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Abstract. We prove that the problem of deciding for closed tcrms ¢, 1> of the typed A -calculus
whether 7, B-converts to t, is not elementary recursive.

1. Introduction

Historically, the principal interest in the typed A -calculus is in connection with
Gddel'’s functional (“‘Dialectica™: see Godel [4]) interpretation of intuitionistic
arithmetic. However, since the early sixties interest has shifted to a wide variety of
applications in diverse branches of logic, algebra and computer science. For example,
in proof-theory (see for example, Tait [20]), in constructive logic (see for example,
Lauchli [10]), in the theory of functionals (see for example, Friedman [3]), in
cartesian closed categories (see for example, Mann [11]), in automatic theorem
proving (see for example, Huet [8]), in the semantics of natural languages (see for
example, Montague [14]), and in the semantics of programming languages (see for
example, Milner [12)]).

In almost all such applications there is a point at which one must ask, for closed
terms ¢, and t;, whether 1, B-converts to ¢,. We shall show that in general this
question cannot be answered by a Turing machine in elementary time.

2. Type theory

The language of type theory, {2, is the language of set-theory where each variable
has a natural number type and there are two constants 0, 1 of type 0. We require that
prime formulae be “stratified”, i.e., each prime formula has one of the forms 0 < x°,
lex'and y"ez"" . Arbitrary formulae are built-up from prime ones by =, A, and
V. The intended interpretation of 2 has 0 denoting 0, 1 denoting 1 and x" ranging
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over @,where 2,={0,1} and @,,, =powerset (2,). If A=A(x7" -+ x,) and
a; € D, for 1 <i<m we write Ala, - - - a,,] for A with x;* denoting a.

The problem of deciding whether an arbitrary (2-sentence is true is recursive.
In fact there is a quantifier-elimination for £2-sentences (see Henkin [6]). Briefly,
if one extends the language by adding { , } and defines x* =,y
V¥ 'z 'ex* oz Tey*) for k>0, each aeP, can be defined by
" =g x" Ve v =,_1 x""'}, where t; - - - f; define the elements of @ and

" 'e{y cA(y™) ©a A(r™ "), when 1>0. Thus Vx"A(x") > A(f) A+ - - AA(L,)

for t; - - - 1, definitions of the members of &,.

Proposition 1 (Fischer and Meyer, Statman). The problem of determining if an
arbitrary £)-sentence is true cannot be solved in elementary time (see Meyer [13, p. 479
no. 7)).

We shall use the above proposition together with a coding argument to prove our
principal result (see below).
Let Vo=0and V, ., =powerset (V,,)u V,. We note in passing the following;:

Corollary (for ldgicians). Let & be ihe language of set theory supplemented by a
constant foreach V,; then the problem of determining if an arbitrary Ao-sentence of £ is
true cannot be solved in elementary time.

3. Typed A-calculus

We consider the typed A -calculus A with a single ground type 0, no constants, only
power types (- ) and B-conversion. The reader not familiar with the typed A-
calculus should consult Hindley et al. [7].

We shall adopt the usual convention of ignoring a-conversion (change of bound
variables) deleting type superscripts except where important and omitting paren-
theses selectively (association to the left). We shall also make use of the substitution
prefix[ / both for substituting a term for a variable and for substituting a type for 0.

# =4 (0-0)— (0~ 0) is the type of A-numbers. It is easy to verify that the closed
(i.e., with no free variables) B-normal terms of type @ are just Axx and for each n,

Axyx( X0 (X))
Letting
n =g Axyx( - (xy)- ),

n

if tis a closed term of type § - (- - - (§ > #)- - -) foreach n, - - - n,, there is a unique n
\_.—\,—-_/

such that m; - - - n,,8n —conv. n. In this way ¢ defines an m-ary number-theoretic
function.
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An extended polynomial is a polynomial built up from 0, 1, +, -, sg and sg (see
Kleene [9, p. 223, no. 9 and ro. 10).

Proposition 2 (Schwichtenberg [16], Statman). The A-definable m-ary number
theoretic functions are just the extended polynomials.

In particular, there are closed terms +, *, sg and sg which A -define resp. +, -, sg,
and sg.

There are some very short definitions of very large numbers in A. Set s(0) =1 and
s(n+1)=2°" and set a;=2 and a,+;=([0-0/0]a,)a;; by a computation of
Church [2, p. 30] a,f—conv. s(n).

The A -defirability of the extended polynomials allows us to code the Boolean
operations into A. The short definitions of large numbers allow us to iterate
A -definable operations a vcry large (but fixed) number of times. These are precisely
the conditions that permit us to simulate the quantifier-elimination for 2 by
B-conversion.

The problem of determining for arbitrary closed terms #y, #, of the same type
whether ¢, B-conv. t, is decidable. By analyzing the normal form algorithm (see [7, p.
73)) itis easy to see that the problem can be solved in €* time (here, €*is the Sthlevel
of the Grzegorczyk hierarchy; see Grzegorczyk [S]). Thus with respect to this crude
classification our lower dound (& = elementary) is best possible.

4. Translation of {2 into A

We define recursively No=0 and N,.1 =N, 0. The following definitions are
central to what follows.

(1) eo =as Axy +(+(sg x)(sg y))(*(sg y)(Sg x)).

Forall n, m, (ec nm)B-conv. 0 & n=0=mor0<n, m,and (e nm) 3-conv. 0 or L.
eo has type §~> (8-> #).

(2) Vo =atAh +(h0)(h1),

V, has type N; > #.

(3) C =arrg+(g(AxI))(g(Axx)),

C has type N.> #.

(4) pn+1(x, 2) =gt CAf(Vu(Aw(z(Ay - (flenwy);(xy))))).

Here x has type N, - @, y has type N,, w has type N,, z has type N, - #,
and f has type g->8. We have pu.i(x,z)B-conv.+(V.(Aw(z(Ay -
(AxD)(ewy)xy) )NV (Aw(z(Ay * (Axx)e,wy)(xy))))). “C” stands for “choice (for
£)”. “pn+1” stands for “prime constituent for building definitions of type n+1
objects”.

(5) en+1 =at AxyVn(Az(eo(xz)(y2)),

€n+1has type Nty - (Np+1-> 9).
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6) Vui1 =ar AY(((IN,+2/0)an+1)(A2Xpn+1(x, 2))y)Awl),
V...1 has type N,...> 0.
We now define tke translation *:

0*=0
1*=1
(x"y* =x"N

(1 € 1)* = sg(151T)

(A A B)* =sg(+ A*B*)

(mA)* =5gA*

(Vx"A)* =sg(V,Ax""A%),
We shall show that for 2-sentences A, A is true <& A*B-conv. @ and 1A is true
& A*B-conv. 1. The key idea is that the B-reductions of V,, simulate the quantifier-
elimination for £2-sentences. Here + plays the role of A so - plays the role of v. In
addition, ¢, plays the role of equality between type n objects. This motivates the
definitions below.

§. Verification that the translation is correct

We define the notion of a definition of an object of type n as follows.
(a) def’(0)={0},
(b) def’(1)={1},
(©) if @ €Dy, then def” (@) ={Ay - r1(- - *(* Fews1,((AWI)Y))- * *): y, w have type
N,, r;=1 or r,=e,ty for tcdef”(B) and B € a, for each B € a for some ¢ def”(B)
there is some i s.t. r; = e,ty}. We sei def, = ez, def” (a).

Below we define sets N,, orders —"< and functions d,, : N,, - def,. The members of

N, code various processes of constructing members of def, and for n € N,, d.(n) is
the member of def,, constructed by the process coded by 7. The order —< describes a

fixed process for generating the processes coded by members of N,,. First some set
theoretic preliminaries. ,

If X and Y are sets then X® Y={(x,y):xeX and yeY} and Xy =
{p:m:X->Y}) 7:X®Y->X is defined by 7(x,y)=x and m: X @ Y->Y is
defined by 72(x, y) = y. If p isan ordering of X and y anorderingof Y,thend =p ® y
is the ordering of Z =X ® Y defined by 2,6z, if mz1ym22, Or m2z=m22, and
mzipmza. [1,n]={k: 1<k <n}. p" is the ordering of ""1X defined by n,p"n. if
m # 1> and for m =max{k: 1<k <n and n1(k) # n2(k)}, n1(m)ma(m).

Define for all n and 1=m=<s(n), NV as follows; No={0,1} and N\, =

[1, m}NZ™ ® Nb). Set N, = N3 and define — by —;< is the natural order on Np,

m sin) 1 s(n)

~ =(<®—)" Set <= —<.
n 0 n n

n+l
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Define d; or N as follows: d¢(0)=0, do(1)=1 and for ne N™,, di'1(n) =
Ay s ri(c s (e rm(xy)) - *) where ri=1 if w2 (i)=0 and ri=
en([A21/x1d3"™ (mim(D)))y if man (i) =1. Set d,, =[Az1/x]d5"™.

Now suppose that X is a set of occurrences of terms of type o ordered by p, | X|is a
power of 2 and X = X; uX; is a partition of X with |X;|=|X;| and ¢, € X, and
LeX,=>tpt,. Let z be a variable of type o - #; we define the term Y ,.x zt
recursively by

Y zt= +( Y ztl)( Y ztz).
teX neX; neXs
We shall prove the

Proposition 3. V,,8-conv. Ay Y ,cn, ydn ().
Think of

Y zdpa(nm)

NneNp+1

as a symmetric binary tree (branching upwards) with a member of N, at each leaf.
The order of the members from left to right is —m< . If we think of amember of N/’ as

a sequence of pairs then 2 member of NI}’ can be obtained by adding a member of

N}.1 at the end. Moreover if £e N, and n<NL.,, then [dh.1(n)/x]dns1 (£)B-

conv.dm (én). In addition if &,&eNi; and 7y, 7m2€Nn,,, then
m+1

E/;n —< sz Sm —< 72 or m; =72 and &; -—< &,. From these remarks it is easy to

see the

Fat. ¥ ( T z[dhn(n)/xld7(@)Bconv. T zdii(m).

neNp+1 geN‘,‘H_l 'neN:‘.

1
The members of Nj are (0,0)(1,0)0,1)(1,1) in the —'ix’ ordering. We

have Azxpi(x, z)B-conv. AzxCAf(+(z(Ay * f(eaOy)(xy)))(z(Ay * f(eody)(xy)))) B-
conv. Azx +(+(z(Ay * 1(xy)))(z(Ay « T(xy)))(+(z(Ay * (eoOy)(xy))(z(Ay - (eoly) -
(xy)))). The last term is Azx Y,enizdi(n) since di((0,0)=1, di((1,0)=1,
d}((0, 1)) = eo0y and d1((1, 1)) = eoly. More generally we have the

Lemma. For 1=m <s(n+1)((N,1+2/0]m)Azxp,.1(x, z)B-conv.

Azx Y zdia(m).

neNy+1

Proof. By induction on (n, m) ordered lexicographically.
Basis: n=0. '
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Case: m=1. ((N2/0M)Azxp;(x, z)B-conv. Azxpi{x, z) so by the above compu-
tation ([N2/0J)Azxp,(x, z)B-conv. Azx ¥ ,cnt 2di(n).

Case: m=2. ([N2/0]2)Azxpi(x, z)B-conv. AwAzxp;(x, z)(Azxpi(x, z)w)B-conv.
Axw ¥, n1 (Aypi(y, w))di(n) by case m =1 B-conv.

Azx X ( Y z[di(n)/x)d }(f))B-conv. Azx Y zd3i(n) by the fact.
neN] \¢eN} neN3
Induction step: n>0.

Case: m=1. ([N,.2/0M)Azxp, 1(x, z)B-conv. Azxp,+1(x, z)B-conv. AzxCAf
Y neri, Awz(Ay « (f(e,wy))(xy)))d,(n) by induction hypothesis B-conv.

Azx+( Y Z(AY'I(xy)))( ZN z(Ay -(end..(n)y)(xy)))=1tzx Y zdra(n).

neN, "1€Nvl|+l

Case: m=k+1. (IN,+2/01m)Azxp,+1(x, z)B-conv. Aw1AZXPy+1(x, 2)

(INs+2/0Y)AZXP. 41 (x, Z)W1)B-cONV. AW AZXPs+1(X, 2)(AX ¥ penk,, Widns1(n)) by
induction hypothesis 8-conv.

Azwz+( ¥y (Ax gez zdﬁﬂ(g))()\y-l(my‘)))

"’GNLA‘] Nhn-o-l

(T (& 3 2ha@)ay- dhamymy))
£e

‘"5N1‘|+l Nkn«»l

by case m =1 B-conv. Azx ¥ N, zd 1.+ (n) by the fact.

Proof of Proposition 3.
V,.18-conv. Ay(Azx Y zdst l’(-n)) yawl
by the e
lemma B-conv. Ay ;_j yAwl/x]d50 Y () = Ay % ydu+1(n).
net i neNp+1

The proposiitior: would be uscless without the following easy

Observation. If n € N,, then d,(n) € def” and for each a € D, there is an 1 € N,, such
that d,.(n) e def” (a).

The members of def, are
Ay < I1(- I((Aw1)y)), Ay - 1(* (eoOy)(Aw1)y)),
Ay - 1(- (eoly)((Aw1)y)), Ay - (eoOy)(- 1((AwW1)y)),
Ay - (eoly)(* 1((Aw1)y)),
Ay « (e00y)( -+ (eoOy)((Aw1)y)),
Ay * (€00y)(+ (eoy)(AW1)y)), Ay - (eody)( - (coOy)((AW1)y))
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and
Ay * (eoly)(* (eody)((Aw1)y))

so if y€Pia, Be Doty e def’(B)t2cdef’(a) and tzedef'(y), then Bey < (t:1,8-
conv. 0) and a = B8 & (eot1128-conv. 0). More generally we have the

Proposition 4. Suppose a,B €Dy, Y€ Dn+1, hedef’(B), t2edef"(a), and tz¢
def"*(y), then

(a) B=a & (e.12B-conv. 0), and

(b) Bey& (tgtlﬁ-conv. 0).

Proof. By induction on n.

Basis: n = 0. This is the preceding remark.

Induction step: n=m+1.

(a) We have e,t;,8-conv. Y en,, €o(t1dm{n))(t2d..(n)) by the previous proposi-
tion. If 8 = a and d,,(n) € def” (B) by hyp. ind. on (b) eo(t1dm(1))(t2(dn(n))) B-conv. 0
and if d,,(n)#def”(8) by hyp. ind. on (b) tid.(n), t2d.(n)—1(B-conv.) 0 so
eo(t1dm(B))(t2d,(B)) B-conv. 0. If B # a w.l.o.g. assume 8 € B and 6 € a. By the above
observation there is an n € N, such that d,,(n) € def™ (8). By hyp. ind. on (b) t,d,.(n)
B-conv. 0 and t2d,.(n)-1(B-conv.) 0 so eo(t1dm(n))t2dn(n)) B-conv. 1. Thus in
either case we have (a).

(b). Let ts=Ay * ry(* -+ *(* rsu+y((Aw1)y))- « *). If B € v, then for some ¢, € def"(B)
and some i, 7; = e,tsy. By case (a) e,tst1B-conv. 0 so t3t; B-conv. 0.If B £ vy, then for
each r; = e t4y ta £ def”(B) so by case (a) eatat; 71 (B-conv.)d. Thus in either case we
have (b).

The two propositions taken together tell us that our definitions of e, and V,, work
correctly. This is summarized in the following

Theorem 1. Suppose A =A(x1", ..., xu") is an -formula, a; € D, and 1; € def™ (a;)
for 1<i<m, then Alai,...,am] is true &MY ..., X AF)ty - - - taB-conv. 0.

Proof. By induction on A.

Basis: A is atomic. This is just the previous proposition case (b)

Induction step. Cases: A =B ar C, A= —1B. Immediate by hyp. ind.

Case: A=Vx"B. We have Alai,...,an]&V6€P,Blay,...,a,B]e
Vtedef,(AxYt «+ - xprmx""B*)t; -+ - tut B-conv.@ by hyp.ind. &Ssgd,
AxNr1 - xNamxNaB*)1, - - t,d,(n) B-conv. O by the observation

AxNn1 oo xNemgg Y (AxN"B*)dp(n))t1 - + - tmB-conv. 0

NENm

(AxlN"l P xﬁ"m‘A*)tl LB th'conv- 0.
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Corollary. For each type o # 0~ 0 which is the type of a closed term there is a closed
term t” such that the problem of determining for arbitrary closed terms r of type o
waether rB-conv. t°, rB-red t°, or t° is the B-normal form of r cannot be solved in
elementary time. (0- 0 is anomalous because it contains only one B-normal closed
term, viz. Axx.)

Proof. The above theorem establishes the corollary for o =0 with ¢° = 0. Note that
for £2-sentences A, 1A is true & A*B-conv. 1.

Case: o =0~ (- - -(0->0)- - -) for m > 1. We have for closed r of type 8, r8-conv.

m

0 S r(AvsoNvIB-conv. v3 S AvT - - - Vr(AvdY)vIB-conv. AvS - - - 1,03 so we can
set 7 =Av) - o0

Case: oth:rwise. We say that o contains a splinter if there is a closed term ¢ of type
o and a closed term s of type o->o such that the B-normal forms of
L,st,...,s(--(st)- - -),...areall distinct. It is easy to prove that o contains a splinter
& o contains a closed term and o does not have the form 0->(---(0->0)- - -).
Suppose o contains a splinter generated by ¢ and s; we have for closed r of type 9,
rB-conv. 0 & [o/0)rB-conv. [o/0]0 & ([o/0]r)st B-conv. ¢ so we can set t7 =1.

6. Extensions and refinements

By a consistent extension A of A we mean an extension of A with a model whose
ground domain has =2 elements (note that A* need not be closed under the
inductive definition of B8-conversion and the model need not be extensional). If A" is
anextensionof A and A “—0 = 1,then A "v] =v3so A" is not consistent. Thus if A *
is a consistent extension of A, for 2-sentences A, A is true & A '+—A* = 0. More
generally we have the

Theorem 2. If o is the type of a closed term and o contains no positive occurrence of a
subtype of the form oy~ (02> 03) (see Prawitz [15, p. 43 and read > for 21), then
there is a closed term t° of type o such that the problem of determining for an arbitrary
closed term r of type o whether r B-conv. t°, r B-red t° or t° is the B-normal form of r
cannot be solved in elementary time.

Our proof of this theorem uses the model theory of Statman [18] and is proved
there.

The rank of a type is defined as follows: rmk (0)=0 and rnk(c->7)=
max{rnk(co)+ 1, rk(7)}. Set T, = {t € A: each subterm of ¢ has type with rnk<n}. It
is easy to see (by analysis of the normal form algorithm) that the problem for
arbitrary closed terms ¢,, 1,€ T, of the same type of whether #;8-conv. f; can be
solved in elementary time. By modifying the above construction (using Meyer’s
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result for the monadic predicate calculus instead of {2; see Meyer [13, p. 478]) it is
easy to find an n such that

Proposition S. The problem for arbitrary closed t € T, of whether t B-conv. 0 cannot be
solved in polynomial time.

If F is a finite set of types let T ={t € A: each subterm of ¢ has type € F}. By
modifving the above construction (using the Meyer-Stockmeyer result for B,
instead of £2; see Stockmeyer [19, p. 12]) it is easy to find an F such that

Proposition 6. The problem for arbitrary closed t € Tr of whether t B-conv. 0 is
polynomial-space hard.
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