CS5670: Computer Vision

Image Manifolds & Image Generation

Some slides adapted from content by Abe Davis, Jin Sun, and Phillip Isola



Announcements

* Project 5 (Neural Radiance Fields) due tomorrow by 8:00 pm
* |n class final next Tuesday, May 7
— 2 sheets of notes (front and back) allowed

* Course evaluations are open
— We would love your feedback!
— Small amount of extra credit for filling out

* What you write is still anonymous; instructors only see if students filled it
out

— https://apps.engineering.cornell.edu/CourseEval/



https://apps.engineering.cornell.edu/CourseEval/

Readings

« Szeliski 2"d Edition Chapter 5.5.4

* 5-Minute Graphics from Steve Seitz:

— Large Language Models from scratch
— Large Language Models: Part 2

— Text to Image in 5 minutes: Parti, Dall-E 2, Imagen
— Text to Image: Part 2 -- how image diffusion works in 5 minutes



https://www.youtube.com/watch?v=lnA9DMvHtfI
https://www.youtube.com/watch?v=YDiSFS-yHwk
https://www.youtube.com/watch?v=GYyP7Ova8KA
https://www.youtube.com/watch?v=lyodbLwb2lY

Agenda

* The manifold of natural images

* Image-to-image methods and GANs
* Image synthesis methods

* Next time: diffusion models



DIMENSIONALITY REDUCTION



Linear Dimensionality Reduction: 2D->1D

» Consider a bunch of data points in 2D
* Let’s say these points lie along a line
* |f so, we can translate and rotate our data so thatitis 1D



Linear Dimensionality Reduction: 3D->2D

Similar to 1D case, we can fita
plane to the data, and
transform our coordinate
system so that plane becomes
the x-y plane

“Plane fitting”

Now we only need to store two
numbers for each point (and
the plane parameters)

More generally: look for the 2D
subspace that best fits the
data, and ignore the remaining
dimensions

Think of this as data that sits on
a flat sheet of paper, suspended
in 3D space. We will come back
to this analogy in a couple
slides...



Generalizing Linear Dimensionality Reduction

* Principal Components Analysis
(PCA): find and order orthogonal

axes by how much the data varies
along each axis.

* The axes we find (ordered by
variance of our data) are called
. . ~10.0
principal components. ——————————
* Dimensionality reduction can be
done by using Oﬂly the first k Side Note: principal components are
N closely related to the eigenvectors of the
prlnC|pa| components covariance matrix for our data



Manifolds

* Think of a piece of paper as a 2D subspace
* If we bend & fold it, it's still locally a 2D subspace...

* A “manifold” is the generalization of this concept to higher
dimensions...




Autoencoders: Dimensionality Reduction for
Manifolds

Feature space at
bottleneck is often

Learn a non-linear (deep network) - called “latent space” -
transformation into some lower- - o
dimensional space (encoder) —\ >~ e
. 1\ ~ ~ /T
Learn a transformation from lower- SN AN, —\ / H
. . . . I | | -
dimensional space back to original \/ NN \/
] /\/ = X N[ /\/ ]
content (decoder) AN = VAN I AN = ANy =
N ~_\ L7 |
Loss function measures difference A e ~a0 N O
between input & output —/ . A
. J - J
. Y Y
Unsuper‘"SEd Encoder Decoder

— No labels required! Signal is just from
learning to compress data



Autoencoders: Dimensionality Reduction for

Manifolds - o
: RERCEIS:
* Transformations that reduce = /' /0 0/
dimensionality cannot be o i
° ° M Encoder Decoder
invertible in general

 An autoencoder tries to learn
a transformation that is
invertible for points on
some manifold




IMAGE MANIFOLDS



The Space of All Images | §

* Lets consider the space of all
100x100 images

* Now lets randomly sample
that space...

Question:
What do we expect a random uniform
sample of all images to look like?

* Conclusion: Most images are
noise pixels = np.random.rand(100,100,3)




Natural Image Manifolds

* Most images are “noise”

* “Meaningful” images tend to
form some manifold within
the space of all images

Images of a particular class
fall on manifolds within that
manifold...

The Space of All Images




Denoising & the “Nullspace” of Autoencoders

a dimensionality reduction E@E :

that is invertible for our data 5

(data on some manifold) - AABARERGEE
* Most noise will beinthenon- . 2l /1olal/ T« lal<l2

invertible part of image space
(off the manifold)

* If we feed noisy data in, we will
often get denoised data out

* The autoencoder tries to learn

[TTTTTTTT]

|

Noisy Input
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Examples from:



https://blog.keras.io/building-autoencoders-in-keras.html

Input Output

N
\\\ ///
\ N Ve /

Problem

* Autoencoders can compress
because data sits on a
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Encoder Decoder

* This doesn’t mean that every
point in the latent space will
be on the manifold...

 GANSs (later this lecture) will
learn a loss function that
helps with this...




IMAGE-TO-IMAGE APPLICATIONS



Image prediction (“structured prediction”)

Object labeling Depth prediction R
o
Recall: we often use a special
A c c Depth Ma
. tongera 20] CNN architecture like a U-Net fgoncaicoa 1 Y
for such image-to-image ~
Text-to-ph yle transfer

mappings
“this small bird

has a pink breast=>

and crown...”

[Reed et al. 2016, ...

[Gatys et al. 2016, ...]




Image Colorization

from Jin Sun, Richard Zhang, Phillip Isola



“What should | do” “How should | do it?”

from Jin Sun, Richard Zhang, Phillip Isola



Training data
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Objective function Neural Network
(lOSS) from Jin Sun, Richard Zhang, Phillip Isola




from Jin Sun, Richard Zhang, Phillip Isola



from Jin Sun, Richard Zhang, Phillip Isola



from Jin Sun, Richard Zhang, Phillip Isola



Recap: basic loss functions
Prediction: § = JF(X) Truth: Y

Classification (cross-entropy): How many extra
bits it takes to

L(S’,Y):—Ziyilog}’i correct the

predictions

from Jin Sun, Richard Zhang, Phillip Isola



Recap: basic loss functions
Prediction: § = JF(X) Truth: Y

Classification (cross-entropy): How many extra
bits it takes to

L(S’,}’):—Ziyil()g}’i correct the

predictions

Least-squares regression:
How far off we are

L(Sf,}f) — HS/‘ — YHQ <— in Euclidean

distance

from Jin Sun, Richard Zhang, Phillip Isola



Designing loss functions

Input Output (with L2 loss) Ground truth

S 1 S
LQ(YaY) — ”Yh.,w — Yh,w”% (|—2 |OSS)
7.

h,w



55
With L2 loss,

predictions “regress to
the mean”, and lack
vivid colors

Lo(Y,Y) = =




Designing loss functions

Input /Zhang et al. 2016 Ground truth

Color distribution cross-entropy loss with colorfulness enhancing term.

[Zhang, Isola, Efros, ECCV 2016]






Designing loss functions

Image colorization

L2 regression

[Zhang, Isola, Efros, ECCV 2016]
Super-resolution

L2 regression

[Johnson, Alahi, Li, ECCV 2016]



Designing loss functions

Image colorization

Cross entropy objective,
with colorfulness term

[Zhang, Isola, Efros, ECCV 2016

Deep feature covariance
matching objective

[Johnson, Alahi, Li, ECCV 2016]



Better Loss Function: Sticking to the Manifold

* How do we design a loss function
that penalizes images that aren’t
on the image manifold?

* Key insight: we will learn our loss
function by training a network to
discriminate between images that
are on the manifold and images
that aren’t



PART 3: GENERATIVE ADVERSARIAL
NETWORKS (GANS)



Generative Adversarial Networks (GANSs)

 Basic idea: Learn a mapping from some latent space to images
on a particular manifold

* Example of a Generative Model:

— We can think of classification as a way to compute some P(x) that tells
us the probability that image x is a member of a class.

— Rather than simply evaluating this distribution, a generative model
tries to learn a way to sample from it



Generative Adversarial Networks (GANSs)

* Generator network has similar
structure to the decoder of our Training Data
autoencoder

— Maps from some latent space to
images Outpu

 We trainitin an adversarial manner 7

against a discriminator network g
— Generator takes image noise, and tries g

to create output indistinguishable ~Q
from training data SN

Discriminator
Network

|

(TTT1T1T1]

(TTTTIITIT]

— Discriminator tries to distinguish
between generator output and
training data

|

Decoder



First: Conditional GANs

* Generate samples from a conditional distribution (conditioned
on some other input)

* Example: generate high-resolution image conditioned on low
resolution input

original bicubic SRResNet SRGAN
(21.59dB/0.6423) A (23.44dB/0.7777)

(20.34dB/0.6562)
N ﬁ — .

A e

[Ledig et al 2016]



[Goodfellow et al., 2014]



—— HH — real or fake?

—— - - ﬁ

Discriminator

G tries to synthesize fake images that fool D

D tries to identify the fakes

[Goodfellow et al., 2014]



— i — fake (0.9)

—I A — real (0.1)

(Identify generated images as fake) (Identify training images as real)

argmax Exy[[log DGG0)| + [log(1 — D)) |

[Goodfellow et al., 2014]



H — real or fake?

G tries to synthesize fake images that fool D:

ar Exy| logD(G(x)) + log(l1— D(y)) ]

[Goodfellow et al., 2014]



—— H H — real or fake”?

G tries to synthesize fake images that fool the best D:
argpninfmax| Ex.y [ log D(G(x)) + log(1—D(y)) |

[Goodfellow et al., 2014]



Loss Function

D

G’s perspective: D is a loss function.

Rather than being hand-designed, it is learned.

[Goodfellow et al., 2014]
[Isola et al., 2017]



—— H H — real or fake”?

argmci;nmgx Exy| logD(G(x)) + log(l—D(y)) |

[Goodfellow et al., 2014]



— HHF— real!
(“Aquarius”)

argmci;nmgx Exy| logD(G(x)) + log(l—D(y)) |

[Goodfellow et al., 2014]



— HH — real or fake pair?

arg min max Exy| logD(G(x)) + log(l1— D(y)) ]

G

[Goodfellow et al., 2014]
[Isola et al., 2017]



—— HH |— real or fake pair "

argm(%nmgx Ex,y[ logD(x,G(x)) —I—log(l — D(X,Y)) ]

[Goodfellow et al., 2014]
[Isola et al., 2017]



—1 HHF— fake pair

argménmgx Ex,y[ logD(x,G(x)) —I—log(l — D(X,Y)) ]

[Goodfellow et al., 2014]
[Isola et al., 2017]



— - - ﬁ
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real pair

argmmma.x Exy| log D@ G(x)) + log(l —.b@ y))

[Goodfellow et al.,
[Isola et al.,

2014]
2017]



—— HH — real or fake pair

arg min max Ex y| log D(x,G(x)) + log(1 — D(x,y)) ]

D

[Goodfellow et al., 2014]
[Isola et al., 2017]



More Examples of Image-to-Image Translation
with GANs

* We have pairs of corresponding training images

* Conditioned on one of the images, sample from the
distribution of likely corresponding images

Edges to Image

Ground truth
p

output

nput i ] output

Output




BW — Color

Input Output

Data from [Russakovsky et al. 2015]



Input Output Groundtrut

Data from
[maps.google.com]



http://maps.google.com/

Labels — Street Views

Input labels

Synthesized image

Data from [Wang et al, 2018]



Day — Night

Input Output Input Output Input Output

Data from [Laffont et al., 2014]



Edges — Images

Output Input Output Input Output

Input

Edges from [Xie & Tu, 2015]



Demo

INPUT

OUTPUT

PIX2piX

https://affinelayer.com/pixsrv/



https://affinelayer.com/pixsrv/

INPUT OUTPUT

e PIX2pix
Loy T |-

lvy Tasi @ivymyt

2
| ‘ X

Vitaly Vidmirov @vvid




Image Inpamtmg

Data from [Pathak et al., 2016]



Pose-guided Generation

Condition Target Target Coarse Refined Condition Target Target Coarse Refined
image pose image (GT) result result image pose image (GT) result result

‘N
X
1 e

L : , h J
(a) DeepFashlon (b) Market-1501

Target pose sequence

Refined results

hog 0
TECRTE

(c) Generating from a sequence of poses

Data from [Ma et al., 2018]



Challenges —> Solutions

e QOutput is high-dimensional, structured object

— Approach: Use a deep net, D, to analyze output!

* Uncertainty in mapping; many plausible outputs

— Approach: D only cares about “plausibility”, doesn’'t hedge



Unconditional GANs:
Learning an image manifold for a category

Output
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image dataset (FFHQ) N )
v
Decoder

Latent code (“noise”)-to-image decoder network



Unconditional GANs:
Learning an image manifold for a category

Output
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Latent code (“noise”)-to-image decoder network



Unconditional GANs:
Learning an image manifold for a category
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Latent code (“noise”)-to-image decoder network



Unconditional GANs:
Learning an image manifold for a category
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Latent code (“noise”)-to-image decoder network



Example: Randomly Sampling the Space of Face
Images

Which face is real?



https://www.nytimes.com/interactive/2024/01/19/technology/artificial-intelligence-image-generators-faces-quiz.html

slido

Which face is real?

@ Start presenting to display the poll results on this slide.



Example: Randomly Sampling the Space of Face
Images

Which face is real?



https://www.nytimes.com/interactive/2024/01/19/technology/artificial-intelligence-image-generators-faces-quiz.html

StyleGAN
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A Style-Based Generator Architecture for Generative Adversarial Networks
Tero Karras, Samuli Laine, Timo Aila
https://github.com/NVlabs/stylegan



https://github.com/NVlabs/stylegan

StyleGAN2 [2020]

Analyzing and Improving the Image Quality of StyleGAN
Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, Timo Aila

https://github.com/NVlabs/stylegan2



https://github.com/NVlabs/stylegan2

StyleGAN3 [2021]

StyleGAN2

- = g

Alias-Free Generative Adversarial Networks (StyleGAN3)
Tero Karras, Miika Aittala, Samuli Laine, Erik Harkonen, Janne Hellsten, Jaakko Lehtinen, Timo Aila



/
|

S MeGAN3YOUrS)

GAN models trained on animal faces: interpolating between latent codes



StyleGANZ. StyleGAN3 (Ours

GAN models trained on MetFaces: interpolating between latent codes



GANs for 3D

EG3D: Efficient
Geometry-aware 3D
Generative
Adversarial Networks

Eric Ryan Chan "2 Connor Zhizhen Lin *1  Matthew Aaron Chan " !
Koki Nagano "2 Boxiao Pan ! Shalini De Mello 2 Orazio Gallo 2
Leonidas Guibas | Jonathan Tremblay 2 Sameh Khamis 2 Tero Karras 2

Gordon Wetzstein '

1 Stanford University 2 NVIDIA

*Equal contribution.

https://nvlabs.github.io/eg3d



https://nvlabs.github.io/eg3d

Limitations

* The unconditional models above must be trained per-
category:
— We have a separate model for every category — an animal face
model, broccoli model, horse model, etc...

* What if we want to generate an image from any description?
* Next time: diffusion and text-to-image models



Questions?



