Encoding semantics in Coq
Require Import Arith.
Require Import String.
Require Import List.
Require Import CpdtTactics.
Set Implicit Arguments.
Unset Automatic Introduction.
Local Open Scope string_scope.
Require Import String.
Require Import List.
Require Import CpdtTactics.
Set Implicit Arguments.
Unset Automatic Introduction.
Local Open Scope string_scope.
Definition var := string.
Inductive binop : Type := Plus_op | Minus_op | Eq_op.
Inductive exp : Type :=
| Var_e : var -> exp
| Lam_e : var -> exp -> exp
| App_e : exp -> exp -> exp
| Num_e : nat -> exp
| Binop_e : binop -> exp -> exp -> exp
| Bool_e : bool -> exp
| If_e : exp -> exp -> exp -> exp.
Inductive value : Type :=
| Lam_v : list (var * value) -> var -> exp -> value
| Num_v : nat -> value
| Bool_v : bool -> value.
Inductive answer : Type :=
| Value : value -> answer
| TypeError : answer.
Inductive binop : Type := Plus_op | Minus_op | Eq_op.
Inductive exp : Type :=
| Var_e : var -> exp
| Lam_e : var -> exp -> exp
| App_e : exp -> exp -> exp
| Num_e : nat -> exp
| Binop_e : binop -> exp -> exp -> exp
| Bool_e : bool -> exp
| If_e : exp -> exp -> exp -> exp.
Inductive value : Type :=
| Lam_v : list (var * value) -> var -> exp -> value
| Num_v : nat -> value
| Bool_v : bool -> value.
Inductive answer : Type :=
| Value : value -> answer
| TypeError : answer.
Definition env_t(A:Type) := list (var * A).
Fixpoint lookup A (env:env_t A) (x:var) : option A :=
match env with
| nil => None
| (y,v)::env' => if string_dec x y then Some v else lookup env' x
end.
Fixpoint lookup A (env:env_t A) (x:var) : option A :=
match env with
| nil => None
| (y,v)::env' => if string_dec x y then Some v else lookup env' x
end.
Definition eval_binop(b:binop)(v1 v2:value) : answer :=
match b, v1, v2 with
| Plus_op, Num_v n1, Num_v n2 => Value (Num_v (n1+n2))
| Minus_op, Num_v n1, Num_v n2 => Value (Num_v (n1-n2))
| Eq_op, Num_v n1, Num_v n2 =>
Value (Bool_v (if eq_nat_dec n1 n2 then true else false))
| _, _, _ => TypeError
end.
Module YOU_DONT_WANT_TO_DO_THIS.
Definition eval(eval: exp -> env_t value -> answer)(e:exp)(env:env_t value) :
answer :=
match e with
| Var_e x => match lookup env x with
| None => TypeError
| Some v => Value v
end
| Lam_e x e => Value (Lam_v env x e)
| App_e e1 e2 =>
match eval e1 env with
| Value v1 =>
match eval e2 env with
| Value v2 =>
match v1 with
| Lam_v env' x e' => eval e' ((x,v2)::env')
| _ => TypeError
end
| _ => TypeError
end
| _ => TypeError
end
| Num_e n => Value (Num_v n)
| Binop_e b e1 e2 =>
match eval e1 env with
| Value v1 =>
match eval e2 env with
| Value v2 => eval_binop b v1 v2
| _ => TypeError
end
| _ => TypeError
end
| Bool_e b => Value (Bool_v b)
| If_e e1 e2 e3 =>
match eval e1 env with
| Value v1 =>
match v1 with
| Bool_v b => if b then eval e2 env else eval e3 env
| _ => TypeError
end
| _ => TypeError
end
end.
End YOU_DONT_WANT_TO_DO_THIS.
match b, v1, v2 with
| Plus_op, Num_v n1, Num_v n2 => Value (Num_v (n1+n2))
| Minus_op, Num_v n1, Num_v n2 => Value (Num_v (n1-n2))
| Eq_op, Num_v n1, Num_v n2 =>
Value (Bool_v (if eq_nat_dec n1 n2 then true else false))
| _, _, _ => TypeError
end.
Module YOU_DONT_WANT_TO_DO_THIS.
Definition eval(eval: exp -> env_t value -> answer)(e:exp)(env:env_t value) :
answer :=
match e with
| Var_e x => match lookup env x with
| None => TypeError
| Some v => Value v
end
| Lam_e x e => Value (Lam_v env x e)
| App_e e1 e2 =>
match eval e1 env with
| Value v1 =>
match eval e2 env with
| Value v2 =>
match v1 with
| Lam_v env' x e' => eval e' ((x,v2)::env')
| _ => TypeError
end
| _ => TypeError
end
| _ => TypeError
end
| Num_e n => Value (Num_v n)
| Binop_e b e1 e2 =>
match eval e1 env with
| Value v1 =>
match eval e2 env with
| Value v2 => eval_binop b v1 v2
| _ => TypeError
end
| _ => TypeError
end
| Bool_e b => Value (Bool_v b)
| If_e e1 e2 e3 =>
match eval e1 env with
| Value v1 =>
match v1 with
| Bool_v b => if b then eval e2 env else eval e3 env
| _ => TypeError
end
| _ => TypeError
end
end.
End YOU_DONT_WANT_TO_DO_THIS.
Now we can attempt to rewrite our eval using the monadic
syntax introduced above.
Module OH_HOW_I_WISH_WE_COULD_USE_THIS.
We'll begin by defining a monad where the results are always answers.
Definition Ret(v:value) : answer := Value v.
This will take care of propagating type errors for us.
Definition Bind(c:answer) (f:value -> answer) : answer :=
match c with
| Value v => f v
| TypeError => TypeError
end.
match c with
| Value v => f v
| TypeError => TypeError
end.
Coq notation really comes in handy.
Notation "'ret' x" := (Ret x) (at level 75) : comp_scope.
Notation "x <- c ; f" := (Bind c (fun x => f))
(right associativity, at level 84, c at next level) : comp_scope.
Local Open Scope comp_scope.
Notation "x <- c ; f" := (Bind c (fun x => f))
(right associativity, at level 84, c at next level) : comp_scope.
Local Open Scope comp_scope.
Now we can write an evaluator, just as we might do it in Haskell...
Definition eval(eval: exp -> env_t value -> answer)(e:exp)(env:env_t value) :
answer :=
match e with
| Var_e x => match lookup env x with
| None => TypeError
| Some v => ret v
end
| Lam_e x e => ret (Lam_v env x e)
| App_e e1 e2 =>
v1 <- eval e1 env ; v2 <- eval e2 env ;
match v1 with
| Lam_v env' x e' => eval e' ((x,v2)::env')
| _ => TypeError
end
| Num_e n => ret Num_v n
| Binop_e b e1 e2 =>
v1 <- eval e1 env ; v2 <- eval e2 env ; eval_binop b v1 v2
| Bool_e b => ret Bool_v b
| If_e e1 e2 e3 =>
v1 <- eval e1 env ;
match v1 with
| Bool_v b => if b then eval e2 env else eval e3 env
| _ => TypeError
end
end.
answer :=
match e with
| Var_e x => match lookup env x with
| None => TypeError
| Some v => ret v
end
| Lam_e x e => ret (Lam_v env x e)
| App_e e1 e2 =>
v1 <- eval e1 env ; v2 <- eval e2 env ;
match v1 with
| Lam_v env' x e' => eval e' ((x,v2)::env')
| _ => TypeError
end
| Num_e n => ret Num_v n
| Binop_e b e1 e2 =>
v1 <- eval e1 env ; v2 <- eval e2 env ; eval_binop b v1 v2
| Bool_e b => ret Bool_v b
| If_e e1 e2 e3 =>
v1 <- eval e1 env ;
match v1 with
| Bool_v b => if b then eval e2 env else eval e3 env
| _ => TypeError
end
end.
Hmmm. But how do we tie the knot in the evaluator? We'd like to have
a fixed-point combinator. But alas...
Section I_WISH.
Assume we had some fixed-point combinator that satisfies an
unrolling equation.
Variable ffix : forall (A B:Type), ((A -> B) -> A -> B) -> A -> B.
Axiom ffix_unroll : forall A B (f : (A -> B) -> A -> B),
ffix f = f (ffix f).
Axiom ffix_unroll : forall A B (f : (A -> B) -> A -> B),
ffix f = f (ffix f).
Then we can use ffix to build a "proof" of False, rendering
the logic inconsistent.
Definition omega : False := ffix (fun f : unit -> False => f) tt.
Even if we limited ffix to operating over Set (instead of Type),
the problem doesn't go away.
Inductive void : Set := .
Definition omega' : void := ffix (fun f : unit -> void => f) tt.
Definition oops : False := match omega' with end.
Definition omega' : void := ffix (fun f : unit -> void => f) tt.
Definition oops : False := match omega' with end.
So in spite of the fact that the Haskell-like function is easier
to write, maintain (and I would claim, reason about), we can't
really go down this route.
End I_WISH.
End OH_HOW_I_WISH_WE_COULD_USE_THIS.
End OH_HOW_I_WISH_WE_COULD_USE_THIS.
We're going to use the Haskell-like approach, but instead of producing
values, we'll produce "computations." A computation is simply a way to
reify the monad, except that we'll add an extra case for "delayed"
expressions that we haven't bothered to compile yet. This will allow
us to break the cycle in our semantics, at the price of needing an
operational definition of the meaning of a computation.
Our denotations will be computations. Notice that we use the Coq
function space to represent Bind. That will greatly simplify our
treatment of substitution in our semantics, and allow us to use
an arbitrary Coq function to build a continuation.
Inductive comp :=
| Ret : answer -> comp
| Bind : comp -> (value -> comp) -> comp
| Delay : exp -> list (var * value) -> comp.
| Ret : answer -> comp
| Bind : comp -> (value -> comp) -> comp
| Delay : exp -> list (var * value) -> comp.
You should think of Delay as a kind of closure where we have
some expression e to evaluate within an environment env.
You can also think of Delay as an intermediate state in a
computation.
Notation "'ret' x" := (Ret (Value x)) (at level 75) : comp_scope.
Notation "x <- c1 ; c2" := (Bind c1 (fun x => c2))
(right associativity, at level 84, c1 at next level) : comp_scope.
Local Open Scope comp_scope.
Definition Terr := Ret TypeError.
Translate expressions to a computation -- this is exactly the same
as the Haskell approach except that we Delay the compilation of
the appliation of a function -- this is the only place where Coq
can't conclude that the compilation will terminate.
Fixpoint compile (e:exp) (env:env_t value) : comp :=
match e with
| Var_e x =>
match lookup env x with
| None => Terr
| Some v => ret v
end
| Lam_e x e => ret (Lam_v env x e)
| App_e e1 e2 =>
v1 <- compile e1 env ;
v2 <- compile e2 env ;
match v1 with
| Lam_v env' x e' => Delay e' ((x,v2)::env')
| _ => Terr
end
| Num_e n => ret Num_v n
| Binop_e b e1 e2 =>
v1 <- compile e1 env ;
v2 <- compile e2 env ;
Ret (eval_binop b v1 v2)
| Bool_e b => ret Bool_v b
| If_e e1 e2 e3 =>
v1 <- compile e1 env ;
match v1 with
| Bool_v b =>
if b then compile e2 env else compile e3 env
| _ => Terr
end
end.
match e with
| Var_e x =>
match lookup env x with
| None => Terr
| Some v => ret v
end
| Lam_e x e => ret (Lam_v env x e)
| App_e e1 e2 =>
v1 <- compile e1 env ;
v2 <- compile e2 env ;
match v1 with
| Lam_v env' x e' => Delay e' ((x,v2)::env')
| _ => Terr
end
| Num_e n => ret Num_v n
| Binop_e b e1 e2 =>
v1 <- compile e1 env ;
v2 <- compile e2 env ;
Ret (eval_binop b v1 v2)
| Bool_e b => ret Bool_v b
| If_e e1 e2 e3 =>
v1 <- compile e1 env ;
match v1 with
| Bool_v b =>
if b then compile e2 env else compile e3 env
| _ => Terr
end
end.
Now we can define a variety of different kinds of operational
semantics for computations, including big-step, small-step,
and even a partial function (since steps are deterministic.)
The point is that the compilation doesn't preclude our modeling
"effects" such as non-determinism (i.e., threads) or state or
exceptions. We just need to have the right monadic structure
to support those things.
The important point is that there are many, many fewer rules
or cases to deal with in the computation space. And this
will scale a lot better as we grow the source language.
A Big-Step Operational Semantics for Computations
Inductive run : comp -> answer -> Prop :=
| run_Ret : forall a, run (Ret a) a
| run_Delay : forall env e v,
run (compile e env) v -> run (Delay e env) v
| run_Bind_value : forall c f v a,
run c (Value v) -> run (f v) a -> run (Bind c f) a
| run_Bind_typeerror : forall c f,
run c TypeError -> run (Bind c f) TypeError.
Hint Constructors run.
| run_Ret : forall a, run (Ret a) a
| run_Delay : forall env e v,
run (compile e env) v -> run (Delay e env) v
| run_Bind_value : forall c f v a,
run c (Value v) -> run (f v) a -> run (Bind c f) a
| run_Bind_typeerror : forall c f,
run c TypeError -> run (Bind c f) TypeError.
Hint Constructors run.
A Small-Step Operational Semantics -- this is the same as
the above, but takes one computation to the next instead of
running sub-computations recursively.
Inductive step : comp -> comp -> Prop :=
| step_Delay : forall env e, step (Delay e env) (compile e env)
| step_Bind_value : forall f v, step (Bind (Ret (Value v)) f) (f v)
| step_Bind_typeerror : forall f, step (Bind (Ret TypeError) f) (Ret TypeError)
| step_Bind : forall c1 c2 f, step c1 c2 -> step (Bind c1 f) (Bind c2 f).
Hint Constructors step.
| step_Delay : forall env e, step (Delay e env) (compile e env)
| step_Bind_value : forall f v, step (Bind (Ret (Value v)) f) (f v)
| step_Bind_typeerror : forall f, step (Bind (Ret TypeError) f) (Ret TypeError)
| step_Bind : forall c1 c2 f, step c1 c2 -> step (Bind c1 f) (Bind c2 f).
Hint Constructors step.
And we can define the steps relations as the reflexive, transitive
closure of the (one-step) step relation. Intuitively, run c a is
equivalent to steps c (Ret a)
Require Import Relation_Operators.
Definition steps := clos_refl_trans comp step.
Hint Constructors clos_refl_trans.
Definition steps := clos_refl_trans comp step.
Hint Constructors clos_refl_trans.
Alternatively, we can define a step function. And intuitively,
step c1 c2 holds iff step_fn c1 = inl c2.
Implicit Arguments inl [A B].
Implicit Arguments inr [A B].
Fixpoint step_fn(c:comp) : comp + answer :=
match c with
| Ret a => inr a
| Delay e env => inl (compile e env)
| Bind c1 f =>
match step_fn c1 with
| inl c2 => inl (Bind c2 f)
| inr (Value v) => inl (f v)
| inr TypeError => inr TypeError
end
end.
Notation "c1 '==>1' c2" := (step c1 c2) (at level 80) : evals_scope.
Notation "c1 '==>*' c2" := (steps c1 c2) (at level 80) : evals_scope.
Local Open Scope evals_scope.
Implicit Arguments inr [A B].
Fixpoint step_fn(c:comp) : comp + answer :=
match c with
| Ret a => inr a
| Delay e env => inl (compile e env)
| Bind c1 f =>
match step_fn c1 with
| inl c2 => inl (Bind c2 f)
| inr (Value v) => inl (f v)
| inr TypeError => inr TypeError
end
end.
Notation "c1 '==>1' c2" := (step c1 c2) (at level 80) : evals_scope.
Notation "c1 '==>*' c2" := (steps c1 c2) (at level 80) : evals_scope.
Local Open Scope evals_scope.
Two different notions of evaluation -- evals1 uses the big-step
semantics, and evals2 uses the small-step semantics. How would
you define an evals3 using step_fn?
Definition evals1 (env:env_t value) (e:exp) (a:answer) := run (compile e env) a.
Definition evals2 (env:env_t value) (e:exp) (a:answer) :=
(compile e env) ==>* (Ret a).
Notation "env |= e ==> a" := (evals2 env e a) (at level 80) : evals_scope.
Definition evals2 (env:env_t value) (e:exp) (a:answer) :=
(compile e env) ==>* (Ret a).
Notation "env |= e ==> a" := (evals2 env e a) (at level 80) : evals_scope.
Inductive type : Type :=
| Nat_t : type
| Bool_t : type
| Arrow_t : type -> type -> type.
Reserved Notation "G |-- e ; t" (at level 80).
| Nat_t : type
| Bool_t : type
| Arrow_t : type -> type -> type.
Reserved Notation "G |-- e ; t" (at level 80).
Typing rules for our expressions
Inductive hasType : env_t type -> exp -> type -> Prop :=
| Var_ht : forall G x t,
lookup G x = Some t ->
G |-- Var_e x ; t
| Lam_ht : forall G x e t1 t2,
((x,t1)::G) |-- e ; t2 ->
G |-- Lam_e x e ; Arrow_t t1 t2
| App_ht : forall G e1 e2 t1 t2,
G |-- e1 ; (Arrow_t t1 t2) ->
G |-- e2 ; t1 ->
G |-- App_e e1 e2 ; t2
| Num_ht : forall G n,
G |-- Num_e n ; Nat_t
| Binop_ht : forall G b e1 e2,
G |-- e1 ; Nat_t ->
G |-- e2 ; Nat_t ->
G |-- Binop_e b e1 e2 ; match b with | Eq_op => Bool_t | _ => Nat_t end
| Bool_ht : forall G b,
G |-- Bool_e b ; Bool_t
| If_ht : forall G e1 e2 e3 t,
G |-- e1 ; Bool_t ->
G |-- e2 ; t ->
G |-- e3 ; t ->
G |-- If_e e1 e2 e3 ; t
where "G |-- e ; t" := (hasType G e t) : typing_scope.
Hint Constructors hasType.
| Var_ht : forall G x t,
lookup G x = Some t ->
G |-- Var_e x ; t
| Lam_ht : forall G x e t1 t2,
((x,t1)::G) |-- e ; t2 ->
G |-- Lam_e x e ; Arrow_t t1 t2
| App_ht : forall G e1 e2 t1 t2,
G |-- e1 ; (Arrow_t t1 t2) ->
G |-- e2 ; t1 ->
G |-- App_e e1 e2 ; t2
| Num_ht : forall G n,
G |-- Num_e n ; Nat_t
| Binop_ht : forall G b e1 e2,
G |-- e1 ; Nat_t ->
G |-- e2 ; Nat_t ->
G |-- Binop_e b e1 e2 ; match b with | Eq_op => Bool_t | _ => Nat_t end
| Bool_ht : forall G b,
G |-- Bool_e b ; Bool_t
| If_ht : forall G e1 e2 e3 t,
G |-- e1 ; Bool_t ->
G |-- e2 ; t ->
G |-- e3 ; t ->
G |-- If_e e1 e2 e3 ; t
where "G |-- e ; t" := (hasType G e t) : typing_scope.
Hint Constructors hasType.
Section ValueTyping.
Local Open Scope typing_scope.
Local Open Scope typing_scope.
Notice that we need value and environments definitions
to be mutually recursive. Also notice that by choosing
inductive definitions, we rule out "circular" lambdas. If
we picked CoInductive instead, we could model this sort of
case...
Inductive valType : value -> type -> Prop :=
| Num_vt : forall n, valType (Num_v n) Nat_t
| Bool_vt : forall b, valType (Bool_v b) Bool_t
| Lam_vt : forall env x e G t1 t2,
envType env G ->
(x,t1)::G |-- e ; t2 ->
valType (Lam_v env x e) (Arrow_t t1 t2)
with envType : env_t value -> env_t type -> Prop :=
| Nil_et : envType nil nil
| Cons_et : forall x v t env G,
valType v t ->
envType env G ->
envType ((x,v)::env) ((x,t)::G).
End ValueTyping.
Hint Constructors valType envType.
| Num_vt : forall n, valType (Num_v n) Nat_t
| Bool_vt : forall b, valType (Bool_v b) Bool_t
| Lam_vt : forall env x e G t1 t2,
envType env G ->
(x,t1)::G |-- e ; t2 ->
valType (Lam_v env x e) (Arrow_t t1 t2)
with envType : env_t value -> env_t type -> Prop :=
| Nil_et : envType nil nil
| Cons_et : forall x v t env G,
valType v t ->
envType env G ->
envType ((x,v)::env) ((x,t)::G).
End ValueTyping.
Hint Constructors valType envType.
We don't really need this induction scheme, but whenever
I have mutually inductive definitions, I always generate
this in case I do need it.
Scheme valType_ind_2 := Induction for valType Sort Prop
with envType_ind_2 := Induction for envType Sort Prop.
Combined Scheme valenvType_ind from valType_ind_2, envType_ind_2.
Inductive ansType : answer -> type -> Prop :=
| Val_ans : forall v t, valType v t -> ansType (Value v) t.
Hint Constructors ansType.
with envType_ind_2 := Induction for envType Sort Prop.
Combined Scheme valenvType_ind from valType_ind_2, envType_ind_2.
Inductive ansType : answer -> type -> Prop :=
| Val_ans : forall v t, valType v t -> ansType (Value v) t.
Hint Constructors ansType.
Now let's prove that our new semantics respects the typing rules.
Open Scope typing_scope.
Typing for computations: Notice that the type for bind!
Inductive compType : comp -> type -> Prop :=
| Ret_ct : forall a t, ansType a t -> compType (Ret a) t
| Delay_ct : forall e env G t,
envType env G -> G |-- e ; t ->
compType (Delay e env) t
| Bind_ct :
forall c f t1 t,
compType c t1 ->
(forall v, valType v t1 -> compType (f v) t) -> compType (Bind c f) t.
Hint Constructors compType.
Ltac mysimp := simpl in * ; intros ; subst ; try congruence ;
match goal with
| [ |- context[string_dec ?x ?y] ] => destruct (string_dec x y)
| [ H : Some _ = Some _ |- _ ] => injection H ; clear H
| [ IH : forall _, envType _ ?G -> compType (compile ?e _) _,
H: envType ?env ?G |- _] =>
generalize (IH env H) ; clear IH ; intro IH
| [ |- forall _, _ ] => intro
| _ => eauto
end.
Ltac pv :=
match goal with
| [ H : lookup _ _ = Some _, H0:envType _ _ |- context[lookup _ _]] =>
generalize H ; induction H0
| [ H : valType _ Nat_t |- _ ] => inversion H ; clear H
| [ H : valType _ Bool_t |- _ ] => inversion H ; clear H
| [ H : valType _ (Arrow_t _ _) |- _ ] => inversion H ; clear H
| [ |- context[compType(if ?b then _ else _) _] ] => destruct b
| [ |- compType (Bind _ _) _ ] => econstructor ; eauto
| [ |- compType (Delay _ _) _ ] => econstructor ; eauto
| [ |- compType (Ret (eval_binop ?b (Num_v _) (Num_v _))) _ ] =>
destruct b ; repeat mysimp
end ; repeat mysimp.
| Ret_ct : forall a t, ansType a t -> compType (Ret a) t
| Delay_ct : forall e env G t,
envType env G -> G |-- e ; t ->
compType (Delay e env) t
| Bind_ct :
forall c f t1 t,
compType c t1 ->
(forall v, valType v t1 -> compType (f v) t) -> compType (Bind c f) t.
Hint Constructors compType.
Ltac mysimp := simpl in * ; intros ; subst ; try congruence ;
match goal with
| [ |- context[string_dec ?x ?y] ] => destruct (string_dec x y)
| [ H : Some _ = Some _ |- _ ] => injection H ; clear H
| [ IH : forall _, envType _ ?G -> compType (compile ?e _) _,
H: envType ?env ?G |- _] =>
generalize (IH env H) ; clear IH ; intro IH
| [ |- forall _, _ ] => intro
| _ => eauto
end.
Ltac pv :=
match goal with
| [ H : lookup _ _ = Some _, H0:envType _ _ |- context[lookup _ _]] =>
generalize H ; induction H0
| [ H : valType _ Nat_t |- _ ] => inversion H ; clear H
| [ H : valType _ Bool_t |- _ ] => inversion H ; clear H
| [ H : valType _ (Arrow_t _ _) |- _ ] => inversion H ; clear H
| [ |- context[compType(if ?b then _ else _) _] ] => destruct b
| [ |- compType (Bind _ _) _ ] => econstructor ; eauto
| [ |- compType (Delay _ _) _ ] => econstructor ; eauto
| [ |- compType (Ret (eval_binop ?b (Num_v _) (Num_v _))) _ ] =>
destruct b ; repeat mysimp
end ; repeat mysimp.
The compiler preserves types.
Lemma CompPreserves :
forall G e t, G |-- e ; t ->
forall env, envType env G -> compType (compile e env) t.
Proof.
induction 1 ; crush ; repeat pv ; eauto.
Qed.
forall G e t, G |-- e ; t ->
forall env, envType env G -> compType (compile e env) t.
Proof.
induction 1 ; crush ; repeat pv ; eauto.
Qed.
A small step preserves types
Lemma StepPreserves :
forall c c',
c ==>1 c' -> forall t, compType c t -> compType c' t.
Proof.
Ltac s :=
match goal with
| [ |- compType (compile _ _) _ ] => eapply CompPreserves ; eauto
| [ H : compType (ret _) _ |- _ ] => inversion H ; clear H ; subst
| [ H : ansType (Value _) _ |- _ ] => inversion H ; clear H ; subst
| [ H : compType (Ret TypeError) _ |- _] => inversion H ; clear H ; subst
| [ H : ansType TypeError _ |- _ ] => inversion H
| _ => eauto
end.
induction 1 ; crush ;
match goal with | [ H : compType _ _ |- _ ] => inversion H ; subst end ;
repeat s.
Qed.
forall c c',
c ==>1 c' -> forall t, compType c t -> compType c' t.
Proof.
Ltac s :=
match goal with
| [ |- compType (compile _ _) _ ] => eapply CompPreserves ; eauto
| [ H : compType (ret _) _ |- _ ] => inversion H ; clear H ; subst
| [ H : ansType (Value _) _ |- _ ] => inversion H ; clear H ; subst
| [ H : compType (Ret TypeError) _ |- _] => inversion H ; clear H ; subst
| [ H : ansType TypeError _ |- _ ] => inversion H
| _ => eauto
end.
induction 1 ; crush ;
match goal with | [ H : compType _ _ |- _ ] => inversion H ; subst end ;
repeat s.
Qed.
The reflexive/transitive closure of the step relation preserves types.
Lemma StepsPreserves :
forall c c' t, c ==>* c' -> compType c t -> compType c' t.
Proof.
induction 1 ; auto ; eapply StepPreserves ; auto.
Qed.
forall c c' t, c ==>* c' -> compType c t -> compType c' t.
Proof.
induction 1 ; auto ; eapply StepPreserves ; auto.
Qed.
Putting the translation and the compuation lemmas together, we get that
any expression which has type t and that evaluates to an answer, produces
an answer of type t.
Lemma Preservation :
forall env e a,
env |= e ==> a ->
forall G t,
envType env G ->
G |-- e ; t -> ansType a t.
Proof.
intros env e a H G t H1 H2 ;
generalize (StepsPreserves H (CompPreserves H2 H1)) ;
inversion 1 ; subst ; auto.
Qed.
forall env e a,
env |= e ==> a ->
forall G t,
envType env G ->
G |-- e ; t -> ansType a t.
Proof.
intros env e a H G t H1 H2 ;
generalize (StepsPreserves H (CompPreserves H2 H1)) ;
inversion 1 ; subst ; auto.
Qed.
Good exercises:
- Add new binary operations, such as Mul_op and Lt_op, and
fix all the proofs as they break.
- Add a "let" construct, and fix the proofs.
- Add a new type (Pair_t : type -> type -> type), expressions
(Pair_e : exp -> exp -> exp) (Fst_e : exp -> exp) and (Snd_e : exp)
and a value (Pair_v : value -> value -> value). Again, where do the
definitions and the proofs have to change?
- Add a "fix" construct. The expression (fix f(x) := e) should
provide a recursive function for evaluating e. Typing fix is
pretty easy:
- ---------------------------------
- Prove a progress theorem for well-typed computations:
If compType c t then either c is a well-typed answer,
or else c ==>1 c'.
- Prove a type-soundness theorem: if e is a well-typed
program in the empty environment, then it is not the
case that e ==>* TypeError
- Prove that (evals1 c a) <-> (evals2 c a).