Unsupervised Learning and Data Mining

Unsupervised Learning and Data Mining

Clustering

Supervised Learning

- Decision trees
- Artificial neural nets
- K-nearest neighbor
- Support vectors
- Linear regression
- Logistic regression
- ...

Supervised Learning

- F(x): true function (usually not known)
- D: training sample drawn from F(x)

Supervised Learning

- F(x): true function (usually not known)
- D: training sample drawn from F(x)

 - 54,F,135,0,115,95,39,35,1,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1
- G(x): model learned from training sample D
- Goal: $E<(F(x)-G(x))^2>$ is small (near zero) for future samples drawn from F(x)

Supervised Learning

Well Defined Goal:

Learn G(x) that is a good approximation to F(x) from training sample D

Know How to Measure Error:

Accuracy, RMSE, ROC, Cross Entropy, ...

Clustering

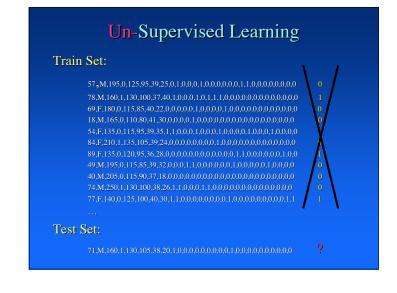
 \neq

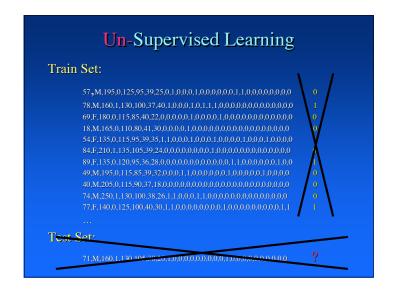
Supervised Learning

Clustering

_

Unsupervised Learning





Un-Supervised Learning

Data Set:

Supervised vs. Unsupervised Learning

Supervised

- y=F(x): true function
- D: labeled training set
- D: $\{x_i, y_i\}$
- y=G(x): model trained to predict labels D
- Goal:

 $E < (F(x)-G(x))^2 > \approx 0$

• Well defined criteria: Accuracy, RMSE, ...

Unsupervised

- Generator: true model
- D: unlabeled data sample
- D: {x_i}
- Learn

??????????

• Goal:

,,,,,,,,,,

• Well defined criteria:

??????????

What to Learn/Discover?

- Statistical Summaries
- Generators
- Density Estimation
- Patterns/Rules
- Associations
- Clusters/Groups
- Exceptions/Outliers
- Changes in Patterns Over Time or Location

Goals and Performance Criteria?

- Statistical Summaries
- Generators
- Density Estimation
- Patterns/Rules
- Associations
- Clusters/Groups
- Exceptions/Outliers
- Changes in Patterns Over Time or Location

Clustering

Clustering

- Given:
 - Data Set D (training set)
 - Similarity/distance metric/information
- Find:
 - Partitioning of data
 - Groups of similar/close items

Types of Clustering

- Partitioning
 - K-means clustering
 - K-medoids clustering
 - EM (expectation maximization) clustering
- Hierarchical
 - Divisive clustering (top down)
 - Agglomerative clustering (bottom up)
- Density-Based Methods
 - Regions of dense points separated by sparser regions of relatively low density

Similarity?

- Groups of similar customers
 - Similar demographics
 - Similar buying behavior
 - Similar health
- Similar products
 - Similar cost
 - Similar function
 - Similar store
 - _
- Similarity usually is domain/problem specific

Types of Clustering

- Hard Clustering:
 - Each object is in one and only one cluster
- Soft Clustering:
 - Each object has a probability of being in each cluster

Two Types of Data/Distance Info

• N-dim vector space representation and distance metric

Distance (D1,D2) = ???

• Pairwise distances between points (no N-dim space)

+ Similarity/dissimilarity matrix (upper or lower diagonal)

```
Distance: 0 = \text{near}, \infty = \text{far}
Similarity: 0 = \text{far}, \infty = \text{near}
```


Agglomerative Clustering

- Put each item in its own cluster (641 singletons)
- Find all pairwise distances between clusters
- Merge the two *closest* clusters
- Repeat until everything is in one cluster
- Hierarchical clustering
- Yields a clustering with each possible # of clusters
- Greedy clustering: not optimal for any cluster size

Agglomerative Clustering of Proteins

Merging: Closest Clusters

- Nearest centroids
- Nearest medoids
- Nearest neighbors (shortest link)
- Nearest average distance (average link)
- Smallest greatest distance (maximum link)
- Domain specific similarity measure
 - word frequency, TFIDF, KL-divergence, ...
- Merge clusters that optimize criterion after merge
 - minimum mean_point_happiness

Mean Distance Between Clusters

Mean_Dist
$$(c_1, c_2) = \frac{\sum_{i \in c_1} \sum_{j \in c_2} Dist(i, j)}{\sum_{i \in c_1} \sum_{j \in c_2} 1}$$

Minimum Distance Between Clusters

$$Min_Dist(c_1, c_2) = \underset{i \in c_1, j \in c_2}{MIN}(Dist(i, j))$$

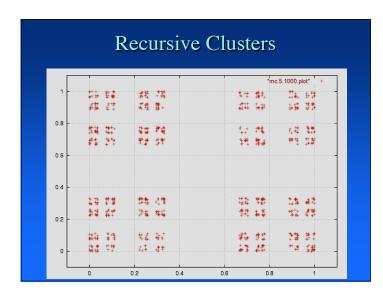
Mean Internal Distance in Cluster

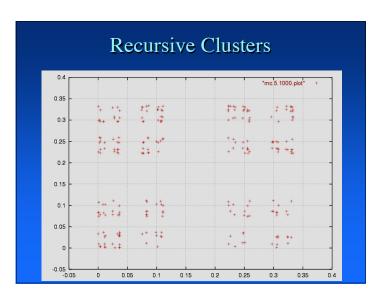
$$Mean_Internal_Dist(c) = \frac{\sum_{i \in c} \sum_{j \in c, i \neq j} Dist(i, j)}{\sum_{i \in c} \sum_{j \in c, i \neq j} 1}$$

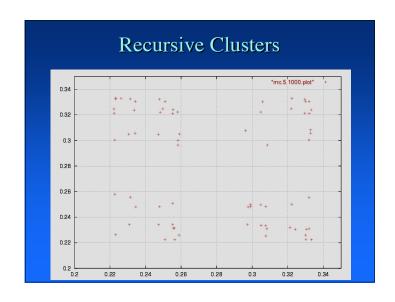
Mean Point Happiness

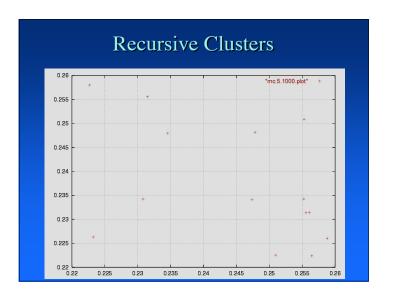
$$\delta_{ij} = \begin{cases} 1 & when \ cluster(i) = cluster(j) \\ 0 & when \ cluster(i) \neq cluster(j) \end{cases}$$

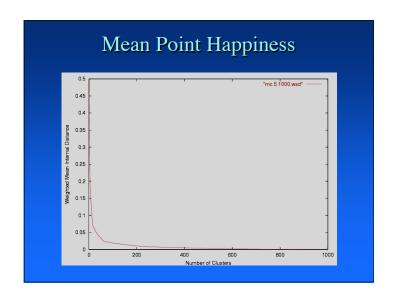
$$Mean_Happiness = \frac{\displaystyle\sum_{i} \sum_{j \neq i} \delta_{ij} \bullet Dist(i, j)}{\displaystyle\sum_{i} \sum_{j \neq i} \delta_{ij}}$$

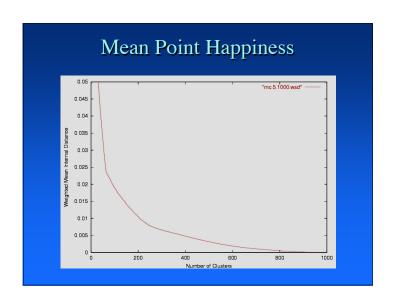


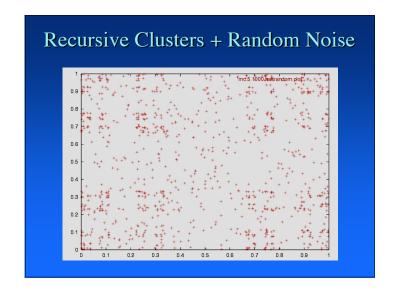


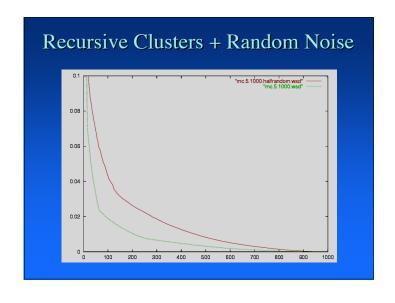


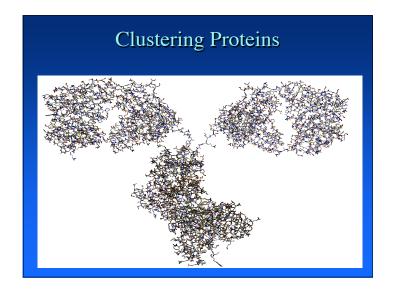


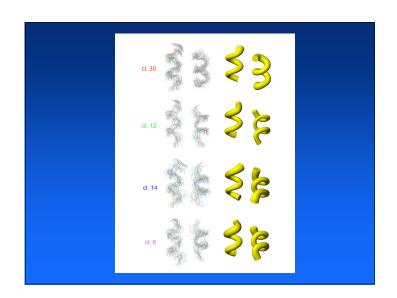






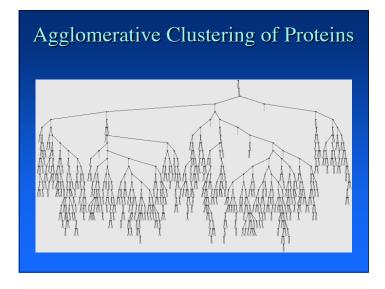


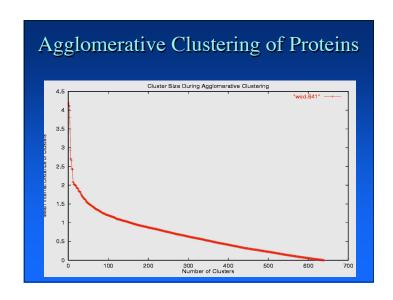


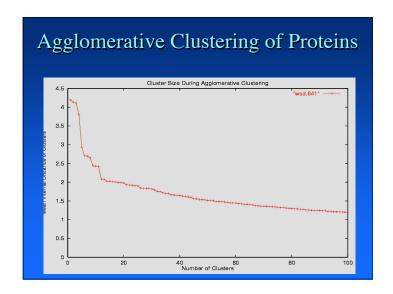


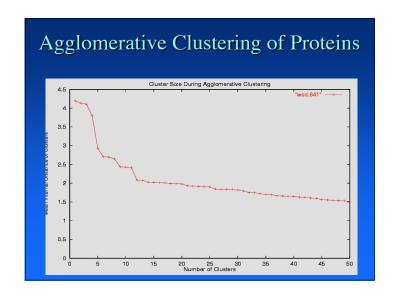
Distance Between Helices

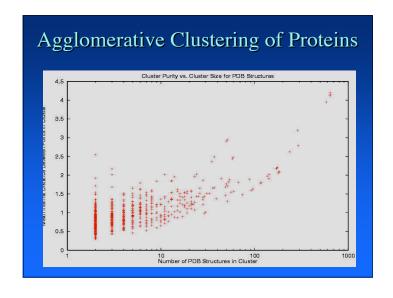
- Vector representation of protein data in 3-D space that gives x,y,z coordinates of each atom in helix
- Use a program developed by chemists (fortran) to convert 3-D atom coordinates into average atomic distances in angstroms between aligned helices
- 641 helices = 641 * 640 / 2
 - = 205,120 pairwise distances

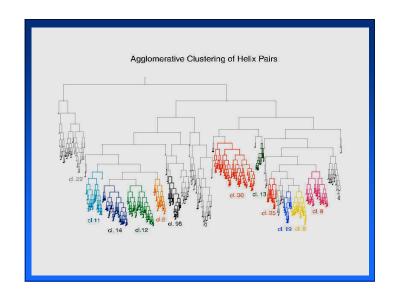


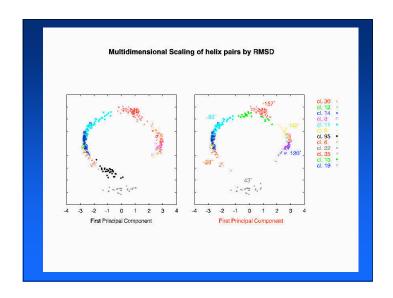












Agglomerative Clustering

- Greedy clustering
 - once points are merged, never separated
 - suboptimal w.r.t. clustering criterion
- Combine greedy with iterative refinement
 - post processing
 - interleaved refinement

Agglomerative Clustering

- Computational Cost
 - O(N²) just to read/calculate pairwise distances
 - N-1 merges to build complete hierarchy
 - + scan pairwise distances to find closest
 - + calculate pairwise distances between clusters
 - + fewer clusters to scan as clusters get larger
 - Overall O(N³) for simple implementations
- Improvements
 - sampling
 - dynamic sampling: add new points while merging
 - tricks for updating pairwise distances

K-Means Clustering

- Inputs: data set and k (number of clusters)
- Output: each point assigned to one of k clusters
- K-Means Algorithm:
 - -Initialize the k-means
 - +assign from randomly selected points
 - +randomly or equally distributed in space
 - -Assign each point to nearest mean
 - -Update means from assigned points
 - -Repeat until convergence

K-Means Clustering

- Efficient
 - $-K \ll N$, so assigning points is $O(K*N) \ll O(N^2)$
 - updating means can be done during assignment
 - usually # of iterations << N
 - Overall O(N*K*iterations) closer to O(N) than O(N²)
- Gets stuck in local minima
 - Sensitive to initialization
- Number of clusters must be pre-specified
- Requires vector space date to calculate means

K-Means Clustering: Convergence

• Squared-Error Criterion

$$Squared _Error = \sum_{c} \sum_{i \in c} (Dist(i, mean(c)))^{2}$$

- Converged when SE criterion stops changing
- Increasing K reduces SE can't determine K by finding minimum SE
- Instead, plot SE as function of K

Soft K-Means Clustering

- Instance of EM (Expectation Maximization)
- Like K-Means, except each point is assigned to each cluster with a probability
- Cluster means updated using weighted average
- Generalizes to Standard Deviation/Covariance
- Works well if cluster models are known

Soft K-Means Clustering (EM)

- -Initialize model parameters:
 - + means
 - +std_devs
 - + . . .
- -Assign points probabilistically to each cluster
- -Update cluster parameters from weighted points
- -Repeat until convergence to local minimum

What do we do if we can't calculate cluster means?

```
-- 1 2 3 4 5 6 7 8 9 10

1 - ddddddddd

2 - dddddddd

3 - dddddd

4 - ddddd

5 - ddddd

6 - dddd

7 - ddd

8 - dd

9 - d
```

K-Medoids Clustering

 $Medoid(c) = pt \in c \text{ s.t. } MIN(\sum_{i \in c} Dist(i, pt))$

K-Medoids Clustering

- Inputs: data set and k (number of clusters)
- Output: each point assigned to one of k clusters
- •
- Initialize k medoids
 - pick points randomly
- Pick medoid and non-medoid point at random
- Evaluate quality of swap
 - Mean point happiness
- Accept random swap if it improves cluster quality

Cost of K-Means Clustering

- n cases; d dimensions; k centers; i iterations
- compute distance each point to each center: O(n*d*k)
- assign each of n cases to closest center: O(n*k)
- update centers (means) from assigned points: O(n*d*k)
- repeat i times until convergence
- overall: O(n*d*k*i)
- much better than O(n²)-O(n³) for HAC
- sensitive to initialization run many times
- usually don't know k run many times with different k
- requires many passes through data set

Scaling Clustering to Big Databases

- K-means is still expensive: O(n*d*k*I)
- Requires multiple passes through database
- Multiple scans may not be practical when:
 - database doesn't fit in memory
 - database is very large:
 - $+ 10^4$ - 10^9 (or more) records
 - $+>10^2$ attributes
 - expensive join over distributed databases

Graph-Based Clustering

Goals

- 1 scan of database
- early termination, on-line, anytime algorithm yields current best answer

Scale-Up Clustering?

- Large number of cases (big n)
- Large number of attributes (big d)
- Large number of clusters (big c)