
Idea: projecting images onto a
common plane

mosaic PP

each image is warped
with a homography

We’ll see what this homography means later.

First -- Can’t create a 360 panorama this way…

Project 3

• Take pictures on a tripod (or handheld)

• Warp to spherical coordinates (optional if
using homographies to align images)

• Extract features

• Align neighboring pairs using RANSAC

• Write out list of neighboring translations

• Blend the images

• Correct for drift

• Now enjoy your masterpiece!

– Map 3D point (X,Y,Z) onto sphere

Spherical projection

X

Y

Z

unit sphere

unwrapped sphere

• Convert to spherical coordinates

Spherical image

• Convert to spherical image coordinates

– s defines size of the final image

» often convenient to set s = camera focal length
in pixels

f = 200 (pixels)

Spherical reprojection

• Map image to spherical coordinates

– need to know the focal length

input f = 800f = 400

Modeling distortion

• To model lens distortion with panoramas
– Use above projection operation after projecting onto a

sphere

Apply radial distortion

Apply focal length
translate image center

Project
to “normalized”

image coordinates

Aligning spherical images

• Suppose we rotate the camera by  about the vertical axis
– How does this change the spherical image?

– Translation by 

– This means that we can align spherical images by translation

Solving for homographies

Defines a least squares problem:

• Since is only defined up to scale, solve for unit vector

• Solution: = eigenvector of with smallest eigenvalue

• Works with 4 or more matches (8 rows in A). How do you find
these points?

2n × 9 9 2n

Assembling the panorama

• Stitch pairs together, blend, then crop

Blending

• We’ve aligned the images – now what?

Image Blending

Feathering: Linear Interpolation

0
1

0
1

+

=

Encoding blend weights: I(x,y) = (R, G, B, )

color at p =

Implement this in two steps:

1. accumulate: add up the ( premultiplied) RGB values at each pixel

2. normalize: divide each pixel’s accumulated RGB by its  value

Q: what if  = 0?

Alpha Blending

Optional: see Blinn (CGA, 1994) for details:

http://ieeexplore.ieee.org/iel1/38/7531/00310740.pdf?isNumb

er=7531&prod=JNL&arnumber=310740&arSt=83&ared=87&a

rAuthor=Blinn%2C+J.F.

I1

I2

I3

p

http://ieeexplore.ieee.org/iel1/38/7531/00310740.pdf?isNumber=7531&prod=JNL&arnumber=310740&arSt=83&ared=87&arAuthor=Blinn,+J.F

Problem: Drift

• Solution
– add another copy of first image at the end

– this gives a constraint: yn = y1

– there are a bunch of ways to solve this problem
• add displacement of (y1 – yn)/(n -1) to each image after the first

• apply an affine warp: y’ = y + ax [you will implement this for P3]

• run a big optimization problem, incorporating this constraint
– best solution, but more complicated

– known as “bundle adjustment”

(x1,y1)

copy of first image

(xn,yn)

Demo

