CS5670: Computer Vision

Course review

Topics: Image processing

- Filtering
- Edge detection
- Image resampling / aliasing / interpolation
- Feature detection
 - Harris corners
 - SIFT
 - Invariant features
- Feature matching

Topics: 2D geometry

- Image transformations
- Image alignment / least squares
- RANSAC
- Panoramas

Topics: 3D geometry

- Cameras
- Perspective projection
- Single-view modeling (points, lines, vanishing points, etc.)
- Stereo
- Two-view geometry (F-matrices, E-matrices)
- Structure from motion
- Multi-view stereo

Topics: Geometry, continued

- Light, color, perception
- Lambertian reflectance
- Photometric stereo

Topics: Recognition

- Different kinds of recognition problems
 - Classification, detection, segmentation, etc.
- Machine learning basics
 - Nearest neighbors
 - Linear classifiers
 - Hyperparameters
 - Training, test, validation datasets
- Loss functions for classification

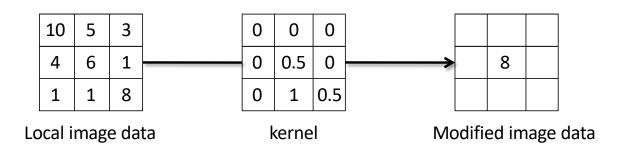
Topics: Recognition, continued

- Neural networks
- Convolutional neural networks
 - Architectural components: convolutional layers, pooling layers, fully connected layers
 - Training CNNs
- Ethical considerations in computer vision
- Neural Rendering (NeRF, positional encoding, etc)
- Vision transformers
- Generative methods: GANS and diffusion

Image Processing

Linear filtering

- One simple function on images: linear filtering (cross-correlation, convolution)
 - Replace each pixel by a linear combination of its neighbors
- The prescription for the linear combination is called the "kernel" (or "mask", "filter")



Source: L. Zhang

Convolution

• Same as cross-correlation, except that the kernel is "flipped" (horizontally and vertically)

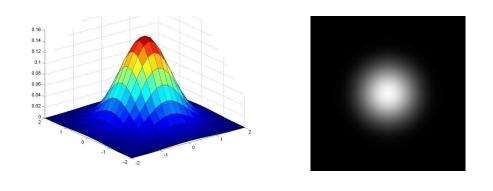
$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i-u,j-v]$$

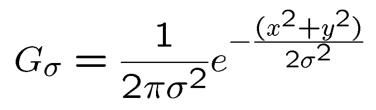
This is called a **convolution** operation:

$$G = H * F$$

• Convolution is **commutative** and **associative**

Gaussian Kernel





Source: C. Rasmussen

Image gradient

• The gradient of an image:
$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$$

The gradient points in the direction of most rapid increase in intensity

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, 0 \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} 0, \frac{\partial f}{\partial y} \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} 0, \frac{\partial f}{\partial y} \end{bmatrix}$$

The *edge strength* is given by the gradient magnitude:

$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

The gradient direction is given by:

$$\theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right)$$

• how does this relate to the direction of the edge?

Source: Steve Seitz

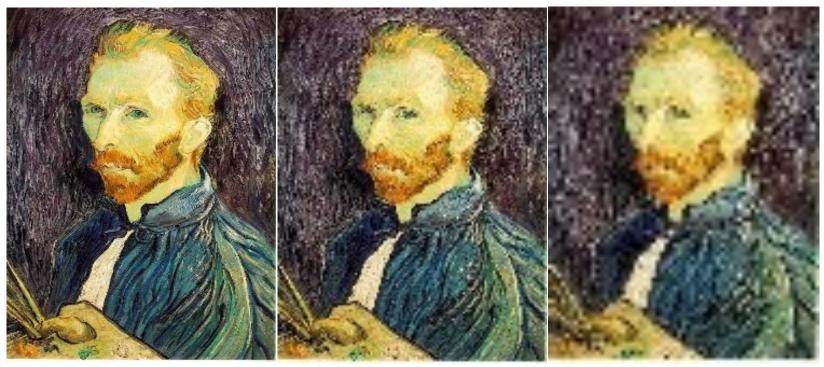
Finding edges

gradient magnitude

Finding edges

thinning (non-maximum suppression)

Image sub-sampling



1/2

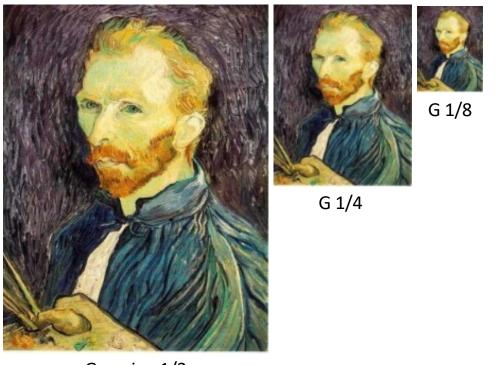
1/4 (2x zoom)

1/8 (4x zoom)

Why does this look so crufty?

Source: S. Seitz

Subsampling with Gaussian pre-filtering



Gaussian 1/2

• Solution: filter the image, then subsample

Source: S. Seitz

Image interpolation

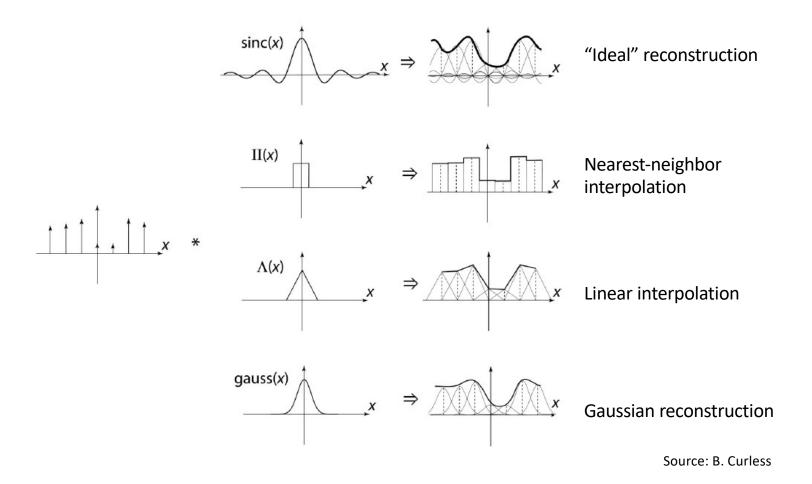


Image interpolation

Original image: 🌉 x 10

Nearest-neighbor interpolation

Bilinear interpolation

Bicubic interpolation

The second moment matrix

The surface E(u,v) is locally approximated by a quadratic form. $E(u,v) \approx Au^2 + 2Buv + Cv^2$ $\approx \left[\begin{array}{ccc} u & v \end{array} \right] \left[\begin{array}{ccc} A & B \\ B & C \end{array} \right] \left[\begin{array}{ccc} u \\ v \end{array} \right]$ $A = \sum I_x^2$ H $(x,y) \in W$ $B = \sum I_x I_y$ $(x,y) \in W$ $C = \sum I_y^2$ $(x,y) \in W$

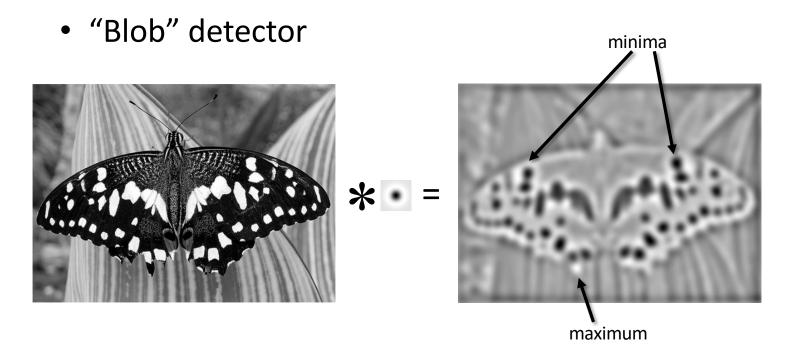
The Harris operator

 λ_{min} is a variant of the "Harris operator" for feature detection

$$f = \frac{\lambda_1 \lambda_2}{\lambda_1 + \lambda_2}$$
$$= \frac{determinant(H)}{trace(H)}$$

- The *trace* is the sum of the diagonals, i.e., $trace(H) = h_{11} + h_{22}$
- Very similar to λ_{min} but less expensive (no square root)
- Called the "Harris Corner Detector" or "Harris Operator"
- Lots of other detectors, this is one of the most popular

Laplacian of Gaussian



• Find maxima *and minima* of LoG operator in space and scale

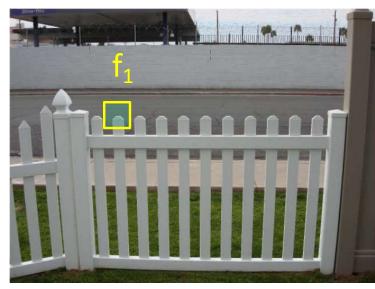
Scale-space blob detector: Example

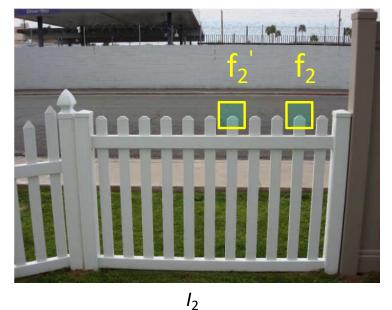
sigma = 11.9912

Feature distance

How to define the difference between two features f_1, f_2 ?

- Better approach: ratio distance = $||f_1 f_2|| / ||f_1 f_2'||$
 - f_2 is best SSD match to f_1 in I_2
 - f_2' is 2nd best SSD match to f_1 in I_2
 - gives large values for ambiguous matches





2D Geometry

Parametric (global) warping

p = (x,y)

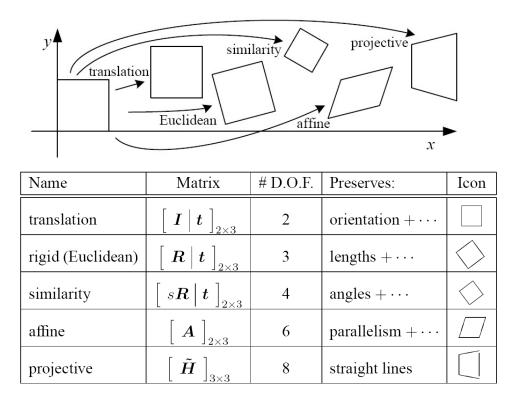
• Transformation T is a coordinate-changing machine:

p' = T(p)

- What does it mean that *T* is global?
 - Is the same for any point p
 - can be described by just a few numbers (parameters)
- Let's consider *linear* xforms (can be represented by a 2D matrix):

$$\mathbf{p}' = \mathbf{T}\mathbf{p} \qquad \left[\begin{array}{c} x' \\ y' \end{array}
ight] = \mathbf{T} \left[\begin{array}{c} x \\ y \end{array}
ight]$$

2D image transformations



These transformations are a nested set of groups

• Closed under composition and inverse is a member

Projective Transformations aka Homographies aka Planar Perspective Maps

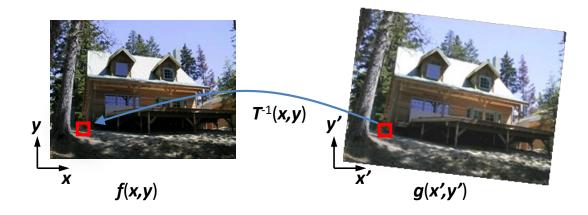
$$\mathbf{H} = \left[egin{array}{ccc} a & b & c \ d & e & f \ g & h & 1 \end{array}
ight]$$

Called a homography (or planar perspective map)



Inverse Warping

- Get each pixel g(x',y') from its corresponding location
 (x,y) = T⁻¹(x,y) in f(x,y)
 - Requires taking the inverse of the transform

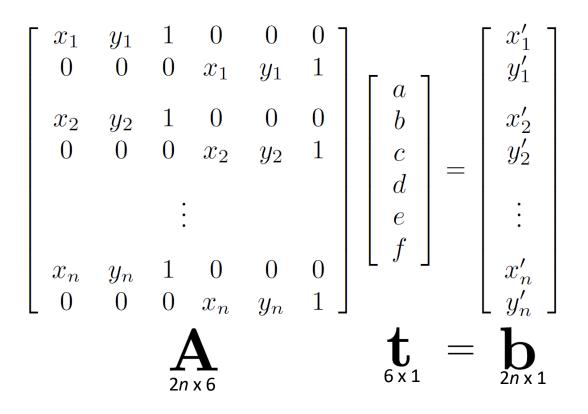


Affine transformations

$$\begin{bmatrix} x'\\y'\\1 \end{bmatrix} = \begin{bmatrix} a & b & c\\d & e & f\\0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x\\y\\1 \end{bmatrix} = \begin{bmatrix} ax+by+c\\dx+ey+f\\1 \end{bmatrix}$$

Solving for affine transformations

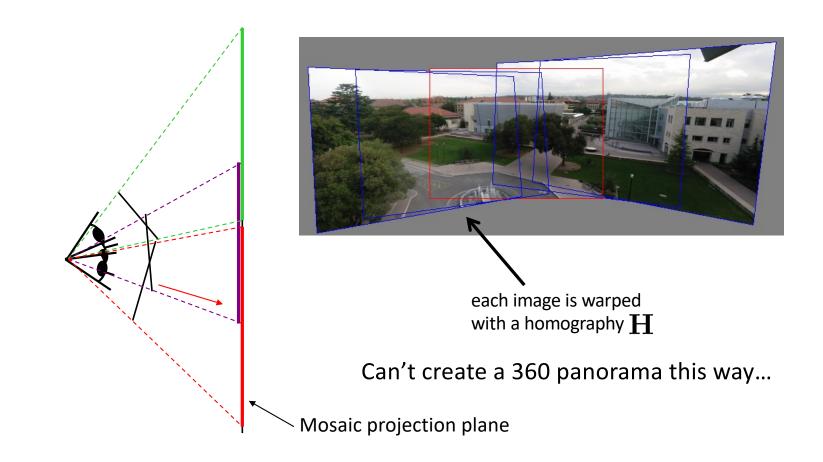
• Matrix form



RANSAC

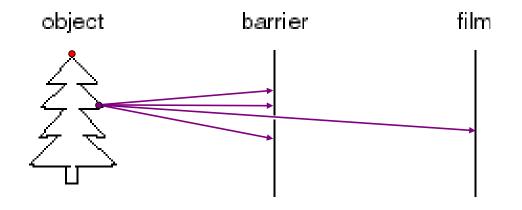
- General version:
 - 1. Randomly choose *s* samples
 - Typically *s* = minimum sample size that lets you fit a model
 - 2. Fit a model (e.g., line) to those samples
 - 3. Count the number of inliers that approximately fit the model
 - 4. Repeat N times
 - 5. Choose the model that has the largest set of inliers

Projecting images onto a common plane



3D Geometry

Pinhole camera



- Add a barrier to block off most of the rays
 - This reduces blurring
 - The opening known as the **aperture**
 - How does this transform the image?

Perspective Projection

Projection is a matrix multiply using homogeneous coordinates:

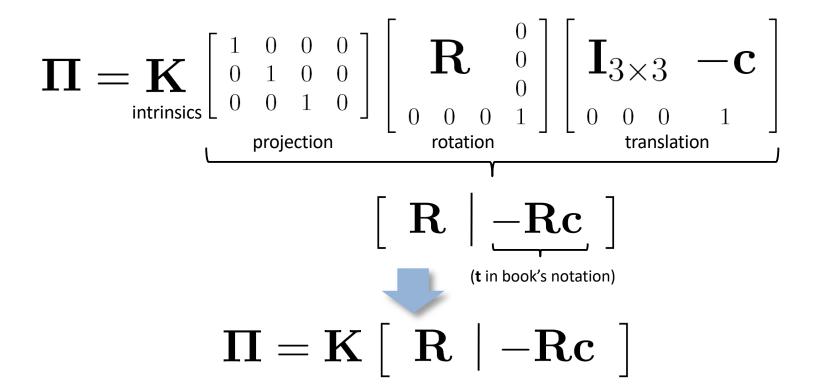
$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1/d & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ -z/d \end{bmatrix} \Rightarrow (-d\frac{x}{z}, -d\frac{y}{z})$$

divide by third coordinate

This is known as **perspective projection**

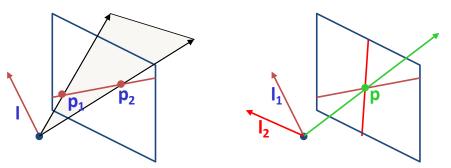
• The matrix is the **projection matrix**

Projection matrix



Point and line duality

- A line I is a homogeneous 3-vector
- It is \perp to every point (ray) **p** on the line: $\mathbf{I} \bullet \mathbf{p} = 0$



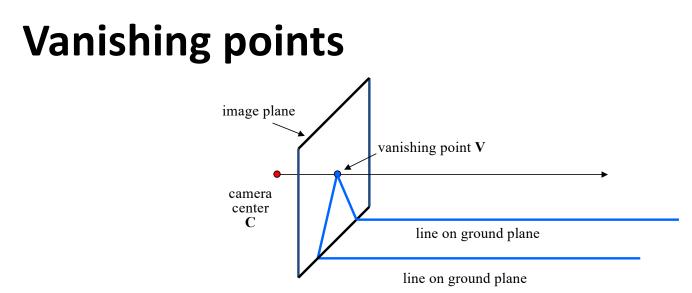
What is the line I spanned by rays $\mathbf{p_1}$ and $\mathbf{p_2}$?

- I is \perp to $\mathbf{p_1}$ and $\mathbf{p_2} \implies \mathbf{I} = \mathbf{p_1} \times \mathbf{p_2}$
- I can be interpreted as a *plane normal*

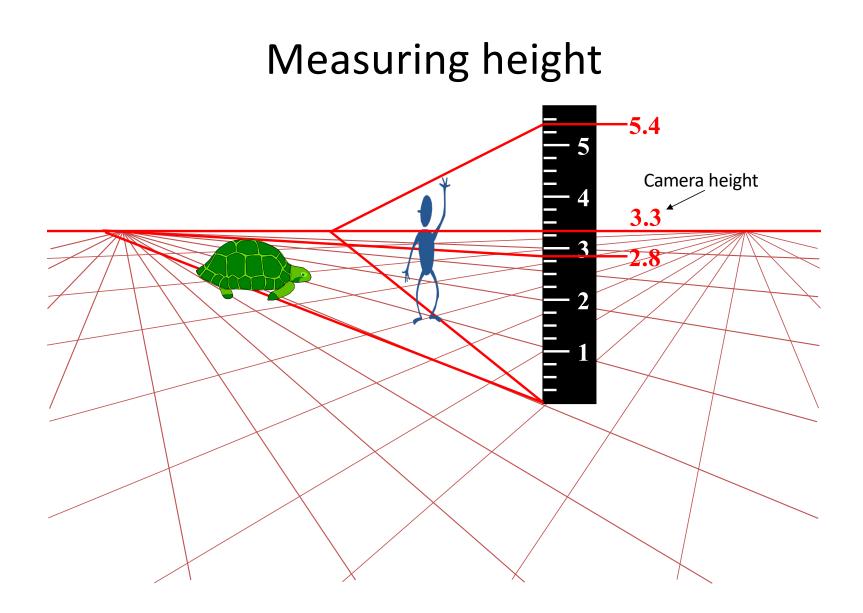
What is the intersection of two lines I_1 and I_2 ?

• **p** is \perp to **I**₁ and **I**₂ \Rightarrow **p** = **I**₁ × **I**₂

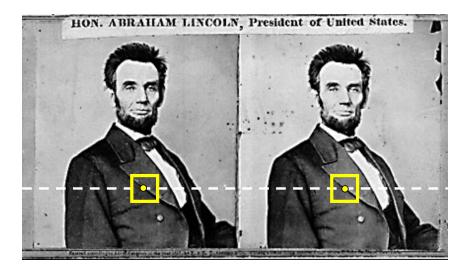
Points and lines are *dual* in projective space



- Properties
 - Any two parallel lines (in 3D) have the same vanishing point ${\bf v}$
 - The ray from **C** through **v** is parallel to the lines
 - An image may have more than one vanishing point
 - in fact, every image point is a potential vanishing point



Your basic stereo algorithm



For each epipolar line

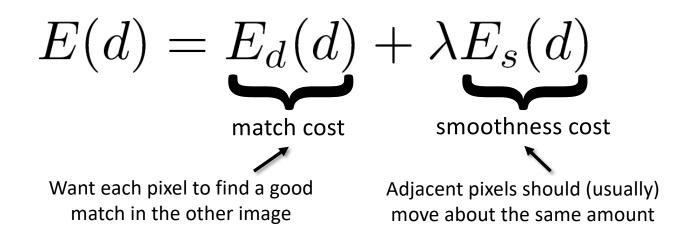
For each pixel in the left image

- compare with every pixel on same epipolar line in right image
- pick pixel with minimum match cost

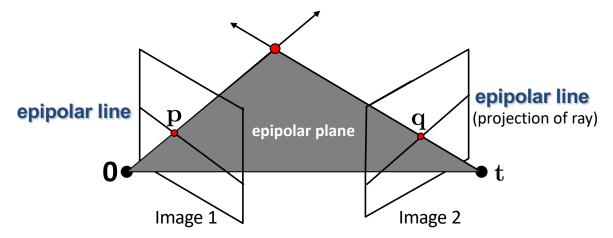
Improvement: match windows

Stereo as energy minimization

• Better objective function

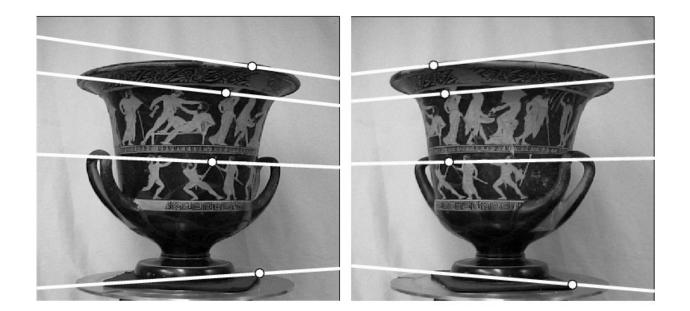


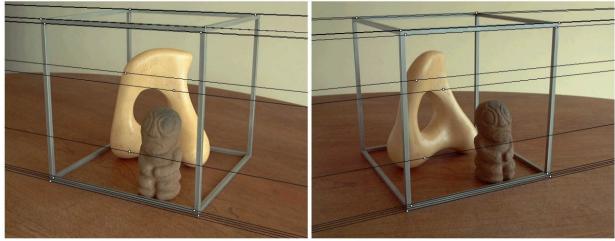
Fundamental matrix



- This *epipolar geometry* of two views is described by a Very Special 3x3 matrix ${f F}$, called the *Fundamental matrix*
- ${f F}$ maps (homogeneous) *points* in image 1 to *lines* in image 2!
- The epipolar line (in image 2) of point ${f p}$ is: ${f Fp}$
- Epipolar constraint on corresponding points: $\mathbf{q}^T \mathbf{F} \mathbf{p} = 0$

Epipolar geometry example





Original stereo pair

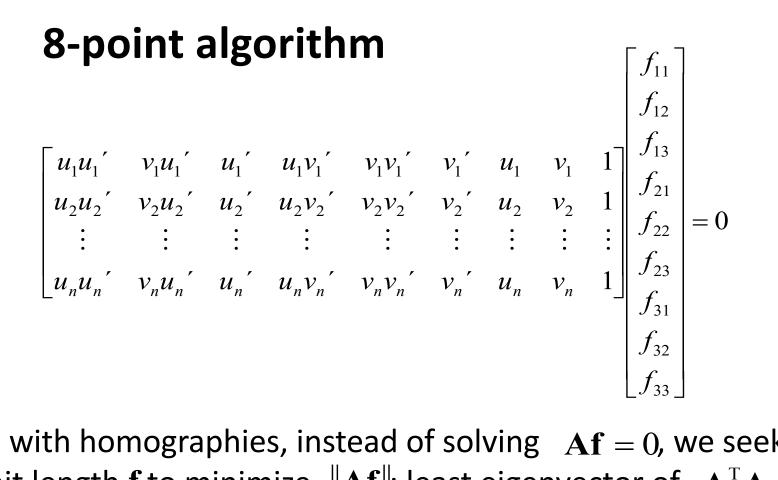
Estimating F – 8-point algorithm

• The fundamental matrix F is defined by $\mathbf{x'}^{\mathrm{T}}\mathbf{F}\mathbf{x} = \mathbf{0}$

for any pair of matches x and x' in two images.

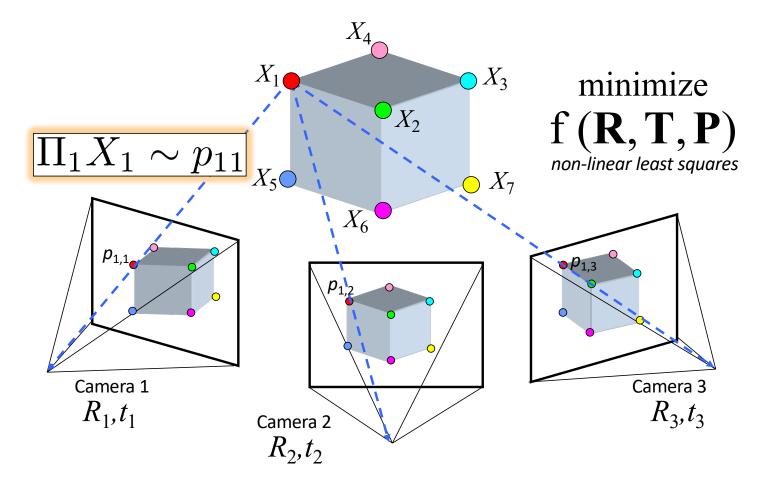
• Let
$$\mathbf{x} = (u, v, 1)^{\mathsf{T}}$$
 and $\mathbf{x}' = (u', v', 1)^{\mathsf{T}}$, $\mathbf{F} = \begin{bmatrix} f_{11} & f_{12} & f_{13} \\ f_{21} & f_{22} & f_{23} \\ f_{31} & f_{32} & f_{33} \end{bmatrix}$
each match gives a linear equation

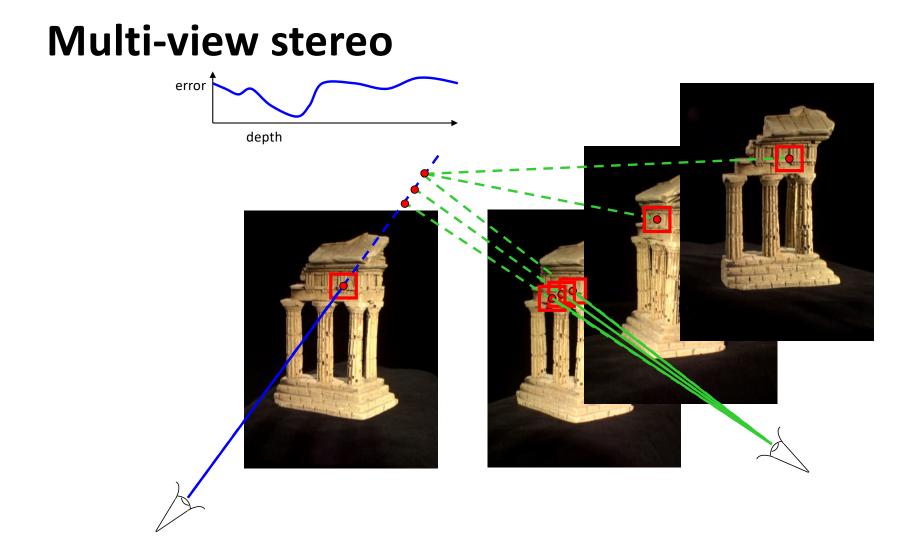
 $uu'f_{11} + vu'f_{12} + u'f_{13} + uv'f_{21} + vv'f_{22} + v'f_{23} + uf_{31} + vf_{32} + f_{33} = 0$



• As with homographies, instead of solving Af = 0, we seek unit length **f** to minimize $\|\mathbf{A}\mathbf{f}\|$: least eigenvector of $\mathbf{A}^{\mathrm{T}}\mathbf{A}$.

Structure from motion





Multiple-baseline stereo

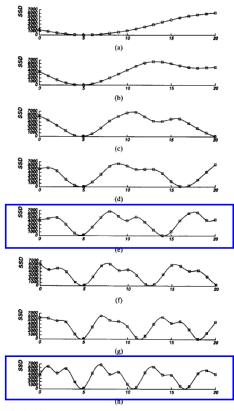


Fig. 5. SSD values versus inverse distance: (a) B = b; (b) B = 2b; (c) B = 3b; (d) B = 4b; (e) B = 5b; (f) B = 6b; (g) B = 7b; (h) B = 8b. The horizontal axis is normalized such that 8bF = 1.

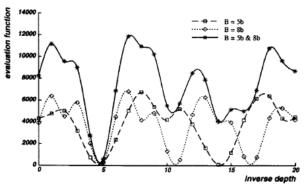


Fig. 6. Combining two stereo pairs with different baselines.

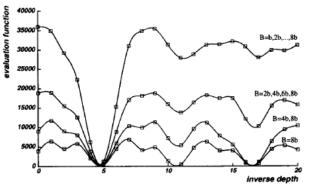
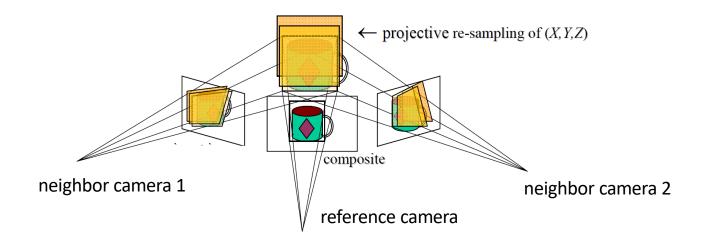


Fig. 7. Combining multiple baseline stereo pairs.

Plane-Sweep Stereo

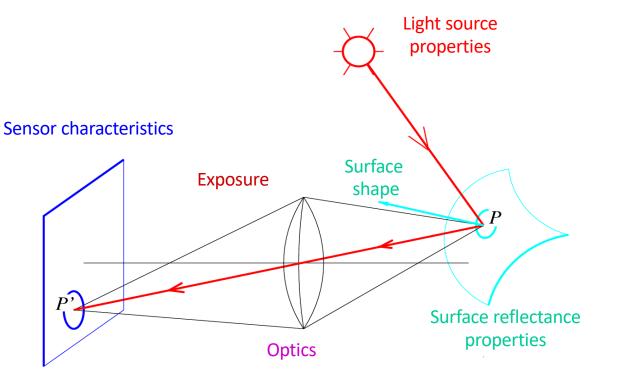
- Sweep family of planes parallel to the reference camera image plane
- Reproject neighbors onto each plane (via homography) and compare reprojections



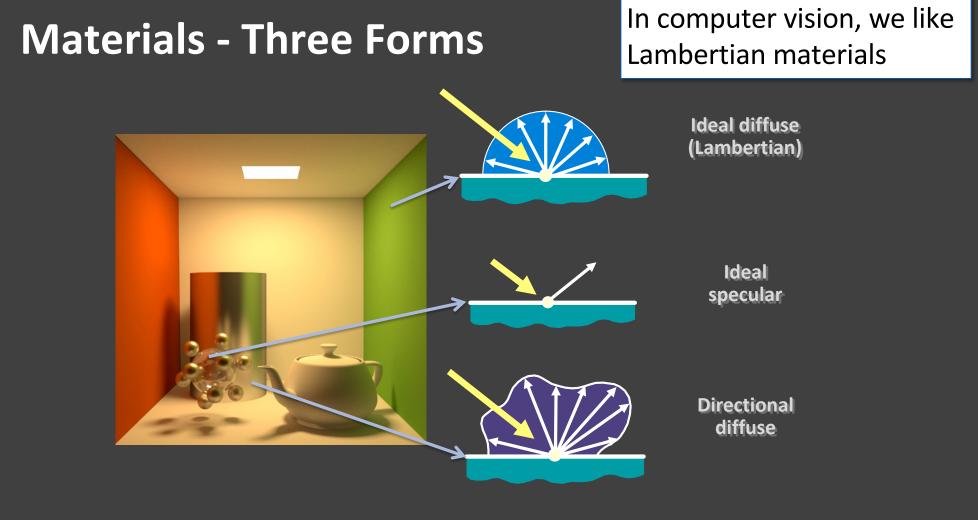
Light, reflectance, cameras

Radiometry

• What determines the brightness of an image pixel?

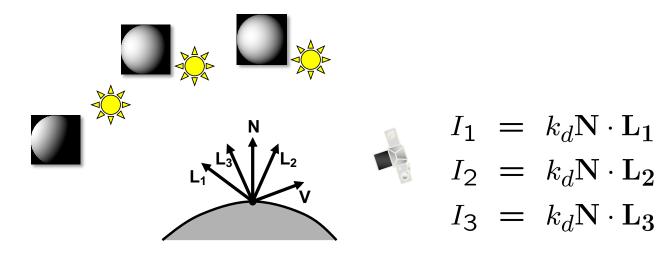


Slide by L. Fei-Fei



© Kavita Bala, Computer Science, Cornell University

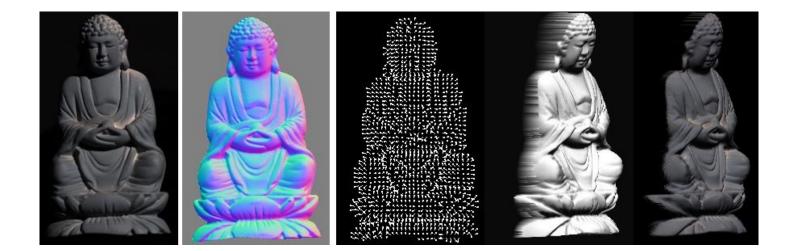
Photometric stereo



Can write this as a matrix equation:

$$\begin{bmatrix} I_1 \\ I_2 \\ I_3 \end{bmatrix} = k_d \begin{bmatrix} \mathbf{L}_1^T \\ \mathbf{L}_2^T \\ \mathbf{L}_3^T \end{bmatrix} \mathbf{N}$$

Example



Recognition / Deep Learning

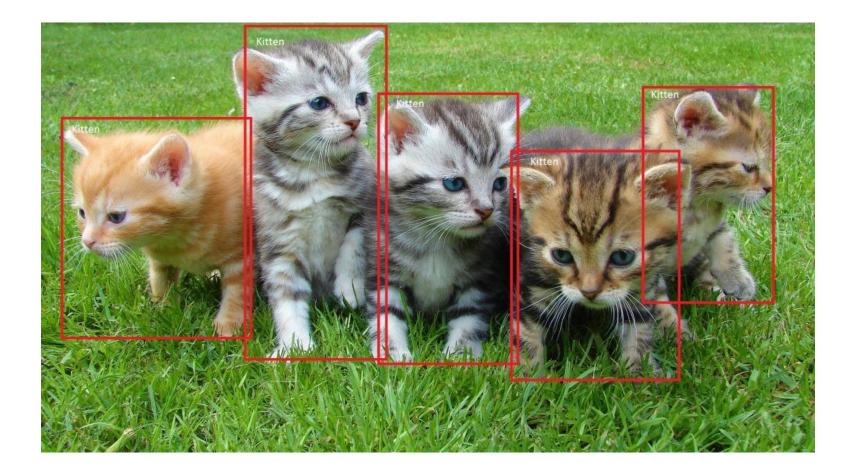
Image Classification

(assume given set of discrete labels) {dog, cat, truck, plane, ...}

cat

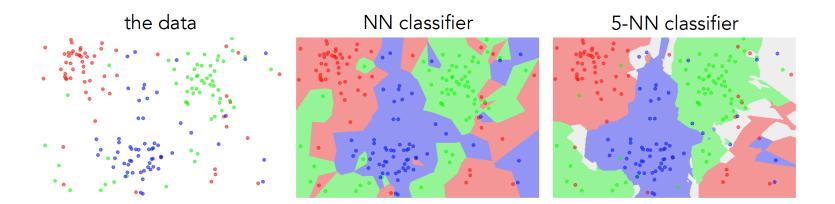
Slides from Andrej Karpathy and Fei-Fei Li http://vision.stanford.edu/teaching/cs231n/

Object detection



k-nearest neighbor

- Find the k closest points from training data
- Take majority vote from K closest points



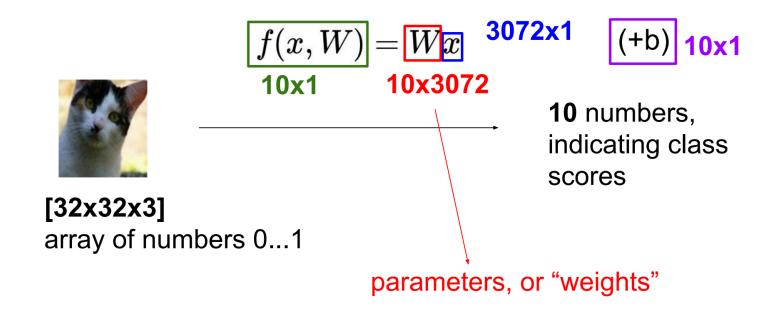
Hyperparameters

- What is the **best distance** to use?
- What is the **best value of k** to use?
- These are **hyperparameters**: choices about the algorithm that we set rather than learn
- How do we set them?
 - One option: try them all and see what works best

Setting Hyperparameters

Idea #1: Choose hyperparameters that work best on the data	BAD : K = 1 always works perfectly on training data		
Your Dataset			
Idea #2: Split data into train and test , choose hyperparameters that work best on test data	BAD : No idea how algorithm will perform on new data		
train		test	
Idea #3: Split data into train, val, and test; choose Better! hyperparameters on val and evaluate on test			
train	validation	test	

Parametric approach: Linear classifier

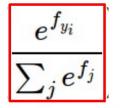


Loss function, cost/objective function

- Given ground truth labels (y_i) , scores $f(x_i, \mathbf{W})$
 - how unhappy are we with the scores?
- Loss function or objective/cost function measures unhappiness
- During training, want to find the parameters W that minimizes the loss function

Softmax classifier

 $f(x_i, W) = Wx_i$ score function is the same

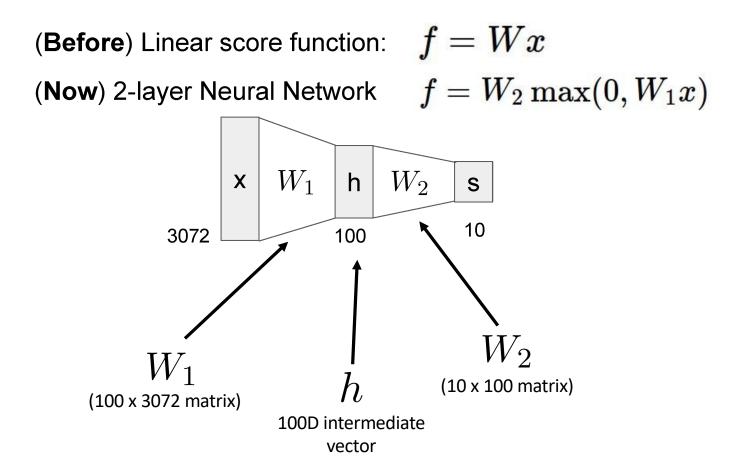


softmax function

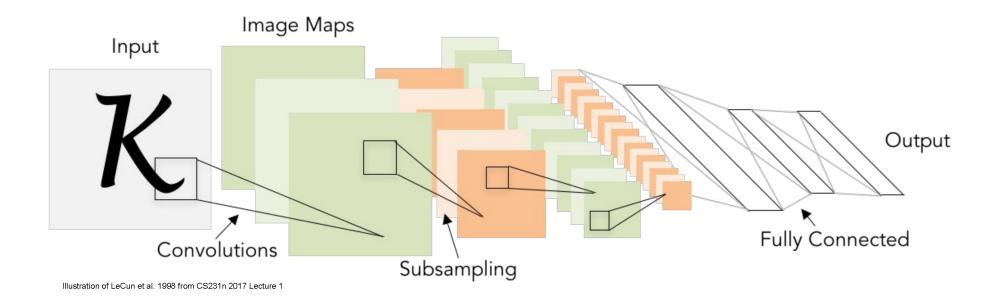
 $[1,-2,0]
ightarrow [e^1,e^{-2},e^0] = [2.71,0.14,1]
ightarrow [0.7,0.04,0.26]$

Interpretation: squashes values into range 0 to 1 $P(y_i \mid x_i; W)$

Neural networks



Convolutional neural networks

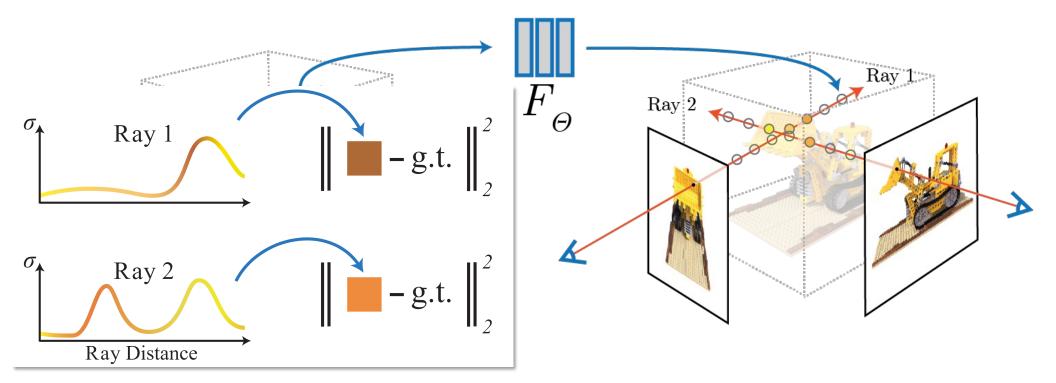


Training deep networks – things to adjust during training

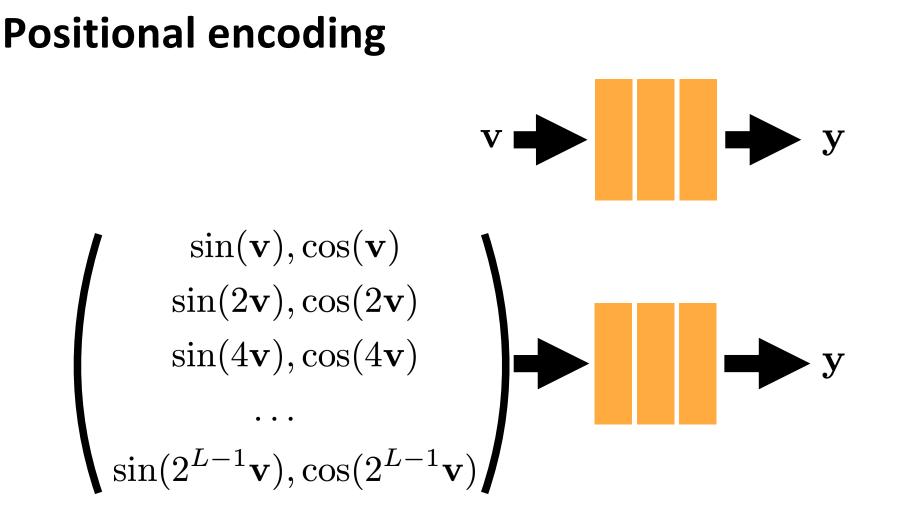
- Network architecture
- Learning rate, decay schedule, update type
- Regularization (L2, L1, maxnorm, dropout, ...)
- Loss function (softmax, SVM, ...)
- Weight initialization

Goal: goodgeneralization tounseen data withoutoverfitting ontraining dataNeural networkparameters

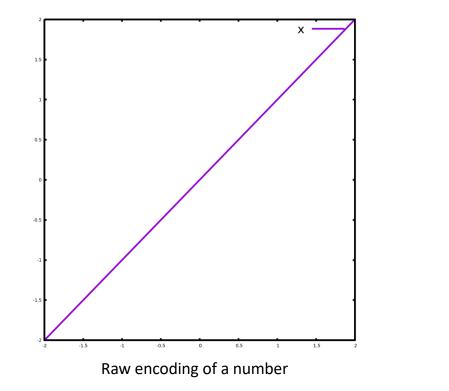
NeRF: Full Neural 3D reconstruction

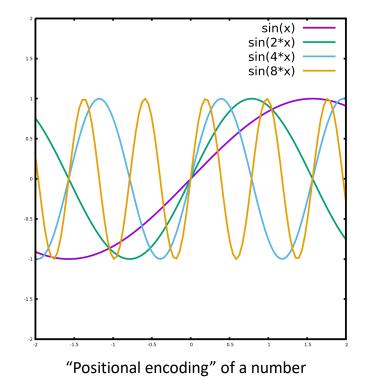


Ben Mildenhall*, Pratul P. Srinivasan*, Matthew Tancik*, Jonathan T. Barron, Ravi Ramamoorthi, Ren Ng. NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis. ECCV 2020. <u>https://www.matthewtancik.com/nerf</u>



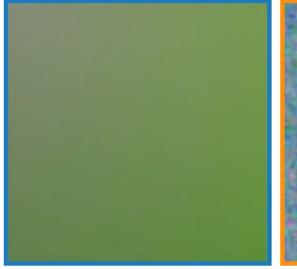
Positional encoding



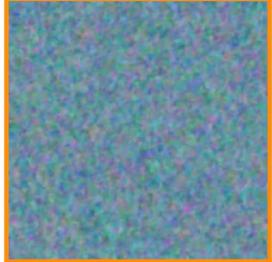


Fitting high-resolution signals with neural networks (MLPs) via positional encoding

Ground truth image



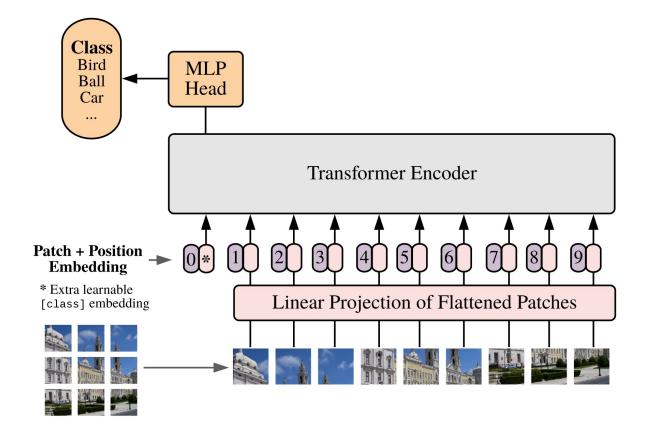
Neural network output without high frequency mapping



Neural network output with high frequency mapping

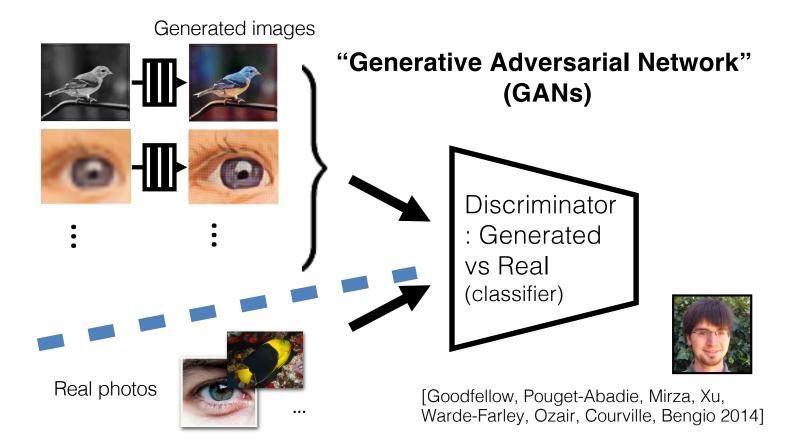
NeRF Results

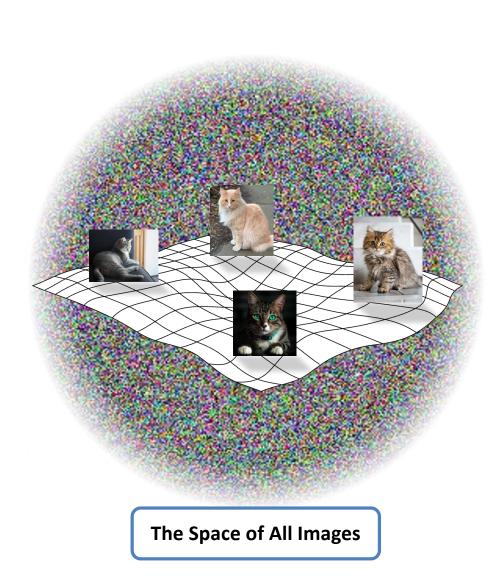
Vision transformers



Datasets – Potential Ethical Issues

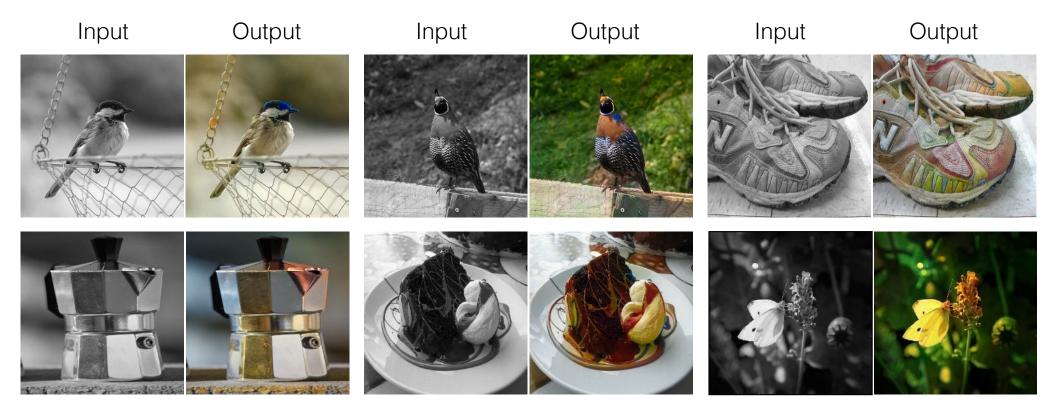
- Licensing and ownership of data
- Consent of photographer and people being photographed
- Offensive content
- Bias and underrepresentation
 - Including amplifying bias
- Unintended downstream uses of data





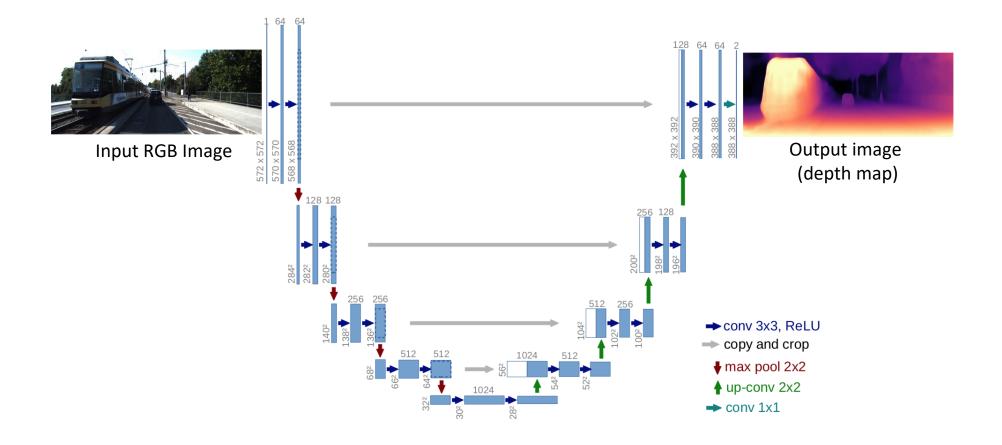
StyleGAN2 [2020]

$\mathsf{BW} \to \mathsf{Color}$



Data from [Russakovsky et al. 2015]

Mapping images to images with the UNet architecture



Diffusion models

Questions?

• Good luck!