

Bias/Variance Tradeoff

Model Loss (Error)

• Squared loss of model on test case i:

$$\left(Learn(x_i, D) - Truth(x_i)\right)^2$$

• Expected prediction error:

$$\left\langle \left(Learn(x,D) - Truth(x)\right)^2 \right\rangle_D$$

Bias/Variance Decomposition

$$\langle (L(x,D) - T(x))^2 \rangle_D = Noise^2 + Bias^2 + Variance$$

 $Noise^2$ = lower bound on performance

 $Bias^2$ = (expected error due to model mismatch)²

Variance = variation due to train sample and randomization

Bias²

- Low bias
 - linear regression applied to linear data
 - 2nd degree polynomial applied to quadratic data
 - ANN with many hidden units trained to completion
- High bias
 - constant function
 - linear regression applied to non-linear data
 - ANN with few hidden units applied to non-linear data

Sources of Variance in Supervised Learning

- noise in targets or input attributes
- bias (model mismatch)
- training sample
- randomness in learning algorithm
 - neural net weight initialization
- randomized subsetting of train set:
 - cross validation, train and early stopping set

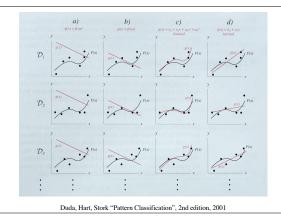
Variance

- Low variance
 - constant function
 - model independent of training data
 - model depends on stable measures of data
 - mean
 - median
- High variance
 - high degree polynomial
 - ANN with many hidden units trained to completion

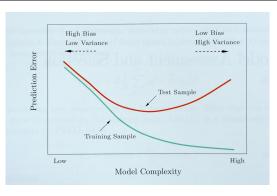
Bias/Variance Tradeoff

- (bias²+variance) is what counts for prediction
- Often:
 - low bias => high variance
 - low variance => high bias
- Tradeoff:
 - bias² vs. variance

Bias/Variance Tradeoff



Bias/Variance Tradeoff



Hastie, Tibshirani, Friedman "Elements of Statistical Learning" 2001

Reduce Variance Without Increasing Bias

• Averaging reduces variance:

$$Var(\overline{X}) = \frac{Var(X)}{N}$$

- Average models to reduce model variance
- One problem:
 - only one train set
 - where do multiple models come from?

Bagging: Bootstrap Aggregation

- Leo Breiman (1994)
- Bootstrap Sample:
 - draw sample of size |D| with replacement from D

Train $L_i(BootstrapSample_i(D))$

Regression : $L_{bagging} = \overline{L_i}$

Classification : $L_{bagging} = Plurality(L_i)$

Bagging

• Best case:

$$Var(Bagging(L(x,D))) = \frac{Variance(L(x,D))}{N}$$

- In practice:
 - models are correlated, so reduction is smaller than 1/N
 - variance of models trained on fewer training cases usually somewhat larger
 - stable learning methods have low variance to begin with, so bagging may not help much

Bagging Results

Table 1 Missclassification Rates (Percent)

Data Set	$ar{e}_S$	$ar{e}_B$	Decrease
waveform	29.0	19.4	33%
heart	10.0	5.3	47%
breast cancer	6.0	4.2	30%
ionosphere	11.2	8.6	23%
diabetes	23.4	18.8	20%
glass	32.0	24.9	22%
soybean	14.5	10.6	27%

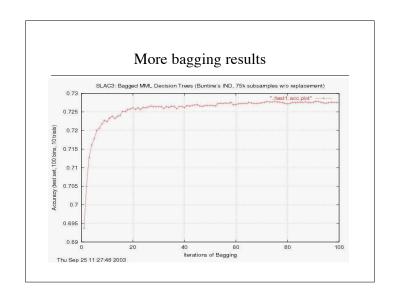
Breiman "Bagging Predictors" Berkeley Statistics Department TR#421, 1994

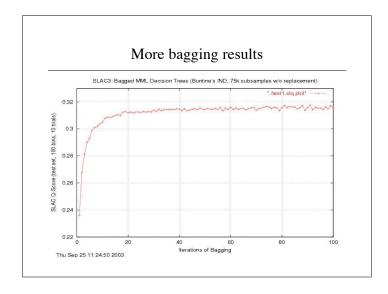
How Many Bootstrap Samples?

Table 5.1 Bagged Missclassification Rates (%) No. Bootstrap Replicates Missclassification Rate

strap replicates	Wissciassificatio
10	21.8
25	19.5
50	19.4
100	19.4

Breiman "Bagging Predictors" Berkeley Statistics Department TR#421, 1994





Bagging with cross validation

- Train neural networks using 4-fold CV
 - Train on 3 folds earlystop on the fourth
 - At the end you have 4 neural nets
- How to make predictions on new examples?

Bagging with cross validation

- Train neural networks using 4-fold CV
 - Train on 3 folds earlystop on the fourth
 - At the end you have 4 neural nets
- How to make predictions on new examples?
 - Train a neural network until the mean earlystopping point
 - Average the predictions from the four neural networks

Can Bagging Hurt?

Can Bagging Hurt?

- Each base classifier is trained on less data
 - Only about 63.2% of the data points are in any bootstrap sample
- However the final model has seen all the data
 - On average a point will be in >50% of the bootstrap samples

Boosting

- Freund & Schapire:
 - theory for "weak learners" in late 80's
- Weak Learner: performance on *any* train set is slightly better than chance prediction
- intended to answer a theoretical question, not as a practical way to improve learning
- tested in mid 90's using not-so-weak learners
- works anyway!

Reduce Bias² and Decrease Variance?

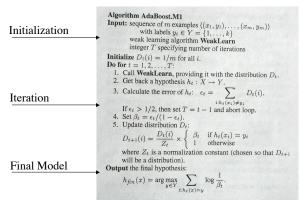
- Bagging reduces variance by averaging
- Bagging has little effect on bias
- Can we average and reduce bias?
- Yes:

Boosting

Boosting

- Weight all training samples equally
- Train model on train set
- Compute error of model on train set
- Increase weights on train cases model gets wrong!
- Train new model on re-weighted train set
- Re-compute errors on weighted train set
- Increase weights again on cases model gets wrong
- Repeat until tired (100+ iterations)
- Final model: weighted prediction of each model

Boosting



Boosting: Initialization

Algorithm AdaBoost.M1
Input: sequence of m examples $\langle (x_1, y_1), \dots, (x_m, y_m) \rangle$ with labels $y_i \in Y = \{1, \dots, k\}$ weak learning algorithm WeakLearn integer T specifying number of iterations
Initialize $D_1(i) = 1/m$ for all i.

Boosting: Iteration

```
Do for t=1,2,\ldots,T:

1. Call WeakLearn, providing it with the distribution D_t.

2. Get back a hypothesis h_t: X \to Y.

3. Calculate the error of h_t: \epsilon_t = \sum_{i:h_t(x_i) \neq y_i} D_t(i).

If \epsilon_t > 1/2, then set T = t - 1 and abort loop.

4. Set \beta_t = \epsilon_t/(1 - \epsilon_t).

5. Update distribution D_t:

D_{t+1}(i) = \frac{D_t(i)}{Z_t} \times \begin{cases} \beta_t & \text{if } h_t(x_i) = y_i \\ 1 & \text{otherwise} \end{cases}
where Z_t is a normalization constant (chosen so that D_{t+1} will be a distribution).
```

Boosting: Prediction

Output the final hypothesis:

$$h_{fin}(x) = \arg\max_{y \in Y} \sum_{t: h_t(x) = y} \log \frac{1}{\beta_t}.$$

Weight updates

- Weights for incorrect instances are multiplied by 1/(2Error_i)
 - Small train set errors cause weights to grow by several orders of magnitude
- Total weight of misclassified examples is 0.5
- Total weight of correctly classified examples is 0.5

Reweighting vs Resampling

- Example weights might be harder to deal with
 - Some learning methods can't use weights on examples
 - Many common packages don't support weighs on the train
- We can resample instead:
 - Draw a bootstrap sample from the data with the probability of drawing each example is proportional to it's weight
- Reweighting usually works better but resampling is easier to implement

Boosting vs. Bagging

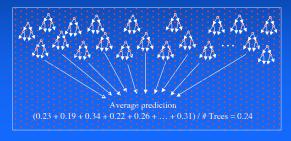
- Bagging doesn't work so well with stable models. Boosting might still help.
- Boosting might hurt performance on noisy datasets. Bagging doesn't have this problem
- In practice bagging almost always helps.

Boosting vs. Bagging

- On average, boosting helps more than bagging, but it is also more common for boosting to hurt performance.
- The weights grow exponentially. Code must be written carefully (store log of weights, ...)
- Bagging is easier to parallelize.

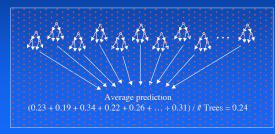
Random Forests (Bagged Trees++)

- Draw 1000+ bootstrap samples of data
- Draw sample of available attributes at each split
- Train trees on each sample/attribute set -> 1000+ trees
- Un-weighted average prediction of trees



Bagged Decision Trees

- Draw 100 bootstrap samples of data
- Train trees on each sample -> 100 trees
- Un-weighted average prediction of trees



• Marriage made in heaven. Highly under-rated!

Model Averaging

- Almost always helps
- Often easy to do
- Models shouldn't be too similar
- Models should all have pretty good performance (not too many lemons)
- When averaging, favor low bias, high variance
- Models can individually overfit
- Not just in ML

Out of Bag Samples

- With bagging, each model trained on about 63% of training sample
- That means each model does not use 37% of data
- Treat these as test points!
 - Backfitting in trees
 - Pseudo cross validation
 - Early stopping sets