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726 R. Constable 

we say that the above clauses define the canonical proofs, e.g. a canonical proof of 
P & Q is a pair (p, q) , but => L( => R( x. (x, q)); p) is a noncanonical proof of P & Q 
which reduces to (p, q) when we "normalize" the proof. 

Although this is a suggestive semantics of both proofs and propositions, several 
questions remain. Given a proposition P, can we be sure that all proofs have the 
structure suggested by this semantics? Suppose P & Q is not proved by proving P 
and proving Q but instead by a case analysis or by decomposing an implication and 
then decomposing an existential statement, etc.; so if t proves P & Q, do we know t 
is a pair? 

If proofs are going to be objects, then what is the right equality relation on them? 
If t proves P &Q then is t at least equal to a pair (p, q)? What is the right equality 
on propositions? If P = Q and p proves P does p prove Q? How can we make sense 
of Magic as a proof object? It is a proof of P V ...,p yet it has no structure of the kind 
Heyting suggests. We will see that the type theories of the next section provide just 
the right tools for answering these questions. 

3. Type theory 

3.1. Introduction 

Essential features. In this section I want to give a nontechnical overview of the 
subject I am calling type theory. I will discuss these points: 

• It is a foundational theory in the sense of providing definitions of the basic 
notions in logic, mathematics, and computer science in terms of a few primitive 
concepts. 

• It is a computational theory in the sense that among the primitive built-in 
concepts are notions of algorithm, data type, and computation. Moreover 
these notions are so interwoven into the fabric of the theory that we can discuss 
the computational aspects of every other idea in the theory. (The theory also 
provides a foundation for noncomputational mathematics, as we explain later.) 

• It is referential in the sense that the terms denote mathematical objects. The 
referential nature of a term in a type T is determined by the equality relation 
associated with T, written s = t in T. The equality relation is basic to the 
meaning of the type. All terms of the theory are functional over these equalities. 

• When properly formalized and implemented, the theory provides practical 
tools for expressing, performing, and reasoning about computation in all areas 
of mathematics. 

A detailed account of these three features will serve to explain the theory. Under­
standing them is essential to seeing its dynamics. In a sense, the axioms of the theory 
serve to provide a very abstract account of mathematical data, its transformation by 
effective procedures, and its assembly into useful knowledge. I summarized my ideas 
on this topic in Constable [1991]. 
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Language and logic. In a sense, the theory is logic free. Unlike our account of 
typed logic, we do not start with propositions and truth. Instead we begin with more 
elementary parts of language, in particular, with a theory of computational equality 
of terms (or expressions). In Principia these elementary ideas are considered as part 
of the meaning of proposit ions. We separate them more clearly. We examine the 
mechanism of naming and definition as the most fundamental and later build upon 
this an account of propositions and truth. 

This analysis of language draws on the insights of Frege, Russell, Brouwer, 
Wittgenstein, Church, Curry, Markov, de Bruijn, Kolmogorov, and Martin-Lof, and 
it draws on technical advances made by numerous computer scientists and logicians. 
We can summarize the insights in this way. The notion of computability is grounded in 
rules for processing language (Church [1940], Curry and Feys [1958], Markov [1949]) . 
In particular, they can be organized as rules for a basic (type free) equality on 
expressions closely related to Frege's theory of identity in [1903]. The rules explain 
when two expressions will have the same reference if they have any reference. (We call 
these computation rules, but they could also be considered simply as general rules of 
definitional equality as in Automath.) De Bruijn showed that to fully understand the 
definitional rules, we need to understand how expressions are organized into contexts 
in a tree of knowledge as we discussed in section 2.12. 

Frege not only realized the nature of identity rules, but he explained that the 
very notion of an object (or mathematical object) depends ori rules for equality of 
expressions which are intended to denote objects. The equality rules of a theory 
serve to define the objects and prepare the ground for a referential language, one in 
which the expressions can be said to denote objects. 

Frege also believed that the equality rules were not arbitrary but expressed the 
primitive truths about abstract objects such as numbers and classes. We build on 
Brouwer's theme that an understanding of the natural numbers N is an especially 
clear place to begin, and we try to build as much as possible with them. Here 
the insights of Brouwer [1975] (see van Stigt [1990]) show how to connect intuitions 
about number to the rules for equality of expressions. Brouwer shows that the idea 
of natural number and of pairing numbers are meaningful because they arise from 
mental operations. Moreover, these are the same abilities needed to manipulate the 
language of expressions (see Chomsky [1988]).27 

So like Frege and Brouwer (and unlike formalists), we understand type theory to 
be referential, that is, the theory is about mathematical objects, and the meaningful 
expressions denote them. 

Following Russell, we believe that a referential theory is created by classifying 
expressions into types. Not every expression is meaningful, for example, school 
children know that 0/0 is not. We sometimes say that the meaningful expressions 
are those that refer to mathematical objects, but this seems to presuppose that we 

27For Brouwer this language is required by an individual only because of the limits and flaws in 
his or her mental powers. But for our theory, language is essential to the communication among 
agents (human and artificial or otherwise) needed to establish public knowledge. 
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know what such objects are. So we prefer to say that the task of type theory is to 
provide the means to say when an expression is meaningful. This is done by classifying 
expressions into types. Indeed to define a type is to say what expressions are of that 
type. This process also serves to define mathematical objects.28 

Martin-Lof suggested a particular way of specifying types based on ideas devel­
oped by W. W. Tait [1967,1983]. First designate the standard irreducible names for 
elements of a type, say t 1, t 2 , ... belong toT. Call these canonical values. Then 
based on the definition of evaluation, extend the membership relation to all t' such 
that t' evaluates to a canonical value ofT; we say that membership is extended by 
pre-evaluation. 

Level restrictions. Russell [1908] observed that it is not possible to regard the 
collection of all types as a type itself. Let Type be this collection of all types. So Type 
is not an element of Type. Russell suggested schemes for layering or stratifying these 
"inexhaustible concepts" like Type or Proposition or Set. The idea is to introduce 
notions of types of various levels. In our theory these levels are indicated by level 
indexes such as Type;. They will be defined later. 

Architecture of type theory. What we have said so far lays out a basic structure 
for the theory. We start with a class of terms. This is the linguistic material needed 
for communication. We use variables and substitution of terms for variables to 
express relations between terms. Let x, y, z be variables and s, t be terms. We 
denote the substitution of term s for all free occurrences of variable x in t by t [s / x]. 
The details of specifying this mechanism vary from theory to theory. Our account is 
conventional and general. 

Substitution introduces a primitive linguistic relationship among terms which is 
used to define certain basic computational equalities such as ap(.X(x.b); a) = b[a/x]. 

There are other relations expressed on terms which serve to define computation. 
We write these as evaluation relations 

t evals_to t' also written t.!. t'. 

Some terms denote types, e. g. N denotes the type of natural numbers. There are 
type forming operations that build new types from others, e. g. the Cartesian product 
T1 x T2 of T1 and T2. Corresponding to a type constructor like x there is usually a 
constructor on elements, e. g. if t 1 E T1, t2 E T2 then pair(t1; t2) E T1 x T2. By the 
Tait pre-evaluation condition above 

t' evals_to pair( t1 ; t2 ) 

t'ET1 xT2 

28The interplay between expressions and objects has seemed confusing to readers of constructive 
type theory. In my opinion this arises mainly from the fact that computability considerations 
cause us to say more about the underlying language than is typical, but the same relationship 
exists in any formal account of mathematics. 
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Part of defining a type is defining equality among its numbers. This is written 
as s = t in T. The idea of defining an equality with a type produces a concept 
like Bishop's sets (see Bishop [1967], Bishop and Bridges [1985]), that is Bishop 
[1967,p.63] said " . .. a set is defined by describing what must be done to construct an 
element of the set, and what must be done to show that two elements are equal." 

The basic forms of judgment in this type theory are 

• tis a term 
This is a simple context-free condition on strings of symbols that can be checked 
by a parser. We stress this by calling these readable expressions. 

• T is_a type 
We also write T E Type and prefer to write capital letters, S, T, A, B for types. 
This relationship is not decidable in general and cannot be checked by a parser. 
There are rules for inferring typehood. 

• t E T (type membership or elementhood) 
This judgement is undecidable in general. 

• s = t in T (equality on T) 
This judgement is also undecidable generally. 

Inference mechanism. Since Post it has been the accepted practice to define the 
class of formulas and the notion of proof inductively. Notice O\lr definition of formula 
in section 2.4, also, for example, a Hilbert style proof is a sequence of closed formulas 
Fb . .. , Fn such that F; is an axiom or follows by a rule of inference from Fi, Fk for 
j < i, k < i. A typical inference rule is expressed in the form of hypotheses above a 
horizontal line with the conclusion below as in modus poneus. 

A, A=> B 
B 

This definition of a proof includes a specific presentation of evidence that an element 
is in the class of all proofs. 

The above form of a rule can be used to present any induct ive definition. For 
example, the natural numbers are often defined inductively by one rule with no 
premise and another rule with one. 

nEN 
0 EN 

suc(n) EN 

This definition of N is one of the most basic inductive definitions. It is a pattern for 
all others, and indeed, it is the clarity of this style of definition that recommends it 
for foundational work. 

Inductive definitions are also prominent in set theory. The article of Aczel [1986] 
"An Introduction to Inductive Definitions" surveys the methods and results. He 
bases his account on sets <I> of rule instances of the form ~ where X are the premises 
and x the conclusions. A set Y is called <!>-closed iff X ~ Y implies x E Y . The set 
inductively defined by <I> is the intersection of all subsets Y of A which are <!>-closed. 
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3.2. Small fragment - arithmetic 

We build a small fragment of a type theory to illustrate the points we have just 
made. The explanations are all inductive. We let S and T be metavariables for 
types and let, s, t, s;, t;, also s', t', s;, t; denote terms. 

We arrange the theory around a single judgment, the equality s = t in T. We 
avoid membership and typehood judgments by "folding them into equality" just to 
make the fragment more compact. First we look at an informal account of this 
theory. 

The intended meaning of s = t in T is that T is a type and s and t are equal 
elements of it. Thus a premise such as s = t in T implies that T is a type and that 
s and t are elements ofT (thus subsuming membership judgment).29 

The only atomic type is N. If S and T are types, then so is (S x T); these are 
the only compound types. 

The canonical elements of N are 0 and suc(n) where n is an element of N, 
canonical or not. The canonical elements of (S x T) are pair(s; t) where s is of 
type S and t of type T. The expressions 1of (p) and 2of (p) are noncanonical. The 
evaluation of 1of(pair(s;t)) iss and of 2of(pair(s;t)) is t. 

The inference mechanism must generate the evident judgments of the form s = t 
in T according to the above semantics. This is easily done as an inductive definition. 
The rules are all given as clauses in this definition of the usual style (recall Aczel [1977] 
for example). 

We start with terms and their evaluation. The only atomic terms are 0 and N. If 
s and t are terms, then so are suc(t), (s x t),pair(s; t), 1of(t), 2of(t). Of course, not 
all terms will be given meaning, e.g. (0 x N), suc(N), 1of(N) will not be. 

Evaluation. Let s and t be terms. 

0 evals_to 0 N evals_to N suc(t) evals_to suc(t) pair(s; t) evals_to pair(s; t) 

1of(pair(s; t)) evals_to s 2of(pair(s; t)) evals_to t 

Remark: s(N) evals_to s(N), 1of(pair(N; 0)) evals_to N. So evaluation applies to 
meaningless terms. It is a purely formal relation, an effective calculation. Thus the 
base of this theory includes a formal notion of effective computability (c.f. Rogers 
[1967]) compatible with various formalizations of that notion, but not restricted 
necessarily to them (e.g. Church's thesis is not assumed). Also note that evals_to is 
idempotent; if t evals_to t' then t' evals_to t' and t' is a value. 
general equality 

t1 = t2 in T t1 = t2 in T t1 evals_to t~ 
t~ = t2 in T 

29In the type theory of Martin-Lof [1982], a premise such as s = t in T presupposes that T is 
a type and that s E T, t E T. This must be known before the judgment makes sense. 
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typehood and equality 
0 = 0 in N t = t' in N 

suc(t) = suc(t') inN 

s = s' in S t = t' in T 
pair(s; t) = pair(s'; t' ) in (S x T) 

The inductive nature of the type N and of the theory in general is apparent from 
its presentation. That is, from outside the theory we can see this structure. We 
can use induction principles from the informal mathematics (the metamathematics) 
to say, for example, every canonical expression for a number is either 0 or suc(n). 
But so far there is no construct inside the theory which expresses this fact. We will 
eventually add one in section 3.3. 

Examples. Here are examples of true judgments that we can make: suc(O) = suc(O) 
inN. This tells us that N is a type and suc(O) an element of it. Also pair(O; suc(O)) = 
pair(O; suc(O)) in (N x N) which tells us that (N x N) is a type with pair(O; suc(O)) 
a member. Also 1of(pair(O; a)) belongs to N and suc(1of(pair(O; a))) does as well 
for arbitrary a. 

Here is a derivation that suc(1of(pair(O; suc(O) ))) = 2of(pair (O; suc(O))) in N.30 

0 = 0 in Nsuc(O) 
pair(O; suc(O)) 

1of(pair(O; suc(O))) 

0 = 0 inN 

suc(O) = suc(o) inN 

pair(O; suc(O)) in N x N 

1of(pair(O; suc(O))) inN 1of(pair(O; suc(O) )) evals_to 0 

2of(pair(O; suc(O)))= 2of(pair(O; suc(O))) inN 2of(pair(O; suc(O)) ) evals_to suc(O) 

1of(pair(O; suc(O))) = 0 inN 

suc(1of(pair(O; suc(O) ))) = suc(O) inN 

2of(pair(O; suc(O) )) = suc(O) inN 

suc(O) = 2of(pair(O; suc(O))) in N 

suc(1of(pair(O; suc(O)))) = 2of(pair(O; suc(O)) ) inN 

Analyzing the fragment. This little fragment illustrates several features of the 
theory. 

First, evaluation is defined prior to typing. The evals_to relation is purely formal 
and is grounded in language which is a prerequisite for communicat ing mathematics. 
Computation does not take into account the meaning of terms. This definition of 
computability might be limiting since we can imagine a notion that relies on the 
information in typehood, and it is possible that a "semantic notion" of computation 
must be explored in addition, once the types are laid down.31 Our approach to 

30In type theory, we will write the derivations in the usual bottom-up style with the conclusion 
at the bottom, leaves at the top. 

31 In IZF this is precisely the way computation is done, based on the information provided by a 
membership proof. 
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computation is compatible with the view taken in computation theory (c.f. Rogers 
[1967]). 

Second, the semantics of even this simple theory fragment shows that the concept 
of a proposition involves the notion of its meaningfulness (or well-formedness) . For 
example, what appears to be a simple proposition, t = t in T, expresses the 
judgments that T is a type and that t belongs to this type. These judgments are 
part of understanding the judgment of truth. 

To stress this point, notice that by postulating 0 = 0 in N we are saying that 
N is a type, that 0 belongs to N and that it equals itself. The truth judgment is 
entirely trivial; so the significance oft = t in T lies in the well-formedness judgments 
implicit in it. These judgments are normally left implicit in accounts of logic. 

Notice that the well-formedness judgments cannot be false. They are a different 
category of judgment from those about truth. To say that 0 E N is to define zero, 
and to say N is a type is to define N. We see this from the rules since there are no 
separate rules of the form "N is_a type" or 0 is_a N." Note, because t = t whenever t 
is in a type, the judgment t =tinT happens to be true exactly when it is well-formed. 

Finally the points about t = t in T might be clarified by contrasting it with 
sue= sue in 0. This judgment is meaningless in our semantics because 0 is not a 
type. Likewise sue = sue in N is meaningless because although N is a type, sue 
is not a member of it. Similarly, 0 = sue in N is meaningless since sue is not a 
member of N according to our semantics. None of these expressions, which read like 
propositions, is false; they are just senseless. So we cannot understand, with respect 
to our semantics, what it would mean for them to be false. 

Third, notice that the semantics of the theory were given inductively (although 
informally), and the proof rules were designed to directly express this inductive 
definition. This feature will be true for the full theory as well, although the basic 
judgments will involve variables and will be more complex both semantically and 
proof theoretically. 

Fourth, the semantic explanations are rooted in the use of informal language. We 
speak of terms, substitution and evaluation. The use of language is critical to ex­
pressing computation. We do not treat terms as mathematical objects nor evaluation 
as a mathematical relation. To do this would be to conduct metamathematics about 
the system, and that metamathematics would then be based on some prior informal 
language. When we consider implementing the theory, it is the informal language 
which we implement, translating it to a programming notation lying necessarily 
outside of the theory. 

Fifth, although the theory is grounded in language, it refers to abstract objects. 
This abstraction is provided by the equality rules. So while lof(pair(O; suc(O))) is 
not a canonical integer in the term language, we cannot observe this linguistic fact in 
the theory. This term denotes the number 0. The theory is referential in this sense. 

Sixth, the theory is defined by rules. Although these rules reflect concepts that 
we have mastered in language, so are meaningful, and although all of the judgments 
we assert are evident, it is the rules that define the theory. Since the rules reflect a 
semantic philosophy, we can see in them answers to basic questions about the objects 
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of the theory. We can say what a number is, what 0 is, what successor is. Since the 
fragment is so small, the answers are a bit weak, but we will strengthen it later. 

Seventh, the theory is open-ended. We expect to extend this theory to formalize 
ever larger fragments of our intuitions about numbers, types, and propositions. As 
Gi:idel showed, this process is never complete. So at any point t he theory can 
be extended. By later specifying how evaluation and typing work, we provide a 
framework for future extensions and provide the guarantees that extensions will 
preserve the truths already expressed. 

3.3. First extensions 

We could extend the theory by adding further forms of computation such as a 
term, prd , for predecessor along with the evaluation 

prd( sue( n)) evals_to n. 

We can also include a term for addition, add(s; t ) along with the evaluation rules 

add(n; t) evals_to s' 
add(O; t) evals_to t 

add(suc(n); t) evals_to suc(s') 

We include, as well, a term for multiplication, mult(s; t) along-with the evaluation 
rule 

mult(O; t) evals_to 0 
mult(n; t) evals_to m add(m; t ) evals_to a 

mult(suc(n); t) evals_to a 

These rules enable us to type more terms and assert more equalit ies. We can 
easily prove, for instance, that 

add(suc(O); suc(O)) = mult(suc(O); add(suc(O); suc(O) )) in N. 

But this "theory" is woefully weak. It cannot 
• internally express general statements such as prd(suc(x) ) = x in N or 

add(suc(x); y) = suc(add(x; y)) for any x because there is no notion of variable, 
but these are true in the metalanguage. 

• express function definition patterns such as the primitive recursions which were 
used to define add, multiply and for which we know general truths. 

• express the inductive nature of N and its consequences for the uniqueness of 
functions defined by primitive recursion. 

Adding capability to define new functions and state their "funct ionality" t akes 
us from a concrete theory to an abstract one; from specific equality judgments to 
functional judgments. These functional judgments are the essence of the theory, and 
they provide the basis for connecting to the propositional functions of typed logic. 
So we add them next. 
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The simplest new construct to incorporate is one for constructing any object 
by following the pattern for the construction of a number. We call it a (primitive) 
recursion combinator, R. It captures the pattern of definition of prd, add, mult given 
above. It will later be used to explain induction as well. 

The defining property of R is its rule of computation and its respect for equality. 
We present the computation rule using substitution.32 The simplest way to to this 
as to use the standard mechanism of bound variables (as in the lambda calculus or 
in quantifier notation). To this end we let u, v, w, x, y, z be variables, and given an 
expression exp of the theory, we let u.exp or u, v.exp or u, v, x .exp or generally 
u1, ... , Un.exp (also written il.exp) be a binding phrase. We say that the u; are 
binding occurrences of variables whose scope is exp . The occurrences of u; in exp are 
bound (by the smallest binding phrase containing them). The unbound variables of 
exp are called free, and if x is a free variable of il.exp, then u.exp[tjx] denotes the 
substitution oft for every free occurrence of x in exp. If any of the u; occur free in 
t, then as usual u.exp[tjx] produces a new binding phrase u'.exp' where the binding 
variables are renamed to prevent capture of free variables of t. 33 

b[t/v] evals_to c 
R(O; t; v.b; u, v, i.h) evals_to c 

R(n; t; v .b; u, v, i.h) evals_to a h[nju, tjv, aji] evals_to c 

R(suc(n); t; v.b; u, v, i.h) evals_to c 

Here is a typical example of R used to define addition in the usual primitive 
recursive way. 

We see that 

R(n; m; v.v; u, v, a.suc(a)) 

R(O; m; --) evals_to m, i.e. 0 + m = m 
R(suc(n); m; --) evals_to suc(R(n; m; - - )), 

i.e. suc(n) + m evals_to suc(n + m) 

Once we have introduced binding phrases into terms, the format for equality and 
consequent typing rules must change. Consider typing R. We want to say that if v.b 
and u, v, i.h have certain types, then R has a certain type. But the type of b and h 
will depend on the types of u, v and i. For example, the type of v .v will be T in a 
context in which the variable v is assumed to have type T. Let us agree to use the 
judgment t E T to discuss typing issues, but for this theory fragment (as for Nuprl) 
this notation is just an abbreviation for t = t in T. We will use it when we intend to 
focus on typing issues. We might write a rule like 

32 R can also be defined as a combinator without variables. In this case the primitive notion is 
application rather than substitution. 

33If u; is a free variable oft then it is captured in u.exp[tfx] by the binding occurrence u;. 

The premises 

Types 

n E N t E A b E ~1 u E N v E A1 i E B2 
1 E 2 hE B2 

R(n; t; v.b; u, v, i.h) E B2 

u E N v E A1 i E B2 

hE B2 

735 

reads "h has type B2 under the assumption that u has type N, u has type A1 and 

i has type B2 ." 
For ease of writing we render this hypothetical typing judgment as 

u: N, v: A1 , i: B2 f- h E B2 • The syntax u: N is a variant of u E N which 
stresses that u is a variable. Now the typing of R can be written 

nEN tEN v:A1 f-bEB2 u:N, v:A1, i:B2f-hEB2 
R(n; t; v.b; u, v, i. h) E B2 

This format tells us that n, t, b and h are possibly compound expressions of the 
indicated types with v, u, i as variables assumed to be of the indicated types. 

Following our practice of subsuming the typing judgment in the equality one, we 
introduce the following rule. · 

First let 

Principle_argument 

Aux_argument 

Base_equality 

I nduction_equality 

Then the rule is 

n = n' inN 

t=t'inN 

v = v' in A 1 f- b = b' in B2 

u = u' inN, v = v' in Al> i = i' in B 2 f- h = h' in B2 

Principle_argument Aux_argument Base_equality Induction_equality 

R(n; t; v. b; u, v, e. h) = R(n'; t'; v'. b'; u', v' , e'. h') in B2 

Unit and empty types. We have already seen a need for a type with exactly one 
element, called a unit type. We take 1 as the type name and • as the element, and 
adopt the rules: 

•=• in1 

We adopt the convention that such a rule automatically adds the new terms • and 1 
to the collection of terms. We also automatically add 

• evals_to • 1 evals_to 1 

to indicate that the new terms are canonical unless we stipulate otherwise with a 
different evaluation rule. 
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We will have reasons later for wanting the "dual" of the unit type. This is the 
empty type, 0, with no elements. There is no rule for elements, but we postulate 0 
is_a type from which we have that we 0 as a term and 0 evals_to 0 

An interesting point about handling 0 is to decide what we mean by assuming 
x E 0. Does 

x:O I-- xEO 

make sense? Is this a sensible judgment? We seem to be saying that if we assume 
x belongs to 0 and that 0 is type, then x indeed belongs to 0. We clearly know 
functionality vacuously since there are no closed terms t, t' with t = t' in 0. It is 
more interesting to ask about such anomalies as 

x : 0 I-- x E N or x : 0 I-- x E 1 

or even the possible nonsense 
X: 0 I--N EN. 

What are we to make of these "boundary conditions" in the design of the theory? 
According to our semantics and Martin-Lors typing judgments, even x :0 I-­

(sue = N in N) is a true judgment because we require that 0 is a type and for t, t' in 
0, if t = t' in 0, then sue E N, N E N and sue= N in N. Since anything is true for 
all t, t' in 0, the judgment is true. 

This conclusion is somewhat bizarre, but we will see later that there will be other 
types, of the form {x: A I P(x)} whose emptiness is unknown. So our recourse is 
to treat types uniformly and not attempt to make a special judgment in the case of 
assumptions of the form x : T for which T might be empty. 

List types. The list data type is almost as central to computing as the natural 
numbers. We presented this type in the logic as well, and we follow that example 
even though we can see lists as a special case of the recursive types to be discussed 
later (section 4). The rules are more compact and pleasing to examine if we omit 
the typing context I and use the typing abbreviation of t E T for t = t in T. So 
although we will write a rule like34 

a E A, l E list(A) 
cons( a; l) E list( A) 

Without its typing context, we intend the full rule 

II-- a = a' in A II-- l = l' in list(A) 
I I-- eons(a; l) =eons( a'; l' ) in list( A). 

34In this section we use list( A) instead of A list to stress that we are developing a different 
theory than in section 2. 
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We also introduce a form of primitive recursion on lists, the combinator L whose 
evaluation rule and typing rules are: 

b[t/v] evals_to e 
L(nil; p; v.b; h, t, v, i.g) evals_to e 

L(l, s, v.b, h, t, v, i.g) evals_to c1 g[a/h, l/t, s/v, ci/i] evals_to e2 

L(cons(a; l); s; v.b; h, t , v, i .g) evals_to e2 

Let L[x; b, g] = L(x; v. b; h, t, v, e. g), and 

H8 == v = v' inS I-- b = b' E B, 

Hs == h = h' in A, t = t' in list(A), v = v' inS, i = i' in B I-- g= g' in B, 

C A == I-- a = a' in A, 

Cs ==I-- s= s' inS, and 

CAtist == 1---l = l' in list(A), then 

Hs Hs CA Cs CAlist 
L[eons(a; l), b; g] = L[cons(a1

; l1
), b1

, g1
] in list( A) 

L(nil; v.b; h, t, v, i.g) = L(nil; v.b'; h', t, v, i .g') in list( A) 

Here are typical generalizations of the functions add, mult, exp to N list to 
illustrate the use of L . For the list (3, 8, 5, 7, 2) the operations behave as follows. 
Add addL is (3 + (8 + (5 + (7 + (2 + 0))))), multL ish 8 * 5 * h h 1 , expL2 is 
(((((2)2)7)5)8)3. 

addL(l) == L(l; 0; h, t, a.add(h, a)) 
multL(l) == L(l; 1; h, t, m.mult(h, m)) 
expL(l)k == L(l ; k; h, t, e.exp(h, e)) . 

The induction rule for lists is expressed using L as follows. Let Hs == 

x E list(A) , y E S, v E S I-- f[nil/x,vjy] =bin B 

and let Hust == 

x E list(A), yES, hE A, t E list(A), v E S, i E B I-- f[eons(h ; t )/ x, v/y] =gin B , 

then 
Hs Htist 

x E list(A), yES I--f= L(x; y; v .b; h, t , v, i .g) in B 

This says that L defines a unique functional expression over list(A) and S because 
the values as inductively determined by the evaluation rule completely determine 
functions over list( A). 


