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Abstract

Software-based fault isolation (SFI), as used in Google’s Native
Client (NaCl), relies upon a conceptually simple machine-code
analysis to enforce a security policy. But for complicated archi-
tectures such as the x86, it is all too easy to get the details of the
analysis wrong. We have built a new checker that is smaller, faster,
and has a much reduced trusted computing base when compared
to Google’s original analysis. The key to our approach is automat-
ically generating the bulk of the analysis from a declarative de-
scription which we relate to a formal model of a subset of the x86
instruction set architecture. The x86 model, developed in Coq, is
of independent interest and should be usable for a wide range of
machine-level verification tasks.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification

General Terms security, verification

Keywords software fault isolation, domain-specific languages

1. Introduction

Native Client (NaCl) is a new service provided by Google’s
Chrome browser that allows native executable code to be run di-
rectly in the context of the browser [37]. To prevent buggy or ma-
licious code from corrupting the browser’s state, leaking informa-
tion, or directly accessing system resources, the NaCl loader checks
that the binary code respects a sandbox security policy. The sand-
box policy is meant to ensure that, when loaded and executed, the
untrusted code (a) will only read or write data in specified segments
of memory, (b) will only execute code from a specified segment of
memory, disjoint from the data segments, (c) will not execute a
specific class of instructions (e.g., system calls), and (d) will only
communicate with the browser through a well-defined set of entry
points.

Ensuring the correctness of the NaCl checker is crucial for pre-
venting vulnerabilities, yet early versions had bugs that attackers
could exploit, as demonstrated by a contest that Google ran [25]. A
high-level goal of this work is to produce a high-assurance checker
for the NaCl sandbox policy. Thus far, we have managed to con-
struct a new NaCl checker for the 32-bit x86 (IA-32) processor (mi-
nus floating-point) which we call RockSalt. The RockSalt checker
is smaller, marginally faster, and easier to modify than Google’s

*This research was sponsored in part by NSF grants CCF-0915030, CCF-
0915157, CNS-0910660, CCF-1149211, AFOSR MURI grant FA9550-09-
1-0539, and a gift from Google.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PLDI’12, June 11-16, 2012, Beijing, China.

Copyright © 2012 ACM 978-1-4503-1205-9/12/06...$10.00

Edward Gan
egan@college.harvard.edu

original code. Furthermore, the core of RockSalt is automatically
generated from a higher-level specification, and this generator has
been proven correct with respect to a model of the x86 using the
Coq proof assistant [9].

We are not the first to address assurance for SFI using formal
methods. In particular, Zhao et al. [38] built a provably correct ver-
ifier for a sandbox policy similar to NaCl’s. Specifically, building
upon a model of the ARM processor in HOL [13], they constructed
a program logic and a provably correct verification condition gener-
ator, which when coupled with an abstract interpretation, generates
proofs that assembly code respects the policy.

Our work has two key differences: First, there is no formal
model for the subset of x86 that NaCl supports. Consequently, we
have constructed a new model for the x86 in Coq. We believe that
this model is an important contribution of our work, as it can be
used to validate reasoning about the behavior of x86 machine code
in other contexts (e.g., for verified compilers).

Second, Zhao et al.’s approach takes about 2.5 hours to check a
300 instruction program, whereas RockSalt checks roughly 1M in-
structions per second. Instead of a general-purpose theorem prover,
RockSalt only relies upon a set of tables that encode a determinis-
tic finite-state automaton (DFA) and a few tens of lines of (trusted)
C code. Consequently, the checker is extremely fast, has a much
smaller run-time trusted computing base, and can be easily inte-
grated into the NaCl runtime.

1.1 Overview

This paper has two major parts: the first part describes our model of
the x86 in Coq and the second describes the RockSalt NaCl checker
and its proof of correctness with respect to the model.

The x86 architecture is notoriously complicated, and our frag-
ment includes a parser for over 130 different instructions with se-
mantic definitions for over 70 instructions'. This includes support
for operands that include byte and word immediates, registers, and
complicated addressing modes (e.g., scaled index plus offset). Fur-
thermore, the x86 allows prefix bytes, such as operand size over-
ride, locking, and string repeat, that can be combined in many dif-
ferent ways to change the behavior of an instruction. Finally, the
instruction set architecture is so complex, that it is unlikely that we
can produce a faithful model from documentation, so we must be
able to validate our model against implementations.

To address these issues, we have constructed a pair of domain-
specific languages (DSLs), inspired by the work on SLED [30] and
A-RTL [29] (as well as more recent work [11, 19]), for specifying

! Some instructions have numerous encodings. For example, there are four-
teen different opcode forms for the ADC instruction, but we count this as a
single instruction.
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Parsing via Grammars

Inductive grammar : Type — Type

| Char: char — grammar char

| Any: grammar char

| Eps: grammar unit

| Cat:VT1 T2,grammar T1 — grammar T2 — grammar (T1*T2)
| Void: VT, grammar T

| Alt: VT, grammar T — grammar T — grammar T

| Star: VT, grammar T — grammar (list T)

| Map: VT1 T2, (T1 — T2) — grammar T1 — grammar T2

g1 |l g2 Altgig2 | 91 9%9o Cat g1 g2

gof Mapfg | 91$8g2 := (g91$92)@snd




Example: Parsing CALL instructions

Definition CALL_p : grammar instr :=
"1110" $$ "1000" $$ word @
(fun w => CALL true false (Imm_op w) None)
|l "1111" $$ "1111" $$ ext_op_modrm2 "010" @
(fun op => CALL true true op None)
|| "1001" $$ "1010" $$ halfword $ word @
(fun p => CALL false false (Imm_op (snd p))

(Some (fst p)))
|l "1111" $$ "1111" $$ ext_op_modrm2 "011" @

(fun op => CALL false true op None).

Figure 2. Parsing Specification for the CALL instruction




Semantics of Grammars

[Charc] = {(c: nil,c)}
[Any] = UC{(C ::nil,c)}
[Eps] = {(nil,tt)}
[Void] =
[Altgi1g2] = [g91] U [g2]
[Cat g1g2] = {((s182),(v1,v2)) | (84,v:) € [g:i] }

Quiz: can you write down the semantics of Map f g and Star g?



Semantics of Grammars

[Charc] = {(c:nil,c)}
[Any] = |J_{(c:nil,c)}
[Eps] = {(nil,tt)}
[Void] = 0
[Altgi1g2] = [g91] U [g2]
[Cat g1g2] = {((s182),(v1,v2)) | (8s,v:) € [g:i]}
Map fg] = {(s,f(v)) ]| (s,v) € [g]}
[Star g] = ap (A_.nil)Eps| U

™
[Map (::) (Cat g (Star g))]




Derivative Specification
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Derivative Specification

Quiz: what should the specification for the

(semantic) derivative operation be”?

deriv. g = {(s,v) | (c:: s,v) € [g]}




Derivative
deriv. g = {(S,’U) | (C > S,U) S [[9]]}

Map (A -.c) Eps
Map (A -. c) Eps
Alt (deriv. g1) (deriv. g2)
Map (::) (Cat(deriv. g) (Starg))
Alt(Cat (deriv. g1) g2)
(Cat (null g1) (deriv. g2))

Map f (deriv. g)
Void otherwise

deriv. Any
deriv. (Char c)
deriv. (Alt g1 g2)
deriv. (Star g)
deriv. (Cat g1 g2)

deriv. (Map f g)
deriv. g




Nullable

null Eps

null (Alt g; g2)
null (Cat g1 92)
null (Star g)

null (Map f g)
null g

Eps

Alt (null g1) (null g2)
Cat (null 91) (null 92)
Map (A ..nil) Eps

Map f (null g)
Void otherwise




Extraction

{tt}
{nil}
(extract g1) U (extract g2)
{(v1,v2) | v; € extract g;}
{f(v) | v € extract g}

) otherwise

extract Eps
extract (Star g)
extract (Alt g1 g2)
extract (Cat g; g2)
extract (Map f g)
extract g




Smart Constructors

i ) —

Cat gEps — ¢ Cat Eps g — ¢
Cat g Void — Void Cat Void g — Void
Alt g Void — g Alt Voidg — g

Star (Starg) — — g

Star g Alt g g

(Aside: these are all theorems in Kleene Algebra)



Leapfrog
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Abstract

We present Leapfrog, a Coq-based framework for verifying
equivalence of network protocol parsers. Our approach is
based on an automata model of P4 parsers, and an algorithm
for symbolically computing a compact representation of a
bisimulation, using “leaps.” Proofs are powered by a certified
compilation chain from first-order entailments to low-level
bitvector verification conditions, which are discharged using
off-the-shelf SMT solvers. As a result, parser equivalence
proofs in Leapfrog are fully automatic and push-button.

We mechanically prove the core metatheory that under-
pins our approach, including the key transformations and
several optimizations. We evaluate Leapfrog on a range of
practical case studies, all of which require minimal config-
uration and no manual proof. Our largest case study uses
Leapfrog to perform translation validation for a third-party
compiler from automata to hardware pipelines. Overall, Leap-
frog represents a step towards a world where all parsers for
critical network infrastructure are verified. It also suggests
directions for follow-on efforts, such as verifying relational
properties involving security.

CCS Concepts: « Theory of computation — Automata
extensions; « Software and its engineering — Software
verification.

Keywords: P4, network protocol parsers, Coq, automata,
equivalence, foundational verification, certified parsers
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1 Introduction

Devices like routers, firewalls and network interface cards
as well as operating system kernels occupy a critical role
in modern communications infrastructure. Each of these
implements parsing for a cornucopia of networking protocols
in its protocol parser. The parser is the network’s first line of
defense, responsible for organizing and filtering unstructured
and often untrusted data as it arrives from the outside world.
Due to their crucial role, bugs in parsers are a significant
source of crashes, vulnerabilities, and other faults [48].

Example Router Bug. Consider the following bug, which
was present in a commercial router developed by a leading
equipment vendor several years ago. Internally, the router
was organized around a high-throughput pipeline, which
most packets traversed in a single pass. However some pack-
ets had to be recirculated, meaning they took additional
passes through the pipeline before being sent back out on
the wire. The router used an internal state variable to de-
cide whether a packet should be recirculated. Usually this
state variable was initialized by vendor-supplied code. But,
as was discovered by a customer, it could also be erroneously
initialized from data in non-standard, malformed packets.
Hence, crafted packets could bypass the vendor-supplied ini-
tialization code, resulting in an infinite recirculation loop—a
denial-of-service (DoS) attack on the router and its peers.
In the presence of broadcast traffic, such a “packet storm”
would monopolize the router’s resources, rendering it unus-
able until it was rebooted.

An easy way to avoid this bug would be to modify the
router’s parser to filter away malformed packets, while still
accepting valid packets. However, to have full confidence in
the new parser, one would need to prove that it is equivalent
to the original, modulo malformed packets. Although parsers
tend to be simple, this would likely be a challenging verifica-
tion task—it requires reasoning about a relational property
across two distinct programs.
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1. Parse

Extract typed representation of packet data

2

2. Transform
Make forwarding decision, compute outputs
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Network Acceleration

00000001
00000001
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01100001
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01101001
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3. Deparse
Map packet back into binary representation




m: Programming Packet Processing Pipelines

Really three languages for , configurable processing,
and deparsing glued together.

Interesting bits are and match-action tables.

state start {
pkt.extract(hdr.eth);
transition select(hdr.eth.typ) {
Ox0800: parse 1ip;
default: accept;

}

}
state parse ip { ... }




Security Implications

https://www.cs.dartmouth.edu/~sergey/langsec/occupy/

Protocol wire formats should be parsed in the same way by all network devices.
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Protocol wire formats should be parsed in the same way by all network devices.
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P4 Optimization is Not Optional

Precise throughput requirements

“A 64 x 10Gb/s Ethernet switch must
parse one billion packets per second”
|G1bb et al. 2013 ]

P

Non-negotiable resource limits

“Unlike register allocation, there 1s no @

option to spill to memory...”
[Jose et al. 2015]

HHHE

VYUY

VUVTOY
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Equivalence in P4 compilation
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Your P4 programs should parse < —
the same way, ideally according
to an RFC or spec.

The P4 compiler should preserve
parser behavior even as it
optimizes them for throughput
and resource usage.
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Equivalence in P4 compilation

Your P4 programs should parse
the same way, ideally according
to an RFC or spec.

The P4 compiler should preserve
parser behavior even as it
optimizes them for throughput
and resource usage.
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Proving Equivalence for Parsers

Useful when verifying hand-optimized code

PrgiQt Fp=gq
Pipil0}

Useful for translation validation

REWRITE

let g := opt p 1n
if = p =g then 0k(q)
else Err "miscompiled - -



Example: Parsing MPLS

Packet

35 FD 00 9D 12 58 01 70
91 D1 A5 94 29 DA FA 7B

extract(mpls, 32)

mpls[23]1==0R /| mp1si23)==1

@ Store
udp = 00 00 00 00 00 OO0 OO0 OO

O

To implement a parser in P4, programmers
write state machines like this one.

20



Parsing MPLS with a P4 Automaton

Packet
12 58 01 70
extract(mpls, 32) 91 D1 A5 94 29 DA FA 7B
Store
extract (udp, 64) mpls = 35 FD 00 9D
udp = 00 00 00 00 00 00 00 0O

To implement a parser in P4, programmers
write state machines like this one.
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Parsing MPLS with a P4 Automaton

Packet
12 58 01 70
extract(mpls, 32) 91 D1 A5 94 29 DA FA 7B
mpls[23]==04 mpls[23]==1
Store
extract (udp, 64) mpls = 35 FD CO 9D
udp = 00 00 00 00 00 00 00 0O

To implement a parser in P4, programmers
write state machines like this one.
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Parsing MPLS with a P4 Automaton

Packet
extract(mpls, 32) 91 D1 A5 94 29 DA FA 7B
Store
extract(udp, 64) mpls = 12 58 01 70
udp = 00 00 00 00 00 00 00 0O

To implement a parser in P4, programmers
write state machines like this one.
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Parsing MPLS with a P4 Automaton

Packet

extract(mpls, 32)

91 D1 A5 94 29 DA FA 7B

mpls[23]==0R /
Store
extract (udp, 64) mpls = 12 58 (@ 70
udp = 00 00 00 00 00 00 00 0O

To implement a parser in P4, programmers
write state machines like this one.

30



Parsing MPLS with a P4 Automaton

extract(mpls, 32)

extract(udp, 64) mpls 12 58 01 70

91 D1 A5 94 29 DA FA 7B

udp

To implement a parser in P4, programmers
write state machines like this one.

31



Loop Unrolling Optimization

extract(old, 32); - 01d[23]==0 &&

extract(mpls, extract (new, 32) new[23]==

32)

mpls[23]==0 ' mpls[23]==

extract(udp, 64)

old[23]==0 &&
newl[23]==

0ld[23]==

extract(tmp, 32);
udp := new ++ tmp

32




Translation Validation

extract(old, 32); - 0l1d[23]==0 &&

extract(mpls, extract (new, 32) new[23]==

mplS[23] mplS[23]
01d[23]1==0 &&
newl[23]==

0ld[23]==

extract (udp,

Leaptrog

extract(udp, 64)

extract(tmp, 32);
udp := new ++ tmp

33



Leapfrog

P4 Automata (P4A) Algorithm Coq Implementation

® ?/L\@}] A~B ‘),)

* Syntax * Symbolic bisimulations e Semi-decision procedure
* Semantics » Algorithm for finding » Coq certificates of
» Equivalence symbolic bisimulations equivalence

* Bisimulations with leaps  SMT interface

* More optimizations (see * Evaluation on a range of

paper) examples
34



extract(mpls,

mpls[23]==

extract (udp,

32)

64)

b

mpls[23]==

h €
n €
bv €

€

35

P4A: Syntax

header names
natural numbers
bitvector
headers
bitvectors
bitslices
concatenation



P4A: Syntax

i ¢ H header names
0= natural numbers
bv € {0,1}" bitvector
e - h headers
extract (mpls, 32) | .
mpls[23]== bv bitvectors
e[ni:nsl bitslices
mpls[23]== e1 ++ ey concatenation
pat == bv exact match
extract (udp, 64) L wildcard
g € QU{accept,reject} state names
e = at — 0 select case
tz == goto(q) direct
| select(e){c} select

36



P4A: Syntax

h € H header names
a0 = natural numbers
bv € {0,1}" bitvector
e — N headers
extract(mpls, 32) | : b
mpls[23]== Vv 1tvectors
e[ni:nsyl bitslices
mpls[23]== e1 ++ ey concatenation
pat == bv exact match
extract (udp, 64) L wildcard
g € QU{accept,reject} state names
e = at — 0 select case
tz == goto(q) direct
|  select(e){c} select
op == extract(h) extract
h:==e assign
opy1; Op, sequence

37



P4A: Syntax

i ¢ H header names
a0 = natural numbers
bv € {0,1}" bitvector
e = h headers
extract(mpls, 32) | : b
mpls([23]== vV 1tvectors
e[ni:nsyl bitslices
mpls[23]== e1 ++ e concatenation
pat == bv exact match
extract(udp, 64) . wildcard
g € QU{accept,reject} state names
e = at — 0 select case
tz == goto(q) direct
|  select(e){c} select
op == extract(h) extract
h:==e assign
opy1; Op, sequence
st . glop iz} states (g € Q)
qut — P4 automaton

33



Anatomy of a P4A

extract (mpls, 32)

States g; € Q mpls(23]1==0R JI o1512371==1

extract(udp, 64)

accept state

reject state



Anatomy of a State

extract (mpls, 32)

Operation op(q;) mp1s(231==0R /| wp1s231=-1

Transitions tz(g;)

40



Semantics

P4A are really flowchart programs, not automata.

A finite automaton has
» (C, afinite set of configurations
« ' C (C, aset of accepting ("final") configurations

e 0: CX1{0,1} = C, atransition function

41



Automata Semantics: Configurations

pls A configuration is a tuple (g, s, w) with

udp .o » A state @ € QU {accept, reject}

0110110011 e Astores € S

 Abufferw € {0,1}* with |w| < |op(g)|.
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Automata Semantics: Configurations

pls A configuration is a tuple (g, s, w) with

udp .o » A state @ € QU {accept, reject}

0110110011 e Astores € S

 Abufferw € {0,1}* with |w| < |op(g)|.

The final configurations are
F={(qg,s,e):q = accept}.

43



Steps

Defining a total function o : C X {0,1} — C.

Terminal (accept)

Terminal (reject)
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Steps

Defining a total function o : C X {0,1} — C.

Terminal (accept)

Terminal (reject)
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Steps

Defining a total function o : C X {0,1} — C.

Buffering
lwl+1<]op(g)|
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Steps

Defining a total function o : C X {0,1} — C.

Buffering
lwl+1<]op(g)|

47



Steps

Defining a total function o : C X {0,1} — C.

Buffering
lwl+1<]op(g)|

State Change
[lw|+1=1op(g)]
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Steps

Defining a total function o : C X {0,1} — C.

Buffering
lwl+1<]op(g)|

State Change
[lw|+1=1op(g)]

s" = op(q)(s, wl)
q' = tz(q)(s’)
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Steps

Defining a total function o : C X {0,1} — C.

Buffering
lwl+1<]op(g)|

State Change
[lw|+1=1op(g)]

s" = op(q)(s, wl)
q' = tz(q)(s’)

50



Defining Equivalence

L. We’ll stick to language equivalence, not full program equivalence.

So: view P4A P, O as DFAs and decide

Lp(start) = L(start).

51



Proving Equivalence: Bisimilarity

R C C X Cis a bisimulation if it's
(€1, €5)
e closed under steps (8(c,.0), 5(c,0))

* only relates final configs to other
final configs. R (0lep, 1), o(er, 1))

If R relates two configs, then they
are language equivalent.

(product state space)

52



Constructing a Bisimulation from Below

Begin with R = [, the set of pairs of
Initial states.

Close R under parallel steps.

This produces the least bisimulation.
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Constructing a Bisimulation from Below

Begin with R = [, the set of pairs of
Initial states.

Close R under parallel steps.

This produces the least bisimulation.
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Constructing a Bisimulation from Below

Begin with R = [, the set of pairs of
Initial states.

Close R under parallel steps.

This produces the least bisimulation.

ole)



Constructing a Bisimulation From Above

SetS =(FXF)U(F°XF)

Search backwards through the
transition system until S is closed
under backward steps.

The complement R = S is the
greatest bisimulation.
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Constructing a Bisimulation From Above

SetS =(FXF)U(F°XF)

Search backwards through the
transition system until S is closed
under backward steps.

The complement R = S is the
greatest bisimulation.
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Constructing a Bisimulation From Above
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Constructing a Bisimulation From Above

SetS =(FXF)U(F°XF)

Search backwards through the
transition system until S is closed
under backward steps.

The complement R = S€isthe (BT 4 |
greatest bisimulation. f



Constructing a Bisimulation From Above

There are 2% config pairs
for the MPLS+UDP example!

The concrete algorithm

€ Represents S as a
concrete set of pairs.

@Searches that space one
step at a time.




Constructing a Symbolic Bisimulation

Use symbolic relations

Instead of backward steps,
compute weakest preconditions.

At the end, R = .S is the
greatest bisimulation.
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Constructing a Symbolic Bisimulation

Use symbolic relations

Instead of backward steps,
compute weakest preconditions.

At the end, R = .S is the
greatest bisimulation.
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Algorithm 1: Symbolic equivalence checking.

Input: A formula ¢ representing initial states.
Input: A set of formulas I s.t. for all ¢y, ¢c; € C,

VY € 1. ¢; [¥] 2] © [c1 € F © ¢y € F]
Input: A function WP s.t. for all ¥, and ¢4, ¢, € C,

[Vb € {0,1}. 8(c1,b) [y] 6(ca, )] & c1 |\ WP(H)| s

Output: true if and only if for all ¢, c; € C with
c1 [@] ; c2, it holds that L(c;) = L(c;)

1 R—0; T« 1
2 while T # 0 do

3 pop ¥ from T

4 if not A\ R k ¢ then

5 R «— RU{y}

6 T «— TUWP(Y)

7 return true if ¢ £ /\ R, otherwise false
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The Need for Leaps
Lo

extract(hdr,224)

extract (udp,64)
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The Need for Leaps
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extract(hdr,224)
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T
’ —_—
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The Need for Leaps
Lo

extract(hdr,224)

e
a’t@v o /’
Ya‘\_\oﬂs\ = = -
oA \\e = = -
== - -
— /’ —
—_
-

extract (udp,64)

accept< A 0 A accept”™ A 0~
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The Need for Leaps
Lo

extract(hdr,224)

extract (udp,64)

accept< A 0 A accept”™ A 0~
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Accelerating WP

Quiz: ideas for making this faster?




Solution: Leaps

Just 1 WP leap over extract(udp, 64)

-0O0—>0—->0—->0—->0—->0—->0—>0—>0—>0—0



Leaps

Definition 5.3 (Leap size). Letcy,c; € Candc; = (q;, i, Wi);
we define the leap size #(c1,c2) € N as follows:

1 q1,92 € O
|tz(q1)] — [w1] g1 € Q,q2 ¢ O
f(c1,c2) = { tz(q2) | — |w2] q1 ¢ Q.92 € Q
min( || £z — [wq],
Azl =psl,

[tz(q2)] = [w2l)

4



Bisimulations with Leaps

Definition 5.4 (Bisimulation with leaps). A bisimulation
with leaps is a relation R C C X C, such that for all ¢; R cs,
(1) c; € Fifand only if ¢; € F, and (2) 0*(c1,w) R 6*(ca, W)
for all w € {0, 1}ﬂ(cl’02). A symbolic bisimulation with leaps

is a formula ¢ such that

“

r 1s a bisimulation with leaps.

Sound and complete as an instance of the coalgebraic technique of
bisimulation up to (here, up to leaps).

lgs



extract(ip,160)

extract(hdr,224)

extract (udp,64)

accept< A 0 A accept”™ A 0~




extract(ip,160)

extract(hdr,224)

> —
AN I\X60/ -
2 NO I\/ —
dy " —
—

extract (udp,64)

accept< A 0 A accept”™ A 0~
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extract(ip,160)

extract(hdr,224)

extract (udp,64)
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Reachability Analysis

Problem: The WP operator
IS way too precise!




Reachability Analysis

80

Problem: The WP operator
IS way too precise!

Solution: Over-approximate
the reachable state space
and stop searching when
you reach that boundary.

Gives you an intermediate
bisimulation instead of the
greatest bisimulation.



Implementation

® 0 SplitStateProof.v

»[lemma splittosingle_equiv: _ _
lang_equiv_state  ~11k lines of Coq, ~1k lines of OCam|
(P4A.interp SeparateStates.aut)
(P4A.interp SingleState.aut) _ _
SeparateStates.ParselP e Library of P4A syntax and semantics
SingleState.Start.
Proof.
solve_lang_equiv_state_axiom  Push-button tactic interface
SeparateStates.state_eqdec
SingleState.state_eqdec

false. * Coq plugin for invoking Z3/CVC4

| Qed.

* Logic for verification conditions +
verified lowering to theory of
bitvectors

 Soundness proofs for all optimizations

Us%%- *response* All L1 <V> (Coq Response Projectile Helm -1 Wrap)
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Implementation

® 0 SplitStateProof.v

»[lemma splittosingle_equiv: _ _
lang_equiv_state  ~11k lines of Coq, ~1k lines of OCam|
(P4A.interp SeparateStates.aut)
(P4A.interp SingleState.aut) _ _
SeparateStates.ParselP e Library of P4A syntax and semantics
SingleState.Start.
Proof.
solve_lang_equiv_state_axiom  Push-button tactic interface
SeparateStates.state_eqdec
SingleState.state_eqdec

false. * Coq plugin for invoking Z3/CVC4

| Qed.

* Logic for verification conditions +
verified lowering to theory of
bitvectors

 Soundness proofs for all optimizations

Us%%- *response* All L1 <V> (Coq Response Projectile Helm -1 Wrap)
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Coqg Implementation

(R,T)

ConfRel
REy

ConfRelSimp

FOL(Conf)

FOL(BV) B Proof* M Disproof*

Plugin

(Trusted)

Solver SMT-LIB
(Trusted)
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Case study: parser-gen [Gibb et al. 201 3]
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Case study: parser-gen [Gibb et al. 201 3]
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Case study: parser-gen [Gibb et al. 201 3]

(oo
§®

>

() () Coowrss >

NS
a4

Leapfrog =~ (wet) (swe2) Csuemi
SO GouervS Comitd oS DI
parser-sen Back-translation
Match: ([ff, 00, 00, ff, ff, 00, 00, 00, 00], [00, 00O, 0O, 08, 00, 00, 00, 00, 00]) Next-State: 3/255 Adv: 14 Next-Lookup: [0, O, O, O]
Match: ([ff, 00, 00, ff, ff, 00, 00, 00, 00], [0O, 0O, 00O, 88, 47, 00, 00, 00, 00]) Next-State: 4/255 Adv: 16 Next-Lookup: [0, 2, 4, 6
Match: ([ff, 01, 00, 00, 00, 01, 00, f0O, 00], [04, 0O, 00O, 00, 00, 01, 00, 00, 00]) Next-State: 1/255 Adv: 6 Next-Lookup: [0, 0, O, O]
Match: ([ff, 01, 00, fo, 00, 00, 00, 00, 00], [04, 01, 00, 00, 00, 00O, 00, 00, 00]) Next-State: 1/255 Adv: 2 Next-Lookup: [0, 0, O, O
Match: ([ff, 00, 00, 00, 00, 00, 00, 00, 00], [04, 00, 00O, 00, 00, 00, 00, 00, 00]) Next-State: 255/255 Adv: 2 Next-Lookup: [0, O, 0O, O]
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