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Preliminaries

From Wikipedia, a matrix is a rectangular array of table of numbers and
symbols arranged in rows and columns.
In robotics, we will encounter matrices very frequently. It is important that
you understand them and develop a good intuition.

A =

a11 . . . a1n
...

. . .

am1 . . . amn

 = [a1 a2 . . . an]

where a1 . . . an are column vectors.
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Preliminaries

Matrix Addition:[
1 2 3
4 5 6

]
+

[
3 1 6
5 2 4

]
=

[
1 + 3 2 + 1 3 + 6
4 + 5 5 + 2 6 + 4

]
=

[
4 3 9
9 7 10

]
Scalar Multiplication:

2 ·
[

1 2 3
4 5 6

]
=

[
2 4 6
8 10 12

]
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Preliminaries

Matrix Multiplication:[
1 2
4 5

]
∗
[

3 1
5 2

]
=

[
1 ∗ 3 + 2 ∗ 5 1 ∗ 1 + 2 ∗ 2
4 ∗ 3 + 5 ∗ 5 4 ∗ 1 + 5 ∗ 2

]
=

[
13 5
37 14

]
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Preliminaries

Transpose of matrix A is written as

AT =

a11 . . . am1
...

. . .

a1n . . . amn

 =

aT
1
...

aT
n


[

1 2
3 4

]T
=

[
1 3
2 4

]
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Preliminaries

A very common equation we will encounter with matrices is

Ax = b

, where x ∈ Rn,b ∈ Rm,A ∈ Rm×n

Special Note

We only consider the case where all elements of matrix A are real. Results
covered later may not generalize to matrices with imaginary elements.
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Domain, Range, and Span

Ax = b, where x ∈ Rn,b ∈ Rm,A ∈ Rm×n

A different perspective...

We can view matrix A ∈ Rm×n as a linear operator (a function) from
space Rn to Rm. In this context, Rn is called the domain, and Rm is
called the codomain. The space of possible values Ax for x ∈ Rn[domain]
is the range, image, or column space of the linear mapping A.
Range(A) := {Ax |x ∈ Rn}

More on Range

Range is also called a linear span of the columns vectors of A.

span({a1, . . . , an}) = {k1a1 + · · ·+ knan|k1 . . . kn ∈ R}
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Linearity (The superposition principle)

If we view A as a function A : Rn −→ Rm , it is linear if

∀α, β ∈ R, x , y ∈ Rn,A(αx + βy) = αAx + βAy
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Rank and Null Space

For matrix A ∈ Rm×n

Definition

Null Space or Kernel of A is Null(A) := {Ax = 0|x ∈ Rn}
Rank of A is the dimension of A’s range.
Nullity of A is the dimension of A’s null space.

Note, again

Note that above definitions are limited to real matrices and real vectors.
Keep in mind that the actual definitions can be much broader. Typically,
matrices and vectors can be defined over any field, and R is just one such
field.

(©2021 Tapomayukh Bhattacharjee) Foundations of Robotics August 27, 2021 10 / 43



Rank

For matrix A ∈ Rm×n

Rank(A) ≤ min(m, n)
The rank is the number of linearly independent columns of A.
If Rank(A) = min(m, n), matrix A is full rank.
If A is not full rank, it is singular.
The rank-nullity theorem: rank(A) + nullity(A) = # of columns of A
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Square Matrices

For square matrices, the number of rows equals the number of columns.
Both the domain and the codomain are Rn

A diagonal matrix is a square matrix with all elements not on the
diagonal equal to zero.
An identity matrix I is a diagonal matrix with all elements along the
diagonal equal to one.
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Determinant

The determinant is a scalar value, and it is a function of the entries of a
square matrix. It characterizes some properties of the matrix and the linear
mapping represented by the matrix.
The determinant of a matrix is nonzero if and only if the matrix is
invertable.

det(A) = |A| =

∣∣∣∣a b
c d

∣∣∣∣ = ad − bc

det(A) = |A| =

∣∣∣∣∣∣
a b c
d e f
g h i

∣∣∣∣∣∣ = a

∣∣∣∣e f
h i

∣∣∣∣− b

∣∣∣∣d f
g i

∣∣∣∣+ c

∣∣∣∣d e
g h

∣∣∣∣
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Determinant

Example: ∣∣∣∣1 2
3 4

∣∣∣∣ = 1 ∗ 4− 3 ∗ 2 = −2∣∣∣∣∣∣
1 3 2
2 4 1
1 3 0

∣∣∣∣∣∣ = 1 ∗
∣∣∣∣4 1
3 0

∣∣∣∣− 3 ∗
∣∣∣∣2 1
1 0

∣∣∣∣+ 2 ∗
∣∣∣∣2 4
1 3

∣∣∣∣ = 4
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Square Matrices

If we consider matrix A as a mapping from Rn to Rn by stretching,
squeezing, rotating, etc, and for some nonzero vectors v , the mapping may
be particularly simple: Av is just a scaled version of v , Av = λv .
For any λ and v satisfying Av = λv , v is called an eigenvector of A and
λ is the corresponding eigenvalue.

Av = λv

Av − λv = 0

Av − λIv = 0

, where I is the identity matrix

(A− λI)v = 0

If v non-zero, the equation will have a solution only if |A− λI| = 0
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Example

Eigenvalue Example:

A =

∣∣∣∣2 1
1 2

∣∣∣∣
|A− λI| =

∣∣∣∣2− λ 1
1 2− λ

∣∣∣∣ = λ2 − 4λ+ 3 = (λ− 3)(λ− 1) = 0

When λ = 1, (A− λI)v = 0,

[
1 1
1 1

]
v = 0, v =

[
1
−1

]
. When λ = 3,

(A− λI)v = 0,

[
−1 1
1 −1

]
v = 0, v =

[
1
1

]
.

eigenvector : v1 =

[
1
−1

]
, λ1 = 1

eigenvector : v2 =

[
1
1

]
, λ2 = 3
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Inverse

For matrix A ∈ Rm×n,
the matrix inverse, A−1 is the unique matrix that satisfies
AA−1 = A−1A = I .
Matrix inverse can be used to solve Ax = b, where x = A−1b.
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Pseudoinverse

If A is not full rank (it is singular), then the inverse does not exist, but we
can still calculate the Moore-Penrose pseudoinverse of A, denoted A†. The
peudoinverse has ”inverse-like” properties and can be used to find
solutions or approximate solutions to Ax = b, where x = A†b. The
pseudoinverse A† is equivalent to inverse A−1 when A is invertible.

A†A = A
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Pseudoinverse Properties

For A† ∈ Rmxn of any real matrix A ∈ Rnxm:

AA†A = A

A†AA† = A†

AA† is symmetric

A†A is symmetric
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Symmetric Matrices

A square matrix A is symmetric if it is equal to its transpose, A = AT . A
matrix A is skew symmetric if A = −AT .
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Basic Matrix Identities

(AB)C = A(BC )

(AT )−1 = (A−1)T

(Ax)T = xTAT

(AB)T = BTAT

(ABC ...)T = ...CTBTAT

(AB)−1 = B−1A−1

(ABC ...)−1 = ...C−1B−1A−1
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Topics

Part 1: Linear Algebra
Part 2: Probability

Content Courtesy: Mathematical Statistics and Data Analysis, 3rd Edition
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Random Variables

A random variable is a function from sample space Ω to real numbers.
Example: A coin is tossed 3 times, and we can observe the sequence of
heads and tails:

Ω = {hhh, hht, htt, hth, ttt, tth, thh, tht}

The total number of heads is a random variable defined on Ω, so are the
total number of tails and the number of heads minus the number of tails.
In general, we denote random variables with uppercase letters. We will use
lowercase letters to denote the values that random variables can take on.
For example, the possible values of random variable X are x1.x2, ...
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Discrete and Continuous Random Variables

A discrete random variable is a random variable that can take on a
finite or at most a countably infinite number of values.
Ex. Let X be a random variable that denotes the total number of
tosses until a tail turns up. The possible value of X is 0, 1, 2, 3, ...

A continuous random variable is a random variable that can take
on a continuum of values rather than a finite or countably infinite
number.
Ex. A uniform random variable on the interval [0, 1].
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Probability Mass Function and Probability Density
Function

Discrete Random Variables:
There is a function p that determines the probabilities of the various
values of X. If these possible values are denoted by x1, x2, ..., then
p(xi ) = P(X = xi ) and

∑
i p(xi ) = 1. This function p is called the

probability mass function, or the frequency function.
Ex. Let random variable X denotes the total number of heads in 3 tosses.
If the coin is fair,

p(0) = P(X = 0) =
1

8

p(1) = P(X = 1) =
3

8

p(2) = P(X = 2) =
3

8

p(3) = P(X = 3) =
1

8
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Probability Mass Function and Probability Density
Function

Continuous Random Variables:
the role of the frequency function is taken by the probability density
function (PDF), f (x).

f (x) ≥ 0

f is piece-wise continuous∫ ∞
−∞

f (x)dx = 1

P(a < X < b) =

∫ b

a
f (x)dx

Example: uniform random variable on the interval [0, 1]

f (x) =

{
0, if 0 ≤ x ≤ 1

1, x < 0 or x > 1
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Probability Mass Function and Probability Density
Function

Another common example, Normal Distribution
Ex. One-dimensional normal distribution with mean µ and variance σ2.

p(x) = (2πσ2)−
1
2 exp{−1

2
(x−µ)2

σ2 }
If x is a multi-dimensional vector, we have multivariate normal distribution
p(x) = det(2πΣ2)−

1
2 exp{−1

2(x − µ)TΣ−1(x − µ)} µ is now the mean
vector, and Σ is a symmetric matrix called the covariance matrix.

(©2021 Tapomayukh Bhattacharjee) Foundations of Robotics August 27, 2021 27 / 43



Cumulative distribution function(cdf)

In addition to frequency/density function, cumulative distribution function
(cdf) can be also helpful. It is defined as

F (x) = P(X ≤ x)

cdf is non-decreasing and satisfies

lim
x→−∞

F (x) = 0

lim
x→+∞

F (x) = 1

The cdf of a random variable can be represented as an integral of its pdf,
fX (x).

FX (x) =

∫ x

−∞
fX (t)dt, fX (x) =

dFX (x)

dx
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Joint Probability

Discrete Random Variables:
Let X and Y be discrete random variables defined on the same sample
space, and that they take on values x1, x2, ... and y1, y2, ... respectively.
Their joint probability mass function p(x , y) is

p(xi , yj) = P(X = xi ,Y = yj)

Ex. Let X denote the number of heads on the first toss and Y the total
number of heads.

y

x 0 1 2 3

0
1

8

2

8

1

8
0

1 0
1

8

2

8

1

8
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Joint Probability

Let X and Y be continuous random variables with a joint cdf F (x , y).
Their joint density function is a piece-wise continuous function of two
variables, f (x , y).
Ex.

f (x , y) =
12

7
(x2 + xy), 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

P(X > Y ) =
12

7

∫ 1

0

∫ x

0
(x2 + xy)dydx =

9

14
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Marginals

Let’s look at this table again.

y

x 0 1 2 3

0
1

8

2

8

1

8
0

1 0
1

8

2

8

1

8

Finding random variable Y’s density function from this table is easy!

pY (0) = P(Y = 0) = P(Y = 0,X = 0) + P(Y = 0,X = 1) =
1

8
+ 0 =

1

8

pY (1) = P(Y = 1) = P(Y = 1,X = 0) + P(Y = 1,X = 1) =
2

8
+

1

8
=

3

8

pY is called the marginal frequency function of Y .

(©2021 Tapomayukh Bhattacharjee) Foundations of Robotics August 27, 2021 31 / 43



Marginals

For continuous random variables, the marginal cdf of X ,(FX ) is

FX (x) = P(X ≤ x) = lim
y→∞

=

∫ x

−∞

∫ ∞
−∞

f (u, y)dydu

The marginal density is

fX (x) = F
′
X (x) =

∫ ∞
−∞

f (x , y)dy

Ex.

f (x , y) =
12

7
(x2 + xy), 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

fX (x) =
12

7

∫ 1

0
(x2 + xy)dy =

12

7
(x2 +

x

2
)

(©2021 Tapomayukh Bhattacharjee) Foundations of Robotics August 27, 2021 32 / 43



Conditional Probability

Discrete Case: Let X and Y be jointly distributed discrete random
variables. The conditional probability of X = xi given that Y = yi is

P(X = xi |Y = yj) =
P(X = xi ,Y = yi )

P(Y = yj)
=

p(X = xi ,Y = yj)

pY (yj)

(Joint over marginal)
Continuous case: Let X and Y be continuous random variables, the
conditional density of X given Y is

fX |Y (x |y) =
fXY (x , y)

fY (y)
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Conditional Probability

Discrete Case Example:

y

x 0 1 2 3

0
1

8

2

8

1

8
0

1 0
1

8

2

8

1

8

pX |Y (0|2) =
1
8
3
8

=
1

3
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Independent Random Variables

We say two events, A and B, are independent if knowing that one had
occurred provided us no information whether the other event had occurred.

P(A|B) = P(A),P(B|A) = P(A)

Now, if events A and B are independent,

P(A) = P(A|B) =
P(A ∩ B)

P(B)

P(A ∩ B) = P(A)P(B)
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Independent Random Variables

Ex. A card is drawn from a deck randomly. Random variable A denotes
the event that the card is an ace. Random variable B denotes the event
that the card is a spade.
A and B are independent because knowing that the card is an ace gives no
information about its suit.
Mathematically,

P(A) =
4

52
=

1

13
,P(B) =

1

4

P(A ∩ B) =
1

52
= P(A)P(B)
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Conditional Independence

Events A, B are conditionally independent given C if

P(A|B,C ) = P(A|C )

or
P(A,B|C ) = P(A|C )P(B|C )
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Conditional Independence

Ex. A fair coin and a two-headed coin (P(H) = 1) are hidden in a box,
one is chosen randomly. Consider the following events

A = First coin toss results in an H.

B = Second coin toss results in an H.

C = Coin 1 (fair) has been selected.

P(B) =
1

4
+

1

2
=

3

4
,P(A) =

1

2
∗ 1

2
+

1

2
∗ 1 =

3

4

P(A ∪ B) =
1

2
∗ 1

4
+

1

2
∗ 1 =

5

8

Clearly, A and B are not independent P(A)P(B) 6= P(A ∩ B)
However, if C is given (the coin is fair), we know A and B are independent.
Thus, A and B are conditionally independent given C.
[example credit: https://www.probabilitycourse.com/chapter1/1_

4_4_conditional_independence.php]
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Bayes Rule

P(A|B) =
P(B|A)P(A)

P(B)
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Bayes Rule

Ex. Cornell is doing COVID Testing. Let +/- denote the event that the
test is positive/negative. Let P denote the event that the person actually
has COVID. Let N denote the event that the person does not have
COVID. Say,

P(+|P) = 0.88,P(−|P) = 0.12,P(−|N) = 0.86,P(+|N) = 0.14

Contextually, it means that of a person has COVID, the probability that
this is detected by school’s test is 0.88. If a person does not have COVID,
the probability that the tests is negative is 0.86. Say the COVID cases at
Cornell is actually rare, so P(N) = 0.99, and P(P) = 0.01.
Now, a subject tests positive. What is the probability that the test is
incorrect and he is actually healthy?

P(N|+) =
P(+|N)P(N)

P(+|N)P(N) + P(+|P)P(P)
=

(0.14)(0.99)

(0.14)(0.99) + (0.88)(0.01)
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Expectation

The concept of the expected value can be interpreted as a weighted
average. Intuitively, the possible values of a random variable are weighted
by their probabilities.
For discrete random variable X with frequency/mass function p(x):

E [X ] =
∑
i

xip(xi )

For continuous random variable X with frequency/density function f (x):

E [X ] =

∫ ∞
−∞

xf (x)dx
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Expectation

Ex: Normal Distribution

E [X ] =
1

σ
√

2π

∫ ∞
−∞

xe−
1
2
(x−µ)2

σ2 dx = µ

(©2021 Tapomayukh Bhattacharjee) Foundations of Robotics August 27, 2021 42 / 43



References

en.wikipedia.org/wiki/Matrix_(mathematics)#Addition,

_scalar_multiplication,_and_transposition

en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

Modern Robotics Linear Algebra Review:
http://hades.mech.northwestern.edu/images/c/c8/

AppendixE-linear-algebra-review-Dec20-2019.pdf

Mathematical Statistics and Data Analysis, 3rd Edition, ISBN-10:
9788131519547

https://en.wikipedia.org/wiki/Conditional_independence

(©2021 Tapomayukh Bhattacharjee) Foundations of Robotics August 27, 2021 43 / 43

en.wikipedia.org/wiki/Matrix_(mathematics)##Addition,_scalar_multiplication,_and_transposition
en.wikipedia.org/wiki/Matrix_(mathematics)##Addition,_scalar_multiplication,_and_transposition
en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors
http://hades.mech.northwestern.edu/images/c/c8/AppendixE-linear-algebra-review-Dec20-2019.pdf
http://hades.mech.northwestern.edu/images/c/c8/AppendixE-linear-algebra-review-Dec20-2019.pdf
https://en.wikipedia.org/wiki/Conditional_independence

