
Training Deep Networks
CS5670: Computer Vision

Some content adapted from material from
Andrej Karpathy, Sean Bell, Kavita Bala, and
Abe Davis

Image credit: https://blog.imarticus.org/what-are-some-tips-and-tricks-for-
training-deep-neural-networks/

https://blog.imarticus.org/what-are-some-tips-and-tricks-for-training-deep-neural-networks/
https://blog.imarticus.org/what-are-some-tips-and-tricks-for-training-deep-neural-networks/

Announcements

• Project 5 (Neural Radiance Fields) due Weds, May 1 by
8pm

• In class final on May 7
– Allowed two sheets of notes (front and back sides)

• Course evaluations are open starting Monday, April 29
–We would love your feedback!
– Small amount of extra credit for filling out

• What you write is still anonymous, instructors only see whether
students filled it out

– Link coming soon

Readings

• Convolutional neural networks
– Szeliski (2nd Edition) Chapter 5.4

• Best practices for training CNNs
– http://cs231n.github.io/neural-networks-2/
– http://cs231n.github.io/neural-networks-3/

http://cs231n.github.io/neural-networks-2/
http://cs231n.github.io/neural-networks-3/

Deep networks can be used for…

Image classification View synthesis

And much more!

A Recent Example: Segment Anything

Segment Anything
Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura
Gustafson, Tete Xiao, Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr
Dollár, Ross Girshick

https://segment-anything.com/

Another Recent Example: Tracking
Everything Everywhere All at Once

Tracking Everything Everywhere All At Once
Qianqian Wang, Yen-Yu Chang, Ruojin Cai, Zhengqi Li, Bharath Hariharan, Aleksander Holynski, Noah
Snavely
ICCV 2023

Back to convolutional neural networks

Layer types:
• Convolutional layer
• Pooling layer
• Fully-connected layer

Training a network

• Given a network architecture (CNN, MLP, etc) and some
training data, how do we actually set the weights of the
network?

Gradient descent: iteratively follow the
slope

https://laptrinhx.com/gradient-descent-animation-2-multiple-linear-regression-3070246823/

https://laptrinhx.com/gradient-descent-animation-2-multiple-linear-regression-3070246823/

Stochastic gradient descent (SGD)
• Computing the exact gradient over the training set is

expensive
• Train on batches of data (e.g., 32 images or 32 rays) at a time
• A full pass through the dataset (i.e., using batches that cover

the training data) is called an epoch
• Usually need to train for multiple epochs, i.e., multiple full

passes through the dataset to converge
• Stochastic gradient descent only approximates the true

gradient, but works remarkably well in practice
• Use backpropagation to automatically compute gradients on

each batch

How do you actually train these things?

But lots of details to get right!

Training a convolutional neural network

• Split and preprocess your data
• Choose your network architecture
• Initialize your network weights
• Find a learning rate and regularization weight
• Minimize the loss and monitor progress
• Fiddle with knobs…

Why so complicated?

• Training deep networks can be finicky – lots of parameters
to learn, complex, non-linear optimization function

• It’s easy to get high training
accuracy:
• Use a huge, fully connected

network with tons of layers
• Let it memorize your training data

• It’s harder to get high test
accuracy

What makes training deep networks hard?

… …

This would be an
example of overfitting

• A fully connected layer can
generally represent the same
functions as a convolutional one
• Think of the convolutional layer as

a version of the FC layer with
constraints on parameters

• What is the advantage of CNNs?

Related Question: Why Convolutional Layers?

Convolutional Layer Fully Connected Layer

Overfitting: More Parameters, More Problems

• Non-Deep Example: consider the function
• Let’s take some noisy samples of the function…

Overfitting: More Parameters, More Problems

• Now lets fit a polynomial to our samples of the form

• A model with more parameters can
represent more functions

• E.g.,: if then

• More parameters will often reduce training
error but increase testing error. This is
overfitting.

• When overfitting happens, models do not
generalize well

Overfitting: More Parameters, More Problems

P2 2 P15

<latexit sha1_base64="6BBEXEAhguQ3G68yFwsayvpJ/XE=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKix6LXjxGsB/QhrDZbtqlm026uymU0N/hxYMiXv0x3vw3btsctPXBwOO9GWbmBQlnStv2t1XY2t7Z3Svulw4Oj45PyqdnbRWnktAWiXksuwFWlDNBW5ppTruJpDgKOO0E4/uF35lSqVgsnvQsoV6Eh4KFjGBtJM/1a30mkOtnTmPulyt21V4CbRInJxXI4frlr/4gJmlEhSYcK9Vz7ER7GZaaEU7npX6qaILJGA9pz1CBI6q8bHn0HF0ZZYDCWJoSGi3V3xMZjpSaRYHpjLAeqXVvIf7n9VId3noZE0mqqSCrRWHKkY7RIgE0YJISzWeGYCKZuRWREZaYaJNTyYTgrL+8Sdq1qlOvNh7rleZdHkcRLuASrsGBG2jCA7jQAgITeIZXeLOm1ov1bn2sWgtWPnMOf2B9/gB6RJFF</latexit>

Degree 2 Fit

Degree 15 Fit

• More parameters let us represent a
larger space of functions

• The larger that space is, the harder
our optimization becomes

• This means we need:
• More data
• More compute resources
• Etc.

Deep Learning: More Parameters, More Problems?

Convolutional Layer Fully Connected Layer

Deep Learning: More Parameters, More Problems?

Convolutional Layer Fully Connected Layer

A convolutional layer
looks for components
of a function that are

spatially-invariant

Overfitting in view synthesis

• What happens if you directly optimize an MPI to reconstruct a small
set of input views?

Overfitting in view synthesis

• Answer: you can exactly reconstruct the input views, but produce
garbage for new views

Fitting a multi-plane image to a set of views using gradient descent

• Reminiscent of shadow sculptures

Overfitting in view synthesis

Anamorphic Star Wars Shadow Art by Red Hong Yi, via
TKSST

https://thekidshouldseethis.com/post/anamorphic-star-wars-shadow-art-by-red-hong-yi

Overfitting in view synthesis

SHADOW ART
Niloy J. Mitra, Mark Pauly
ACM SIGGRAPH Asia 2009

https://graphics.stanford.edu/~niloy/research/shadowArt/shadowArt_sigA_09.html

• MPI with 64 layers, each storing a 1024 x 768 RGBA image à ~200M
parameters
• If we have 32 input RGB images of 1024x768 resolution à ~75M

inputs
• Many more parameters than measurements à risk of overfitting

• Compare to NeRF: ~500K - 1M parameters

Overfitting in view sythesis

• In general:
• More parameters means higher risk of overfitting
• More constraints/conditions on parameters can help

• If a model is overfitting, we can
• Collect more data to train on
• Regularize: add some additional information or assumptions to better constrain

learning

• Regularization can be done through:
• the design of architecture
• the choice of loss function
• the preparation of data
• …

How to Avoid Overfitting: Regularization

• “Bigger” architectures (typically,
those with more parameters) tend
to be more at risk of overfitting.

• But, we’ll see much bigger
architectures (transformers) soon
that work well when given lots of
training data

Regularization: Architecture Choice

Convolutional
Layer

Fully Connected Layer

Regularization reduces overfitting

(1) Data proprocessing

(1) Data proprocessing

In practice, often perform a single mean RGB value, and divide by a
per-channel standard deviation (recall MOPS, Normalized 8-Point
Algorithm)

(1) Data proprocessing

Batch normalization

• Side note – can also perform normalization after each
layer of the network to stabilize network training (“batch
normalization”)

(1) Data preprocessing

(2) Choose your architecture

https://playground.tensorflow.org/

https://playground.tensorflow.org/

(2) Choose your architecture
Very common modern choice

for classification problems

(3) Initialize your weights

(if you use ReLU activations, folks tend to initialize bias to small positive number)

(4) Overfit a small portion of the data

(4) Overfit a small portion of the data

(4) Overfit a small portion of the data

(4) Find a learning rate

Learning rate schedule

Summary of things to fiddle with

(+batch size)

Questions?

Transfer learning

“You need a lot of data if you want
to train/use CNNs for a new

classification task”

Slide credit: Fei-Fei Li, Justin Johnson, and Serena Yeung

“You need a lot of data if you want
to train/use CNNs for a new

classification task”

Transfer learning

BU
ST
ED

Slide credit: Fei-Fei Li, Justin Johnson, and Serena Yeung

Transfer learning with CNNs

Step 1: Take a model trained on ImageNet

Slide credit: Fei-Fei Li, Justin Johnson, and Serena Yeung

Transfer learning with CNNs

Step 2a: If you have a small amount of new data, adjust a
small number of network weights

Slide credit: Fei-Fei Li, Justin Johnson, and Serena Yeung

Transfer learning with CNNs

Step 2b: If you have a larger amount of new data, adjust a
larger number of network weights

Slide credit: Fei-Fei Li, Justin Johnson, and Serena Yeung

Slide credit: Fei-Fei Li, Justin Johnson, and Serena Yeung

Slide credit: Fei-Fei Li, Justin Johnson, and Serena Yeung

Slide credit: Fei-Fei Li, Justin Johnson, and Serena Yeung

Transfer learning with CNNs is pervasive

• It’s the norm, not the exception

Slide credit: Fei-Fei Li, Justin Johnson, and Serena Yeung

Transfer learning with CNNs is pervasive

• It’s the norm, not the exception

Slide credit: Fei-Fei Li, Justin Johnson, and Serena Yeung

Other pre-trained models are starting to
become standard
• Swin-transformer pre-trained on ImageNet-21K
• DINO features
• Foundation models (Stable Diffusion, etc)

Takeaway for your projects and beyond
Have some dataset of interest, but it
has << ~1M images?

1. Find a large dataset with similar
data (e.g., ImageNet), train a large
CNN

2. Apply transfer learning to fine-tune
on your data

For step 1, many existing models exist
in “Model Zoos”

Common modern approach:
start with a ResNet
architecture pre-trained on
ImageNet, and fine-tune on
your (smaller) dataset

Slide credit: Fei-Fei Li, Justin Johnson, and Serena Yeung

Questions?

