Crimes Against jax.jit

CS 5757

JAX is an excellent library for scientific computing, as it supports JIT compilation, automatic
differentiation, vectorization and more. But it also produces some of the most inscrutable error
messages known to man.

This document covers common “crimes” against JAX’s tracing system that will land you in Python
jail (i.e., debugging a ConcretizationTypeError at 3am). For a comprehensive treatment, see
JAX’s doc on [The Sharp Bits.

Before we get into the crimes, a quick note on why we need these “laws.” JAX’s jit, vmap, and
grad run your function once with abstract placeholder values (“tracers”) to record the sequence
of operations, then compile that sequence. Your function must describe the same computation
regardless of concrete input values. Many standard Python patterns violate this.

Remember: Friends don’t let friends write non-pure functions.

Crime 1: Side effects

The crime: Writing non-pure functions (any function that mutates variables outside its scope).

results = []

def f(x):
y = X ¥k 2
results.append(y) # CRIME: side effect captures tracer
return y

jax.jit(£)(3.)
print(results[0] + 1) # UnexpectedTracerError: tracer leaked out

Side effects happen at trace time, not run time. The tracer gets captured in results, then causes
errors when you try to use it later as a real number.

JAX functions must be pure: all inputs come in as arguments, all outputs go out as return values.
No exceptions.

Fix: Return everything explicitly.

def f£(x):
y=x**2
return y # return all outputs; no external state

https://docs.jax.dev/en/latest/notebooks/Common_Gotchas_in_JAX.html

Crime 2: Branching on traced values

The crime: Using Python control flow that depends on traced values.

def f(x):
if x > 0: # CRIME: x is traced, can’t branch on it
return x
else:

return -x

jax.vmap(f) (jnp.array([-1., 2., 3.])) # ConcretizationTypeError

Python’s if requires evaluating x > 0 to a concrete boolean at trace time. But x is a tracer—a
symbolic placeholder—not a real number.

Same goes for assert statements: assert x[0] > 0 is secretly a branch.

Fix: Use jnp.where for simple cases, jax.lax.cond for general branching.

def f£(x):
return jnp.where(x > 0, x, -x) # OK: both branches always evaluated

Note: branching on static properties (shapes, dtypes) is fine: if x.shape[0] > 0 works.

Crime 3: Python loops over traced values

The crime: Using traced values as loop bounds or conditions.

def f(x, n):
y = 0.
for i in range(n): # CRIME if n is traced
y =y + x[i]
return y

If n is a tracer, Python can’t determine the iteration count at trace time.

Fix: Use jax.lax.fori_loop, jax.lax.while_loop, or jax.lax.scan.

def f(x, n):
return jax.lax.fori_loop(0, n, lambda i, y: y + x[i], 0.)

Loops over static quantities (range (10)) are fine, since they just “unroll” at trace time.

Crime 4: Dynamic shapes

The crime: Creating arrays whose shape depends on traced values.

def nansum(x):
mask = “jnp.isnan(x)
return x[mask].sum() # CRIME: output shape depends on values

jax.jit (nansum) (junp.array([1., jnp.nan, 3.])) # NonConcreteBooleanIndexError

The number of non-NaN elements isn’t known at trace time. JAX requires all shapes to be deter-
minable from input shapes, not input values.

Fix: Use jnp.where to keep shapes static.

def nansum(x):
return jnp.where(jnp.isnan(x), 0., x).sum() # OK: shape unchanged

Crime 5: In-place mutation

The crime: Assigning to array elements.

def f(x):
x[0] = 0. # CRIME: JAX arrays are immutable
return x

JAX arrays cannot be mutated. This errors even outside JIT.

Fix: Use .at[].set () for functional updates.

def f(x):
return x.at[0].set(0.) # OK: returns a new array

Crime 6: Extracting scalars

The crime: Casting traced values to Python types.

def f(x):
idx = int(jnp.argmax(x)) # CRIME: int() requires concrete value
return x[idx]

Calling int (), float(), bool(), or .item() forces concretization.

Fix: Keep values as JAX arrays.

def £(x):
idx = jnp.argmax(x)
return x[idx] # OK: indexing with traced array works

Crime 7: Using numpy instead of jax.numpy

The crime: Calling numpy functions on traced values.

import numpy as np

def f(x):
return np.sin(x) # CRIME: np.sin doesn’t understand tracers

jax.jit(£) (jop.array([1., 2., 3.]1)) # TracerArrayConversionError

numpy functions try to convert inputs to numpy arrays, which fails on tracers.

Fix: Use jax.numpy inside transformed functions.

import jax.numpy as jnp

def f(x):
return jnp.sin(x) # OK

The Golden Rule

Your function must describe the same computation graph for all possible input values of a given

shape and dtype.

Mental model: Imagine JAX runs your function with “?” values—they have shape and dtype

but no actual numbers. Every line must work without knowing concrete values.

Debugging Tips

When things go wrong:

Print traced values with jax.debug.print, not print:

def f(x):
jax.debug.print("x = {}", x) # prints at run time, not trace time
return x ** 2

Disable JIT temporarily to get normal Python errors:

with jax.disable_jit():
result = my_function(x) # runs eagerly, normal debugging works

Check for escaped tracers by calling your function outside JIT first. If it works eagerly but

fails under jit, you have a tracing crime.

Read the error message. JAX errors are verbose but usually tell you exactly which line and

which value caused the problem. Look for “was created on line...”

Quick Reference

in UnexpectedTracerError.

Crime Fix
mutating external state return all outputs explicitly
if x>0 jnp.where(x > 0, ...) or lax.cond

for i in range(n) (traced n) lax.fori_loop or lax.scan
x[mask] (traced boolean mask) jnp.where(mask, x, 0)

x[0] =5 x.at[0] .set(5)
int(x), x.item() keep as JAX array
np.sin(x) jnp.sin(x)

Further Reading
e Control flow and logical operators with JIT
e JAX—The Sharp Bits

e JAX Errors (explains each error message)

e How JAX Tracing Works

https://docs.jax.dev/en/latest/control-flow.html
https://docs.jax.dev/en/latest/notebooks/Common_Gotchas_in_JAX.html
https://docs.jax.dev/en/latest/errors.html
https://docs.jax.dev/en/latest/tracing.html

