Notice that if Ny = 1, then out-of-order hardware core which can use the extra physical
b is a single scalar that is multiplied by each elementof registers to hold the temporaries

Thereforeno reuse existfor elements ofa. This observation These insights permit us to refine the model described
lets us generate the code in Figure 7, which uses 1 registeriforSection IV as follows: for processors with out-of-order

b (rb), 6 registers fole (rc; ...rcg) and 1 temporary register execution and a small number of logical registers Met= 1,

(rt) to hold elements of. My =Nr—2, FMA=1.
To finish this story, it is interesting to analyze how the
TC1 < €1...TCo + Co ATLAS search engine settled on these parameter values. Note
that on a processor that does not have a fused multiply-add
loop k instruction, FMA = 1 is equivalent toFMA = 0 and
{ L, = 1. The code produced by the ATLAS Code Generator
rh— by is shown schematically in Figure 8. Note that this code uses
6 registers fom@ (ra; ...rag), 1 register forb (rb), 6 registers
rt «— a1 for ¢ (rep...7reg) and 1 temporary register (implicitly by
rt—rt X b the multiply-add statement). However, the back-end compiler
rep < rer +rt (GCCQC) reorganizes this code into the code pattern shown in
Figure 7.
rt «— aso

rt < rt X rb rC] <= C1...7C6 < Cé

rcg <—re2 +rt
loop &
ray < ai
rt < ag rb— by
rt«—rt X rb rcy <+ re1 +rai X rb
rce <— ree + 1t rag <— a2
} ras < as
rcg < rco +1ras X rb
Cl1 < TC1...C < TCg resg «— res +raz X rb
ra4 — Q4
. . ras < as
Fig. 7. (My, Ny) = (6,1) code for x86 CISC
rcy <— rca +rag X rb

Even if there are enough logical registers, this kind of res <=1 +ras Xrb

scheduling may be beneficial if the ISA is 2-address rather than
3-address, because one of the operands is overwritten. This is
true on the Opteron when the 16 SSE vector registers are
used to hold scalar values, which is GCC’s default behavior. ~
Even though Inequality 1 prescrib&sx 3 register tiles, the ~ ¢ = "1+ T 7%
refined model prescribek! x 1 tiles. Experiments show that
this performs better [38]. Fig. 8. ATLAS unroll (M, Nyy) = (6,1) code for x86 CISC
One might expect that this code will not perform well
because there are dependences between most of the instrugpotice that the ATLAS Code Generator itself is not aware
tions that arise from the use of temporary registerin fact, that the code of Figure 7 is optimal. However, settiify/ A =
experiments show that the code in Figure 7 performs wallieven though there is no fused-multiply instruction) produces
because of two architectural features of the Opteron. code that triggers the right instruction reorganization heuristics
1) Out-of-order executiarit is possible to schedule severainside GCC, and performs well on the Opteron. This illustrates
multiplications in successive cycles without waiting fothe well-known point that search does not need to be intelligent
the first one to complete. to do the right thing! Nevertheless, our refined model explains
2) Register renamingthe single temporary registett is the observed performance data, makes intuitive sense, and can
renamed to a different physical register for each pair & easily incorporated into a compiler.
multiply-add instructions. 2) MMM Performance: Figure 18(d) shows the MMM
Performing instruction scheduling as described in Sectionpgerformance. ATLAS Unleashed is once again the fastest
requires additional logical registers for temporaries, which implementation here, as it uses the highly-optimized, hand-
turn limits the sizes of the register tiléd/hen an architecture tuned BLAS kernels, using the SSE2 SIMD instructions, for
provides out-of-order execution and a small number of logicalhich the ATLAS Code Generator does not generate code.
registers, it is better to use the logical registers for allocatinghe native BLAS library is about 200 MFLOPS slower on

rag < ag
rce <— rCg +rag X rb

15

average. ATLAS CGw/S and ATLAS Model perform at theraph in the region of the optimaVs value. Both ATLAS
same level as their corresponding mini-MMM kernels. Model and ATLAS CGw/S choose good values &fz. In

Refining the model as explained above brings ATLA&igure 19(g), the saw-tooth with period 2 arises from the
Model on par with ATLAS CGw/s. To bridge the gap betweenverhead of executing clean-up code when the valu¥ pfis
ATLAS CGw/S and user contributed code, we would neealdd, and therefore not divisible by the value (= 2). As
a different code generator — one that understands SIMD amnl other machines, we do not understand the saw-tooth with
prefetch instructions. GCC exposes these as intrinsic functiqrexiod 4 that has larger spikes in performance.
and we plan to explore this in our future work. Figure 19(h) shows the sensitivity of performance to the

3) Performance Sensitivity AnalysiBigure 18(f) shows the value of Ky;. The L1 I-cache is large enough to permit full
sensitivity of performance to the value of thé; optimization unrolling (K = Ng). However, the sensitivity graph & is
parameter. The first drop in performance is the result of Lanomalous; performance is relatively low for all valuesqf
data cache misses starting to occur. This fact is accuratelper thanky; = Ng. By examining the code produced by the
captured by our model foNg in Inequality (8). Solving the native compiler (GCC), we found that this anomaly arose from
inequality forC' = 8192 (the L1 data cache capacity in doubleinterference between instruction scheduling in ATLAS and
sized floating-point values), we obtalViz = 89. Similarly the instruction scheduling in GCC. Notice that ATLAS CGw/S
second drop in performance in Figure 18(f) can be explainegesF'M A = 0, so it attempts to schedule instructions and
by applying the same model to the 1MB L2 cache. perform software pipelining in the mini-MMM code. Fully

Figure 18(e) shows the performance sensitivity to the valugsrolling thek’ loop (K = Ng) produces straight-line code
of the My and Ny optimization parameters. As discussed iwhich is easier for GCC to schedule.

Section V-G.1, the optimal value, {$, 1). From the graph we To verify this conjecture, we redid th&y sensitivity study

can see that the only plausible values are those With= 1. with FAM A set to 1. Figure 9 shows the results. Setting
Furthermore, performance increases while we gidw from FMA = 1 dissuades the ATLAS Code Generator from
1 to 6, while it suddenly drops foMy = 7. This is easily attempting to schedule code, so GCC has an easier job,
explained by our refined model, a&;; + 2 < Nr would producing aKy sensitivity graph that is in line with what
require 9 registers, while only 8 are available. we would expect.

Figure 18(h) shows the performance sensitivity to the valueNotice that our refined model, described in the context of
of the K, optimization parameter. On this machine the entifde Opteron, does exactly on this. Using this model, mini-
mini-MMM loop body can fit into the L1 instruction cacheMMM performance is 1544 MFLOPS, which is faster than the
for arbitrary Ky values (up toKy = Np). Performance is performance of the mini-MMM produced by ATLAS CGw/S.
relatively insensitive toKy as long as this unroll factor is
sufficiently large Ky > 10). MFLOPS

Figure 18(i) shows the performance sensitivity to the value 10
of the L, optimization parameter. As we mentioned before, sw |7
when FM A = 1, the L, optimization parameter does not in- 12 |
fluence the generated code. Therefore, performance is constango
with respect toL,. 750 —*— FMA=0

500

—%— FMA=1

250

H. AMD Athlon MP

The AMD Athlon implements the x86 instruction set, so we R
would expect the experimental results to be similar to those
on the Opteron.] o
1) mini-MMM: Table 19(c) shows that on this machine, thE'9- ©- AMD Athlon MP: Sensitivity of performance &y
mini-MMM code generated by ATLAS Model runs roughly) .
20% slower than the code generated by ATLAS CGWIS. Figure 19(i) shows the sensitivity of performance to the
Figure 19(f) shows that the choice df; made by the model Value of theLs.
is reasonable, while Figure 19(e) shows that the register-tile
values were not chosen optimally by the model, as on thePentium Il
Opteron. The problem and its solution are similar to those on1) mini-MMM: On this machine, mini-MMM code pro-
the Opteron. duced by ATLAS Model is about 50 MFLOPS (6%) slower
2) MMM Performance:Figure 19(d) shows MMM perfor- than mini-MMM code produced by ATLAS CGw/S. The
mance. ATLAS Unleashed out-performs the other approachgsle produced by ATLAS Unleashed performs roughly 50
by a significant margin. The hand-coded BLAS do almost &8FLOPS better than the code produced by ATLAS CGw/S.

KU

well, followed by ATLAS CGw/S. The difference in performance between the codes produced
3) Sensitivity AnalysisFigure 19(e) shows the sensitivityby ATLAS CGw/S and ATLAS Model arises mostly from the
of performance to the values afl;; and Ny . sub-optimal register tile chosen by the model, as explained in

Figure 19(f) shows the sensitivity of performance to ththe context of the Opteron in Section V-G. Usi(@ 1) as the
value of Ng. Figure 19(g) shows a scaled-up version of thigegister tile raises mini-MMM performance to 916 MFLOPS.

16

2) MMM Performance: Figure 20(d) shows MMM per- do not know why the hand-coded BLAS perform substantially
formance. The hand-coded BLAS perform at roughly 11Q@etter than the code produced by ATLAS Unleashed.
MFLOPS, whereas the codes produced by ATLAS CGw/S The gap in performance between the codes produced by
and ATLAS Unleashed perform roughly at 900 MFLOPSATLAS CGw/S and ATLAS Model disappears if the refined
The code produced by ATLAS Model runs roughly at 85énodel for register tiles is used.

MFLOPS; using the refined model improves performance to a3) Sensitivity AnalysisFigure 21(e) shows the sensitivity
point that is slightly above the performance of code producedlperformance to the values 61;; and Ny;. This figure shows
by ATLAS CGw/S. that the best register tile {$, 1), which produces mini-MMM

3) Sensitivity AnalysisFigure 20(e) shows the sensitivitycode that runs at 1605 MFLOPS. Usif@, 1) as the register
of performance to the values dff;; and Ny. Like all x86 tile is not as good because it reduces performance to 1521
machines, the Pentium Il has a limited number of logicdFLOPS.
registers. Our base-line model pick¢d, 1) for the register Figure 21(f) shows the sensitivity of performance to the
tile, whereas ATLAS CGw/S chogd, 1). If we use the refined value of the Ng. Figure 21(g) shows a scaled-up version
model described in Section V-G, the size of the register tilef this graph in the region of the optimad/s value. Both
becomes(6,1), and mini-MMM performance rises to 916ATLAS Model and ATLAS CGw/S choose good tile sizes for
MFLOPS. the L1 cache. Tiling for the L2 cache gives slightly better

Figure 20(f) shows the sensitivity of performance to thperformance. The L2 cache on this machine has a capacity of
value of Ng. Figure 20(g) shows a scaled-up version of thig56 KB; using Inequalities (4) and (8), we g¥fz = 105 and
graph in the region of the optima&¥z value. The broad peak N = 180, which agree well with the data.
in Figure 20(f) arises from the influence of the L2 cache Figure 21(h) shows the sensitivity of performance to the
(capacity of 512 KB). Using Inequality (4) for the L2 cacheyalue of Ky;. On this machine, the L1 instruction cache is
we obtain Nz = 104, which is the Nz values where the large enough to permit full unrollingi(y = Np).
peak starts, while Inequality (8) givedz = 164, which Figure 21(i) shows the sensitivity of performance to the
corresponds to théVz value where the peak ends. The L¥alue of L.
cache on the Pentium Il is 8-way set-associative, so the drop
in performance betweelVp = 104 and Np = 164 is small. g piscussion

Figure 20(h) shows the sensitivity of performance to the

. : . . . The experimental results in this section can be summarized
value of theK ;. On this machine, the L1 instruction cache is . . .

. . as follows. Figure 10 describes the analytical models used to
large enough to permit full unrolling(y = Np).

Figure 20(i) shows the sensitivity of performance to thréompute values for- the optimization parameters. Th|_s f'gufe
. .) . —adlso shows the refined model used to compute register tile

value of theL,. There is no fused multiply-add mstrucuon,values for the x86 architectures

so performance is sensitive to the valudgf but both ATLAS)

' . Figure 11 shows the relative performance of the mini-MMM
Model and ATLAS CGW/S' find reasonable' valu'es for 'thIS des produced by ATLAS Model and by ATLAS Unleashed,
parameter. If we use the refined model described in Section

G, we setFMA — 1, and the value of thel, parameter using the performance of the codes_propiuged by ATLAS
: CGW/S as the base line (the 100% line in this figure represents
becomes irrelevant.

the performance of ATLAS CGw/S on all machines). All the
performance numbers for ATLAS Model in this graph are
J. Pentium 4 obtained by tiling for the L1 cache.
1) mini-MMM: On this machine, mini-MMM code pro- We see that on all machines other than the Itanium, the

duced by ATLAS Model is about 600 MFLOPS (40%) sIoweFOdeS produced by using the analytical models perform almost
than mini-MMM code produced by ATLAS CGw/S. This isas well or slightly better than the codes produced using global

mostly because of the sub-optimal register tile used by ATLAZ@rch. On the ltanium, we saw that it is best to tile for the L3
Model; changing it tq(6, 1) improves the performance of mini- cache, rather than the L1 cache. By using the L2 cache instead,
MMM code produced by ATLAS Model to 1445 MFLOPS ATLAS CGw/S was able to obtain some of the benefits of

which is only 50 MFLOPS (3%) less than the performance g}ing. for the L3 cache. If we use this value in the model
the mini-MMM code produced by ATLAS CGW/S. of Figure 10, we produce mini-MMM code of comparable

The mini-MMM produced by ATLAS Unleashed is roughlyperformance. Using the actual capacity of the L3 cache gives

twice as fast as the mini-MMM produced by ATLAS ModelFVEN better per_formance. iced th | platf
because this code uses the SSE2 vector extensions to the xdB Ol €xperiments we noticed t a_t_on several platforms,
instruction set. we get better MMM performance by tiling for a lower cache

2) MMM Performance: Figure 21(d) shows the MMM level, such as L2 or L3, rather than L1. This may result in a
performance. The hand-coded BLAS routines for this machi}?erge yalue forN,?, which may *.‘”T‘ overall performance 'f. the
perform best, followed by the code produced by ATLAéeSUItmg MMM library routine is invoked from other routines
Unleashed. B,oth the hand-coded BLAS and the code producsé@h as LU and Cholesky factorizations [22]. It is unclear to
by ATLAS Unleashed use the SSE2 vector extensions that this is an issue in the context of compilers, where codes
this accounts for most of the gap between these codes a'nd ik LU and Cholesky would be optimized directly, rather than
codes produced by ATLAS Model and ATLAS CGw/s. wdUllt upon MMM.

Estimating F'M A:
Use the machine parameterM A
Estimating Ls:

"Lx X |ALUpp| + 1"
L= |2

Estimating My and Ny:
My X Ny + Ny + My + Ls < Np

1) MU, NU — Uu.

2) Solve constraint foi.

3) My < max (u,1).

4) Solve constraint forVy;.

5) Ny <« max (Ny,1).

6) If My < Ny then swapMy and Ny

7) Refined Model: If Ny =1 then
- MU «— NR -2
— Ny «—1
- FMA+1

Estimating Np:

N2 N N, M,
NB +3[MW+[7H] « Ny < &L
B By By By

Trim Npg, to make it a multiple ofMy, Ny, and 2.
Estimating Ky :

ChooseK; as the maximum value for which mini-MMM fits in
the L1 instruction cache. Trink;; to make it divideNp evenly.
Estimating Fr, I, and Np:

Fp=0,Ip=2Np=2

Fig. 10. Summary of Model

Alpha21264

| — o

Power 4

R12K

UltraSparclIli

Itanium?2

Opteron 240

AthlonMP

Pentium 11

Pentium4

0% 50% ATLAS 150% 200%
CGw/S

100%

17

VI. CONCLUSIONS ANDFUTURE WORK

...the end of all our exploring
Will be to arrive where we started
And know the place for the first time.

T.S.Eliot, Four Quartets

The experimental results in this paper demonstrate that it is
possible to use analytical models to determine near-optimal
values for the optimization parameters needed in the ATLAS
system to produce high-quality BLAS codes. The models in
this paper were designed to be compatible with the ATLAS
Code Generator; for example, since ATLAS uses square cache
tiles, we had only one parametéfg, whereas a different
Code Generator that uses general rectangular tiles may require
three cache tile parameters. Van de Geijn and co-workers have
considered such models in their work on optimizing matrix
multiplication code for multi-level memory hierarchies [20,
21, 24].

Our results show that using models to determine values
for the optimization parameters is much faster than using
empirical search. However, this does not imply that search has
no role to play in the generation of high-performance code.
Systems like FFTW and SPIRAL use search not to choose
optimal values for transformation parameters, but to choose an
optimal algorithm from a whole suite of algorithms. We do not
know if model-driven optimization is effective in this context.
Even in the relatively simple context of the BLAS, there are
aspects of program behavior that may not be worth modeling
in practice even if they can be modeled in principle. For
example, the analytical models féfg described in Section IV
ignore conflict misses. Although there is some work in the
compiler literature on modeling conflict misses [10, 12], these
models appear to be computationally intractable. Fortunately,
the effect of conflict misses on performance can be reduced by
appropriate copying. If necessary, the valueNg$ found by
the model can be refined by local search in the neighborhood
of the N value predicted by the model. This combination of
modeling and local search may be the most tractable approach
for optimizing large programs for complex high-performance
architectures.

At the end of this paper, we are left with the same question
that we asked at its beginning: how do we improve the state of
the art of compilers? Conventional wisdom holds that current
compilers are unable to produce high-quality code because the
analytical models they use to estimate optimization parameter
values are overly simplistic compared to the complexity of
modern high-performance architectures. The results in this
paper contradict this conventional wisdom, and suggest that
there is no intrinsic reason why compilers cannot use analytical
models to generate excellent code, at least for the BLAS.

However, it is important not to underestimate the challenge
in improving general-purpose compilers to bridge the current
performance gap with library generators. Although the tech-
niques used by ATLAS, such as loop tiling, unrolling, and
instruction scheduling, have been in the compiler literature for

Fig. 11. Summary of mini-MMM Performance. Performance numbers afany years, It Is not easy to Iincorporate them into general-
normalized to that of ATLAS CGw/S, which is presented as 100%

purpose compilers. For example, transformations such as tiling
are not always legal, so a general-purpose compiler must

perform dependence analysis before transforming a programns]
In contrast, the implementor of a library generator focuses on
one application and knows the precise structure of the co[qg
to be generated for that application, so he is not encumbere&
by the baggage required to support restructuring of general

codes. At the very least, improving the state of the art &

compilation technology will require an open compiler infras-
tructure which permits researchers to experiment easily witi]
different transformations and to vary the parameters of those
transformations. This has been a long-standing problem, and
no adequate infrastructure exists in spite of many attemptsj22]

An equally important conclusion of this study is that ther&3l
is still a significant gap in performance between the co
generated by ATLAS CGw/S and the vendor BLAS routines.
Although we understand some of the reasons for this gap, (B8
problem of automating library generation remains open. The
high cost of library and application tuning makes this one J)%e’]
the most important questions we face today.

(1]
(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

(18]

[16]

[17]

27
REFERENCES (271
ATLAS homepage. http://math-atlas.sourceforge.net/.

The PHIPAC home page.http://www.icsi.berkeley.edu/ [28]

“bilmes/phipac

R. C. Agarwal, F. G. Gustavson, and M. Zubair. Improving perfor-
mance of linear algebra algorithms for dense matrices using algorithni29]
prefetch. IBM Journal of Research and DevelopmeB8(3):265-275,
1994. [30]
R. Allan and K. KennedyOptimizing Compilers for Modern Architec-
tures Morgan Kaufmann Publishers, 2002.

Uptal Banerjee. Unimodular transformations of double loops. [{81]
Languages and compilers for parallel computipgges 192—219, 1990.

Jeff Bilmes, Krste Asanot Chee whye Chin, and Jim Demmel. Op-
timizing matrix multiply using PHIPAC: a Portable, High-Performance[32]
ANSI C coding methodology. IfProceedings of International Confer-
ence on Supercomputinyienna, Austria, July 1997.

Pierre Boulet, Alain Darte, Tanguy Risset, and Yves Robert. (PerI)33]
ultimate tiling? ININTEGRATION, the VLSI Journalolume 17, pages
33-51. 1994.

D. Callahan, J. Cocke, and K. Kennedy. Estimating interlock and
improving balance for pipelined architecture¥ournal of Parallel and
Distributed Computing5(4):334-358, 1988.

David Callahan, Steve Carr, and Ken Kennedy. Improving regist?:g4]
allocation for subscripted variables. 8IGPLAN Conference on Pro-
gramming Language Design and Implementatipages 53-65, 1990.
Siddhartha Chatterjee, Erin Parker, Philip J. Hanlon, and Alvin R.
Lebeck. Exact analysis of the cache behavior of nested loops. ggg
Proceedings of the ACM SIGPLAN 2001 conference on Programming
language design and implementatigages 286—297. ACM Press, 2001. 36]
Michael Cierniak and Wei Li. Unifying data and control transformationé
for distributed shared memory machines.SIGPLAN 1995 conference 37]
on Programming Languages Design and Implementatiome 1995.
Phillipe Claus. Counting solutions to linear and nonlinear constrain@g]
through Erhart polynomials. IFACM International Conference on
SupercomputingACM, May 1996. (39]
Stephanie Coleman and Kathryn S. McKinley. Tile size selection
using cache organization and data layout.SIGPLAN Conference on [4
Programming Language Design and Implementatipages 279-290,
1995.

Paul Feautrier. Some efficient solutions to the affine scheduling problem
- part 1: one dimensional time.International Journal of Parallel [41]
Programming October 1992.

Martin Fowler. Yet another optimization articléEEE Software pages
20-21, May/June 2002.

B. B. Fraguela, R. Doallo, and E. Zapata. Automatic analytical modeling
for the estimation of cache misses. Rarallel Architectures and [42]
Compilation Techniques (PACTpages 221-231, 1999.

Matteo Frigo and Steven G. Johnson. FFTW: An adaptive software
architecture for the FFT. IRroc. IEEE Intl. Conf. on Acoustics, Speech[43]
and Signal Processing/olume 3, pages 1381-1384, Seattle, WA, May
1998.

] Kazushige Goto and Robert van de Geijn.

0] R. Clint Whaley and Antoine Petitet.

18

Matteo Frigo and Steven G. Johnson. The design and implementation
of FFTW3. Proceedings of the IEEE93(2), 2005. special issue on
"Program Generation, Optimization, and Adaptation”.

Stefan Goedecker and Adolfy HoisiePerformance Optimization of
Numerically Intensive CodesSociety for Industrial & Applied Mathe-
matics, 2001.

On reducing tlb misses
in matrix multiplication. Technical Report TR-2002-55, University of
Texas at Austin, Department of Computer Sciences, November 2002.
John A. Gunnels, Greg M. Henry, and Robert A. van de Geijn. A family
of high-performance matrix algorithms. Rroceedings of International
Conference of Computational Science - ICCS 2001: San Francisco, CA,
USA, May 28-30, 2001 Proceedings, Pamages 51-60. Springer, 2001.
Fred Gustavson. Personal communication.

J. L. Hennessy and D. A. Pattersd@omputer Architecture: A Quanti-
tative Approach Morgan Kaufmann Publishers, 1990.

G. Henry. Flexible high-performance matrix multiply via self-modifying
runtime code, 2001.

High-performance blas by kazushige goto. http://www.cs.
utexas.edu/users/flame/goto/ .

Jeremy Johnson, Robert W. Johnson, David A. Padua, and Jianxin
Xiong. Searching for the best FFT formulas with the SPL compiler. In
Proc. of the 13th International Workshop on Languages and Compilers
for Parallel Computing pages 109-124, 2000.

Induprakas Kodukula, Nawaaz Ahmed, and Keshav Pingali. Data-
centric multi-level blocking. InProgramming Languages, Design and
ImplementationACM SIGPLAN, June 1997.

Induprakas Kodukula and Keshav Pingali. Imperfectly nested loop
transformations for memory hierarchy management. Intternational
Conference on Supercomputjrighodes, Greece, June 1999.

W. Li and K. Pingali. Access Normalization: Loop restructuring for
NUMA compilers. ACM Transactions on Computer Systerh393.

R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger. Evaluation
techniques for storage hierarchieBM Systems Journa(2):78-92,
1970.

A. C. McKellar and E. G. Coffman, Jr. Organizing matrices and matrix
operations for paged memory syster@mmun. ACM12(3):153-165,
1969.

David Padua and Michael Wolfe. Advanced compiler optimization
for supercomputersCommunications of the ACM29(12):1184-1201,
December 1986.

Markus Rischel, Jos M. F. Moura, Jeremy Johnson, David Padua,
Manuela Veloso, Bryan W. Singer, Jianxin Xiong, Franz Franchetti, Aca
Gatic, Yevgen Voronenko, Kang Chen, Robert W. Johnson, and Nick
Rizzolo. SPIRAL: Code generation for DSP transfornf&oceedings

of the IEEE 93(2), 2005. special issue on "Program Generation,
Optimization, and Adaptation”.

Joan McComb Ramesh C. Agarwal, Fred G. Gustavson and Stanley
Schmidt. Engineering and Scientific Subroutine Library Release 3 for
IBM ES/3090 Vector MultiprocessortBM Systems JournaP8(2):345—
350, 1989.

] B. Ramakrishna Rau. Iterative modulo scheduling. Technical Report

HPL-94-115, Hewlett-Packard Research Laboratories, November 1995.
Robert Schreiber and Jack Dongarra. Automatic blocking of nested
loops. Technical Report CS-90-108, Knoxville, TN 37996, USA, 1990.
R. Clint Whaley. Personal communication.

R. Clint Whaley. http://sourceforge.net/mailarchive/
forum.php?thread_id=1569256&forum_id%=426

R. Clint Whaley. User contribution to atlabttp://math-atlas.
sourceforge.net/devel/atlas_contrib .
Minimizing development and
maintenance costs in supporting persistently optimized BLAS. Accepted
for publication in Software: Practice and Experienc€004. http:
IlIwww.cs.utk.edu/ rwhaley/papers/spercw04.ps .
R. Clint Whaley, Antoine Petitet, and Jack J. Dongarra. Automated
empirical optimization of software and the ATLAS projectPar-
allel Computing 27(1-2):3-35, 2001. Also available as University
of Tennessee LAPACK Working Note #147, UT-CS-00-448, 2000
(www.netlib.org/lapack/lawns/lawn147.ps).

Michael E. Wolf and Monica S. Lam. An algorithmic approach
to compund loop transformations. lAdvances in Languages and
Compilers for Parallel ComputingPitman Publisher, 1991.

M. Wolfe. Iteration space tiling for memory hierarchies.Third SIAM
Conference on Parallel Processing for Scientific CompytBgcember
1987.

[44] Kamen Yotov, Keshav Pingali, and Paul Stodghill. X-ray: A tool for
automatic measurement of architectural parameters. Technical Report
TR2004-1966, Cornell University, Computer Science, October 2004.

19

20

N5 My, Nu, Ku | Ls |EMA[Fr, 17, Nr |MFLOPS]
Feature Vaiue CGwiS | 72 4472 4]0 1,71 1281
Architecture Out-Of-Order, RISC Model 84 4,4,84 410 0,22 1189
CPU Core Frequency 833 MHz Unleashed 80 1491
L1 Data Cache 64 KB, 64 Blline, 2-way
L1 Instruction Cache 64 KB, 64 Blline, 2-way TABLE 12(b)
L2 Unified Cache 4 MB, 64 Blline, 1-way DEC ALPHA 21264: QPTIMIZATION PARAMETERS
Floating-Point Registers 32
Floating-Point Functional Units 2
Floating-Point Multiply Latency 4
Has Fused Multiply Add No
Operating System Tru64 v5.1B (rev.2650) Search | Model
C Compiler Compaq C v6.5-003 Machine Parameters 148s | 101s
Fortran Compiler GNU Fortran 3.3 Optimization Parameters 5565
TABLE 12(a) Total 704s 101s
DEC ALPHA 21264: RATFORM SPECIFICATION TABLE 12(c)

DEC ALPHA 21264: TIMINGS

MFLOPS

16 [y
15 1
14 1
13
—A— Unleashed 12
11
—— BLAS 10

8
—A— cew/s 7
6
—=— Model 5
4
—%— Compiler 3
2

s 4 =]

1000 2000 3000 4000 5000 © 12345678 910111213141516

Fig. 12(d). DEC Alpha 21264: MMM Performance Fig. 12(e). DEC Alpha 21264: Sensitivity of performanceltfy; and Ny,

MFLOPS MFLOPS

: PRALAER

200 200
- = - - NB - = = = - o e
Fig. 12(f). DEC Alpha 21264: Sensitivity of performance s Fig. 12(g). DEC Alpha 21264: Sensitivity of performanceNg (zoomed)
MFLOPS MFLOPS
200 W 0 ‘_/,/‘
1000 1000
800 800
600 600
400 400
200 200
" - = = ” - - w : ; : : " - L

Fig. 12(h). DEC Alpha 21264: Sensitivity of performanceiq, Fig. 12(i). DEC Alpha 21264: Sensitivity of performance fiQ

Feature Value

Architecture Out-Of-Order, RISC
CPU Core Frequency 375 MHz

L1 Data Cache 64 KB, 128 B/line, 128-way
L1 Instruction Cache 32 KB, 128 Blline, 128-way
L2 Unified Cache 4 MB, 128 Bl/line, ???-way

Floating-Point Registers 32
Floating-Point Functional Units 2
Floating-Point Multiply Latency 4
Has Fused Multiply Add Yes
Operating System AIX
C Compiler XL C for AIX v.5

Fortran Compiler XL Fortran for AIX

TABLE 13(a)
IBM POWER 3: PLATFORM SPECIFICATION

—a— cow/s

—2— Unlexshed

—4— BLAS

—=— Mode

400

—*— Compiler

200

1000 2000 3000 4000 5000

Fig. 13(d). IBM Power 3: MMM Performance

MFLOPS

1400
1200
1000

800

600

200

NB

Fig. 13(f). IBM Power 3: Sensitivity of performance ¥z

MFLOPS

1200

1000

200

KU
20 40 60 80

Fig. 13(h). IBM Power 3: Sensitivity of performance f6;

16
15
14
13
12
11
10

FNWAOON®

21

Np|My, Ny, Ky|Ls |FMA|Fr, I, Np |[MFLOPS
CGw/S 80 4,5, 80 6 1 0,81 1264
Model 84 4, 4,84 4 0,22 1225
Unleashed 80 1257

TABLE 13(b)
IBM POWER 3: OPTIMIZATION PARAMETERS

Search | Model
Machine Parameters 139s 154s
Optimization Parameterg| 1984s
Total 2123s 154s

TABLE 13(c)
IBM POWER 3: TIMINGS

o

1234567 8910111213141516

Fig. 13(e). IBM Power 3: Sensitivity of performance 3dy; and Ny
MFLOPS
1400
1000
800
600
400
200
- - = - - o e
Fig. 13(g). IBM Power 3: Sensitivity of performance g (zoomed)
MFLOPS
20 ¢+ — 9 ——¢ ¢ ————¢—
1000
80
600
400
200
: ; : : " - L
Fig. 13()). I1BM Power 3: Sensitivity of performance fo,

Feature Value
Architecture Out-Of-Order, RISC
CPU Core Frequency 1450 MHz

L1 Data Cache

L1 Instruction Cache
L2 Unified Cache
L3 Cache

32 KB, 128 Bl/line, 2-way
64 KB, 128 Blline, 1-way
1.5 MB, 128 B/line, 8-way
32 MB, 512B/line, 8-way

Floating-Point Registers 32
Floating-Point Functional Units 2
Floating-Point Multiply Latency 4
Has Fused Multiply Add Yes
Operating System AIX

C Compiler
Fortran Compiler

XL C for AIX v.5
XL Fortran for AIX

2500

2000

1500

1000

500

TABLE 14(a)
IBM POWER 4: PLATFORM SPECIFICATION

—4— BLAS

—2— Unlexshed

—&— cow/s

—=— Mode

—*— Compiler

Fig. 14(d).

2000

4000

IBM Power 4: MMM Performance

MFLOPS

3000

2500

2000

1500

1000

500

Fig. 14(f).

MFLOPS

3500
3000
2500
2000
1500

1000

200

400

600 800

1000 1200 1400

IBM Power 4: Sensitivity of performance f§p

NB

Fig. 14(h).

20

IBM Power 4: Sensitivity of performance 6y

KU

22

N5 My, Nu, Ku | Ls |EMA[Fr, 17, Nr |MFLOPS]
CGw/S 64 4,4, 64 1 1 1,81 3468
Model 56 4, 4, 56 6| 1 0,22 3400
Unleashed 64 3468

TABLE 14(b)
IBM POWER 4: OPTIMIZATION PARAMETERS

Search | Model
Machine Parameters 175s 125s
Optimization Parameterg| 2390s
Total 2665s 125s

TABLE 14(c)
IBM POWER4: TIMINGS

16
15
14
13
12
11
10

FNWAOON®

k-

1234567 8910111213141516

Fi

Q

Fig. 14(g).

Fig. 14().

. 14(e).

MFLOPS

2500

1500

1000

500

IBM Power 4: Sensitivity of performance id;; and Ny,

MW

MFLOPS

3500

3000

2500

2000

1500

1000

100

NB
120

IBM Power 4: Sensitivity of performance g (zoomed)

10

IBM Power 4: Sensitivity of performance fos

LS
12

L1 Data Cache
L1 Instruction Cache
L2 Unified Cache

Feature Value
Architecture Out-Of-Order, RISC
CPU Core Frequency 270 MHz

32 KB, 32 Blline, 2-way
32 KB, 32 Blline, 2-way
4 MB, 32 Blline, 1-way

C Compiler
Fortran Compiler

Floating-Point Registers 32
Floating-Point Functional Units 2
Floating-Point Multiply Latency 2
Has Fused Multiply Add Yes
Operating System IRIX64

SGI MIPSPro C 7.3.1.1m
SGI MIPSPro FORTRAN 7.3.1.1m

TABLE 15(a)
SGI R12K: RATFORM SPECIFICATION

MFLOPS

100

—4— BLAS

—a— cows

—2— Unlezshed

—=— Mode

—*— Compiler

1000 2000 3000 4000 5000
Fig. 15(d). SGI R12K: MMM Performance
MFLOPS
600
500
400
300
200
100
- = - - ol

Fig. 15(f). SGI R12K: Sensitivity of performance f§p

MFLOPS

400

200

»

10 20 30

Fig. 15(h).

KU
40 50 60

SGI R12K: Sensitivity of performance i

23

Np|My, Ny, Ky|Ls |FMA|Fr, I, Np |[MFLOPS
CGw/S 64 4,5, 32 3 0 1,81 459
Model 58 5, 4, 58 1 1 0,22 442
Unleashed 64 464

TABLE 15(b)

SGI R12K: CPTIMIZATION PARAMETERS

Search | Model
Machine Parameters 251s 117s
Optimization Parameterg| 5015s
Total 5266s 117s

TABLE 15(c)
SGI R12K: TIMINGS

16 fr—

15

14 {—

13

12

11

10
9
8
7
6
5
4
3
2
gl [l
12345678 910111213141516
Fig. 15(e). SGI R12K: Sensitivity of performance d;; and Ny
MFLOPS
600
500 L —d
- v
300
200
100
NB
20 40 60 80 100 120
Fig. 15(g). SGI R12K: Sensitivity of performance ¥p (zoomed)
MFLOPS
500
}—‘\‘/q\’——_“
400
300
200
100
LS
2 4 6 8 10 12
Fig. 15()). SGI R12K: Sensitivity of performance fo,

Feature Value
Architecture Out-Of-Order, RISC
CPU Core Frequency 1060 MHz

L1 Data Cache
L1 Instruction Cache
L2 Unified Cache

64 KB, 32 Blline, 4-way
32 KB, 32 Blline, 4-way
1 MB, 32 Blline, 4-way

Floating-Point Registers 32
Floating-Point Functional Units 2
Floating-Point Multiply Latency 4
Has Fused Multiply Add No
Operating System SUN Solaris 9
C Compiler SUNC 5.5

Fortran Compiler

SUN FORTRAN 95 7.1

TABLE 16(a)
SUN ULTRASPARC Illi: PLATFORM SPECIFICATION

MFLOPS

1750

1500

1250

BLAS

Model

cGw/S

Unleashed

Compiler

Fig. 16(d).

1000 2000 3000

4000 5000

Sun UltraSPARC Illi: MMM Performance

MFLOPS

1400

1200

1000

800

600

200

Fig. 16(f).

100 200

NB

Sun UltraSPARC Illi: Sensitivity of performance g

MFLOPS

1000

—

Fig. 16(h).

10 20

30 40

KU

Sun UltraSPARC llli: Sensitivity of performance &g

24

Np|My, Ny, Ky|Ls |FMA|Fr, I, Np |[MFLOPS
CGw/S 44 4, 3, 44 5 0 0,32 986
Model 84 4, 4,84 4 0 0,22 1149
Unleashed 168 1695

TABLE 16(b)

SUN ULTRASPARC Illi: OPTIMIZATION PARAMETERS

Search | Model
Machine Parameters 203s 112s
Optimization Parameterg| 1254s
Total 1457s 112s
TABLE 16(c)
SUN ULTRASPARC Illi: TIMINGS

16
15
14
13
12
11

EFNWAO O N®

Fig. 16(e).

Ny

1234567 8910111213141516

MFLOPS

1400

1200

1000

800

e

Sun UltraSPARC llli: Sensitivity of performance dy; and

oI

20 40 60 80

100

NB
120

Fig. 16(g). Sun UltraSPARC llli: Sensitivity of performanceg; (zoomed)

Fig. 16().

MFLOPS

1000

800

600

200

N T T

10

LS
12

Sun UltraSPARC Illi: Sensitivity of performance fq

25

Np|My, Ny, Ky |Ls |FMA|Fr, Ir, Ny | MFLOPS|

Feature Value CGw/S | 80| 10,10,4 |4 1 0,19, 1 4028
Architecture In-Order, EPIC, |1A-64 Model 30 10, 10, 8 1| 1 0,2, 2 1806
CPU Core Frequency 1500 MHz Unleashed 120 4891
L1 Data Cache 16 KB, 64 Blline, 4-way
L1 Instruction Cache 16 KB, 64 Blline, 4-way TABLE 17(b)
L2 Unified Cache 256 KB, 128 Bl/line, 8-way .
L3 Cache 3 MB, 128B/line, 12-way INTEL ITANIUM 2: OPTIMIZATION PARAMETERS
Floating-Point Registers 128
Floating-Point Functional Units 2
Floating-Point Multiply Latency 4
Has Fused Multiply Add Yes
Operating System Linux 2.4.18-e.31smp _ Search | Model
C Compiler GNU C/C++ 3.3 Maghlne Parameters 1555s 143s
Fortran Compiler GNU Fortran 3.3 Optimization Parameters| 30710s

Total 32265s 143s

TABLE 17(a)

TABLE 17(c)
INTEL ITANIUM 2: PLATFORM SPECIFICATION

INTEL ITANIUM 2: TIMINGS

MFLOPS

16‘ ‘
|
14
13
—4— BLAS 12
1
—2— Unleashed 18
— 8
CGw/S 7
6
—*— Mode 5
4
i 3
1000 —*— Compiler ;
et e ! HENE
1000 2000 3000 4000 5000 12345678 910111213141516 16
Fig. 17(d). Intel Itanium 2: MMM Performance Fig. 17(e). Intel Itanium 2: Sensitivity of performance Ady; and Ny,
MFLOPS MFLOPS
4000
3000
2000
1000
NB NB
200 400 600 800 1000 20 40 60 80 100 120
Fig. 17(f). Intel ltanium 2: Sensitivity of performance 1z Fig. 17(g). Intel Itanium 2: Sensitivity of performance Mg (zoomed)
MFLOPS MFLOPS
4000 }ﬂv 4000 +—— o+
3000 3000
2000 2000
1000 1000
KU LS
20 40 60 80 2 4 6 8 10 12

Fig. 17(h). Intel Itanium 2: Sensitivity of performance k6 Fig. 17(i). Intel Itanium 2: Sensitivity of performance 1o,

Feature Value
Architecture Out-Of-Order, CISC, x86-64
CPU Core Frequency 1400 MHz

L1 Data Cache
L1 Instruction Cache
L2 Unified Cache

64 KB, 64 Blline, 2-way
64 KB, 64 Blline, 2-way
1024 MB, 64 Blline, 16-way

Floating-Point Registers 8 x87
Floating-Point Functional Units ADD + MUL + Memory
Floating-Point Multiply Latency 4
Has Fused Multiply Add No
Operating System Linux 2.4.19

C Compiler
Fortran Compiler

GCC C/C++ 3.3.2

GNU Fortran 3.3.2

2500
2000
1500
1000

500

Fig. 18(d).

TABLE 18(a)
AMD OPTERON240: RLATFORM SPECIFICATION

MFLOPS

Unleashed

BLAS

—&— cow/s

Model

Compiler

2000

MFLOPS

4000

AMD Opteron 240: MMM Performance

100 200 300

NB
400 500

Fig. 18(f). AMD Opteron 240: Sensitivity of performance Aop

MFLOPS
2000 /MMW —3
1500
1000
500
KU
10 20 30 40 50 60
Fig. 18(h). AMD Opteron 240: Sensitivity of performance Aq;

16

14
13

11
10

FNWAOON®

Fi

Fig

Fig.

26

Np|My, Ny, Ky |Ls |FMA| Fp, Ir, Np |MFLOPS|
CGw/S 60 6, 1, 60 6 1 0,6,1 2072
Model 88 2,1, 88 2 0 0,22 1282
Unleashed 56 2608

TABLE 18(b)

AMD OPTERON240: OPTIMIZATION PARAMETERS

Search | Model
Machine Parameters 148s 101s
Optimization Parameterg 556s
Total 704s 101s

TABLE 18(c)

AMD OPTERON240: TIMINGS

Q

1234567 8910111213141516

NB

120

LS

. 18(e). AMD Opteron 240: Sensitivity of performancelfy; and Ny,
MFLOPS
2000 ANy
1500
1000
500
20 40 60 80 100
. 18(g). AMD Opteron 240: Sensitivity of performanceg; (zoomed)
MFLOPS
2000 L. ——% 33—+
1500
1000
500
2 4 6 8 10 12
18(i). AMD Opteron 240: Sensitivity of performance g

27

N5 | My, Nu, Ku | L, |[FMA[FF, I, N |MELOPS
Feature Value CGwWIS | 76 4,1,76 | 1| 0 0,32 1531
Architecture Out-Of-Order, CISC, x86 Model | 88| 21,8 |2 0 0,22 1239
CPU Core Frequency 1733 MHz Unleashed 30 2512
L1 Data Cache 64 KB, 64 Blline, 2-way
L1 Instruction Cache 64 KB, 64 Blline, 2-way TABLE 19(b)
L2 Unified Cache 256 KB, 64 Blline, 16-way AMD ATHLON MP: OPTIMIZATION PARAMETERS
Floating-Point Registers 8
Floating-Point Functional Units ADD + MUL + Memory
Floating-Point Multiply Latency 4
Has Fused Multiply Add No
Operating System Linux 2.4.20 Search | Model
C Compiler GNU C/C++3.2.2 Machine Parameters 220s | 121s
Fortran Compiler GNU Fortran 3.2.2 Optimization Parameterg| 3195s
TABLE 19(a) Total 3415s 121s
AMD ATHLON MP: PLATFORM SPECIFICATION TABLE 19(c)

AMD ATHLON MP: TIMINGS

MFLOPS 16
2500 ﬁ
13
—4— Unleashed 12
2000 1
—4— BLAS 10
1500 M
W —— cows 3
1000 —*— Model 2
4
500 —*— Compiler g
X“ Aok Size '
1000 2000 3000 4000 5000 12345678 910111213141516
Fig. 19(d). AMD Athlon MP: MMM Performance Fig. 19(e). AMD Athlon MP: Sensitivity of performance fl;; and Ny
MFLOPS MFLOPS
1200 1200
i
1000 ¥ i 1000
il
A
o0 ‘,)[Mwmmm] m a0
600 600
400 400
200 200
NB NB
50 100 150 200 250 20 40 60 80 100 120
Fig. 19(f). AMD Athlon MP: Sensitivity of performance t&/p Fig. 19(g). AMD Athlon MP: Sensitivity of performance &g (zoomed)
MFLOPS MFLOPS
1500 1500
1250 1250 M
1000 1000
750 750
500 500
250 250
KU LS
10 20 30 40 50 60 70 2 4 6 8 10 12

Fig. 19(h). AMD Athlon MP: Sensitivity of performance &, Fig. 19()). AMD Athlon MP: Sensitivity of performance tb

Feature Value
Architecture Out-Of-Order, CISC, x86
CPU Core Frequency 1266 MHz
L1 Data Cache 16 KB, 32 Blline, 4-way
L1 Instruction Cache 16 KB, 32 Bl/line, 4-way
L2 Unified Cache 512 MB, 32 Blline, 8-way

Floating-Point Registers 8
Floating-Point Functional Units 1
Floating-Point Multiply Latency 5
Has Fused Multiply Add No

Operating System
C Compiler
Fortran Compiler

Linux 2.4.20-28.8smp
GNU C/C++ 3.2
GNU Fortran 3.2

TABLE 20(a)
PENTIUM IIl: PLATFORM SPECIFICATION

MFLOPS

1200

1000 —+— BLAs
[A
800 ﬁg

600

—#— Unleashed

—A— cow/s

200

1000 2000 3000 4000 5000

Fig. 20(d). Pentium Ill: MMM Performance

MFLOPS

NB
50 100 150 200 250 300 350

Fig. 20(f). Pentium IIl: Sensitivity of performance g

MFLOPS

1000

e e

KU
10 20 30 40

Fig. 20(h). Pentium Ill: Sensitivity of performance 6

Fi

16
15
14
13
12
11

FN®WNO O N®

28

Np|My, Ny, Ky|Ls |FMA|Fr, I, Np |[MFLOPS
CGw/S 44 4,1, 44 3 0 0,32 894
Model 42 2,1,42 2 0 0,22 841
Unleashed 40 951

TABLE 20(b)
PENTIUM Ill: OPTIMIZATION PARAMETERS

Search | Model
Machine Parameters 133s 100s
Optimization Parameterg 630s
Total 763s 100s

TABLE 20(c)
PENTIUM III: T IMINGS

Q

12345678 910111213141516
. 20(e). Pentium IlI: Sensitivity of performance My and Ny

MFLOPS

1000

" " o e F Y
ﬁﬂa SME o 20 a0l
800 f

NB

Fig. 20(g). Pentium Ill: Sensitivity of performance 165 (zoomed)

MFLOPS
1000
'/»/‘
800
600
400
200
LS
2 4 6 8 10 12
Fig. 20(i)). Pentium llI: Sensitivity of performance o

Fig. 21(d).

Fig. 21(h).

L1 Data Cache
L1 Instruction Cache
L2 Unified Cache

Feature Value
Architecture Out-Of-Order, CISC, x86
CPU Core Frequency 2000 MHz

8 KB, 64 Blline, 4-way
12 K uOPs, 6 uOPsl/line, 8-wa
512 KB, 128 Bl/line, 8-way

Floating-Point Registers 8
Floating-Point Functional Units 1
Floating-Point Multiply Latency 7
Has Fused Multiply Add No
Operating System Linux 2.4.20-30.9smp
C Compiler GNU C v3.2.2
Fortran Compiler GNU Fortran 3.2.2
TABLE 21(a)

PENTIUM 4: PLATFORM SPECIFICATION

2000

1500

1000

500

—— BLAS

—#— Unleashed

—A— cow/s

1000 2000 3000

MFLOPS

2500

2000

1500

1000

500

Pentium 4: MMM Performance

50 100 150

NB
200 250 300 350

KU

Fig. 21(f). Pentium 4: Sensitivity of performance Mg
MFLOPS
1500
1250
1000
750
500
20
5 10 15 2 2
Pentium 4: Sensitivity of performance &q;

16
15
14
13
12
11

FN®WNO O N®

29

N5 My, Nu, Ku | Ls |EMA[Fr, 17, Nr |MFLOPS]
CGw/S 28 3,128 1 0 0,21 1504
Model 30 1,1, 30 41 0 0,22 913
Unleashed 72 3317

TABLE 21(b)
PENTIUM 4: OPTIMIZATION PARAMETERS

Search | Model
Machine Parameters 136s 98s
Optimization Parameterg 643s
Total 779s 98s

TABLE 21(c)
PENTIUM 4: TIMINGS

1234567 8910111213141516

NB

LS

Fig. 21(e). Pentium 4: Sensitivity of performancely; and Ny,
MFLOPS
2500
2000
1500 A
1000
500
2 0 60 % 100 120
Fig. 21(g). Pentium 4: Sensitivity of performance &y (zoomed)
MFLOPS
1500
1250
1000
750
500
20
2 4 6 8 10 12
Fig. 21()). Pentium 4: Sensitivity of performance fg

