Problem Set 1 : Logic and Tactics
Module PSET1_EX1.
Definition X1 {A B C D:Prop} :
(B /\ (B -> C /\ D)) -> D.
Definition X2 {A B C:Prop} :
~(A \/ B) -> B -> C.
Definition X3 {A B C:Prop} :
A /\ (B \/ C) -> (A /\ B) \/ (A /\ C).
To solve the following, you'll need to figure out what
the definition of "<->" is and how to work with it...
Definition X4 {A:Prop} :
A <-> A.
Definition X5 {A B:Prop} :
(A <-> B) <-> (B <-> A).
Definition X6 {A B C:Prop} :
(A <-> B) -> (B <-> C) -> (A <-> C).
Thought exercise:
End PSET1_EX1.
Proving with tactics
Module PSET1_EX2.
Lemma X1 {A B C D:Prop} :
(B /\ (B -> C /\ D)) -> D.
Proof.
tauto.
Qed.
Lemma X2 {A B C:Prop} :
~(A \/ B) -> B -> C.
Proof.
tauto.
Qed.
Lemma X3 {A B C:Prop} :
A /\ (B \/ C) -> (A /\ B) \/ (A /\ C).
Proof.
tauto.
Qed.
Lemma X4 {A:Prop} :
A <-> A.
Proof.
tauto.
Qed.
Lemma X5 {A B:Prop} :
(A <-> B) <-> (B <-> A).
Proof.
tauto.
Qed.
Lemma X6 {A B C:Prop} :
(A <-> B) -> (B <-> C) -> (A <-> C).
Proof.
tauto.
Qed.
End PSET1_EX2.
Lemma X1 {A B C D:Prop} :
(B /\ (B -> C /\ D)) -> D.
Proof.
tauto.
Qed.
Lemma X2 {A B C:Prop} :
~(A \/ B) -> B -> C.
Proof.
tauto.
Qed.
Lemma X3 {A B C:Prop} :
A /\ (B \/ C) -> (A /\ B) \/ (A /\ C).
Proof.
tauto.
Qed.
Lemma X4 {A:Prop} :
A <-> A.
Proof.
tauto.
Qed.
Lemma X5 {A B:Prop} :
(A <-> B) <-> (B <-> A).
Proof.
tauto.
Qed.
Lemma X6 {A B C:Prop} :
(A <-> B) -> (B <-> C) -> (A <-> C).
Proof.
tauto.
Qed.
End PSET1_EX2.
This page has been generated by coqdoc