CS5670: Computer Vision

Training Deep Networks

Image credit: https://blog.imarticus.org/what-are-some-tips-and-tricks-for-

training-deep-neural-networks/

Some content adapted from material from
Andrej Karpathy, Sean Bell, Kavita Bala, and

https://blog.imarticus.org/what-are-some-tips-and-tricks-for-training-deep-neural-networks/
https://blog.imarticus.org/what-are-some-tips-and-tricks-for-training-deep-neural-networks/

Announcements

* Project 5 (Neural Radiance Fields) due Weds, May 1 by
8pm

* In class final on May 7
— Allowed two sheets of notes (front and back sides)

 Course evaluations are open starting Monday, April 29

— We would love your feedback!

— Small amount of extra credit for filling out

» What you write is still anonymous, instructors only see whether
students filled it out

— Link coming soon

Readings

* Convolutional neural networks
— Szeliski (29 Edition) Chapter 5.4

 Best practices for training CNNs
— http://cs231n.github.io/neural-networks-2/
— http://cs231n.github.io/neural-networks-3/

http://cs231n.github.io/neural-networks-2/
http://cs231n.github.io/neural-networks-3/

Deep networks can be used for...

Image classification View synthesis
f(&) = “apple”
f(Rl) = “tomato”

f() 14 COW”

And much more!

A Recent Example: Segment Anything

Segment Anything

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura
Gustafson, Tete Xiao, Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr
Dollar, Ross Girshick

https://segment-anything.com/

Another Recent Example: Tracking
Everything Everywhere All at Once

Tracking Everything Everywhere
All At Once

Paper ID: 2206
(with audio &)

Tracking Everything Everywhere All At Once
Qiangian Wang, Yen-Yu Chang, Ruojin Cai, Zhengqi Li, Bharath Hariharan, Aleksander Holynski, Noah
Snavely

Back to convolutional neural networks

Layer types:

« Convolutional layer

* Pooling layer

* Fully-connected layer

Input

y
Al

224

CONV1

55

CONV2

CONV4

CONV5

FCé6 FC7 FC8

Dense Dense
13!

Dense
13
256
1000

3 3R—F 3R~
o . , 13 . 13 . E
5Y¢ 3 W 3 3
= o 384 384
Max 4096 4096
Max pooling
96
224 pooling
Input . Max
. 3 pooling
image
(RGB) Stride
of 4
[| | | | |
Image input 5 Convolution layers 3 Fully-connected

layers

Training a network

* Given a network architecture (CNN, MLP,. etc) and some
training data, how do we actually set the weights of the
network?

Gradient descent: iteratively follow the
slope

Surface plot

=5
-15 -10
----- epochs: 0 15 Wo

https://laptrinhx.com/gradient-descent-animation-2-multiple-linear-regression-3070246823/

https://laptrinhx.com/gradient-descent-animation-2-multiple-linear-regression-3070246823/

Stochastic gradient descent (SGD)

« Computing the exact gradient over the training set is
expensive

 Train on batches of data (e.g., 32 images or 32 rays) at a time

* A full pass through the dataset (i.e., using batches that cover
the training data) is called an epoch

« Usually need to train for multiple epochs, i.e., multiple full
passes through the dataset to converge

 Stochastic gradient descent only approximates the true
gradient, but works remarkably well in practice

» Use backpropagation to automatically compute gradients on
each batch

How do you actually train these things?

Roughly speaking:

Gather Find a ConvNet Minimize
labeled data architecture the loss
S v o | 5 g e A -
S E . W O R Tems
BEENEErDe . SR S =
iﬁ:ﬁ?:ﬁ!ﬁ L FIE Tt
- Archagorni Night Carinate E’;EE
e Lol s %g El o1
C T — e =S
eee el T S e P
B e Y el - | i
- . " ﬂu e S
sl s B Ee T e i G
o 50] = amyee \ § Gy & o= Y g+
DEErE -9 m B2 e e =gos
B

But lots of details to get right!

Training a convolutional neural network

Split and preprocess your data

Choose your network architecture

* Initialize your network weights

 Find a learning rate and regularization weight

* Minimize the loss and monitor progress
Fiddle with knobs...

Why so complicated?

 Training deep networks can be finicky — lots of parameters
to learn, complex, non-linear optimization function

What makes training deep networks hard?

* [t's easy to get high training
accuracy:

 Use a huge, fully connected
network with tons of layers

* Let it memorize your training data

QOQOO0OO
QOO0
QOQOO0OO

This would be an

* It's harder to get high test
example of overfitting

accuracy

— QOO0
— 000000

Related Question: Why Convolutional Layers?

* A fully connected layer can
generally represent the same
functions as a convolutional one

» Think of the convolutional layer as
a version of the FC layer with
constraints on parameters

« What is the advantage of CNNs?

QOO OO
OOOOO0

Convolutional Layer Fully Connected Layer

Overfitting: More Parameters, More Problems

* Non-Deep Example: consider the function T+
e Let's take some noisy samples of the function...

Ground Truth Noisy Samples

120 A 120
100 A 100 |

80 A 80 |

[J
| i [)
60 60 °
[J
40 A 40
°
20 - 20 - o . ®e
°
o) o ©® ®
0 0 °

-15 -10 -5 0 5 10 15 -15 -10 =5 0 5 10

Overfitting: More Parameters, More Problems

N
» Now lets fit a polynomial to our samples of the form Py(z) =) " 2*p;
k

Poly Fit Degree 1 Poly Fit Degree 2 Poly Fit Degree 3 Poly Fit Degree 5
120 120 120 o 120 o
100 100 100 100
80 80 80 80
°
60 ® ° 60 1 60 60
404 404 40 40
20 20 20 A 20
0 0 01 01
-15 15 -15 ~10 5 0 5 10 15 -15 ~10 s 0 5 10 15 -15 15
Poly Fit Degree 7 Poly Fit Degree 9 Poly Fit Degree 11 Poly Fit Degree 13
120 120 20 120
100 100 4 30 100
80 80 30 80
60 4 60 - 50 60 - 1
40 A 40 10 40
20 4 20 4 20 20
0 0 01 01
-15 15 -15 _10 15 -15 -10 10 15 -15 -10 s 0 5 10 15

Overfitting: More Parameters, More Problems

» A model with more parameters can
represent more functions

N
 Eg.:if Pn(z) = Zxkpk RhénPs
k=0

* More parameters will often reduce training
error but increase testing error. This is
overfitting.

* When overfitting happens, models do not
generalize well

120 A

100 4

80 A

60 -

40

20 A

0.

Degree 2 Fit

-15 -10

15

120 A

100 4

80 A

60 -

40 1

20 A

Degree 15 Fit

=15 -10

15

Deep Learning: More Parameters, More Problems?

* More parameters let us represent a
larger space of functions

* The larger that space is, the harder
our optimization becomes

 This means we need:
« More data
* More compute Fesources

* Etc. Convolutional Layer Fully Connected Layer

QOO OO
OOOOO0

Deep Learning: More Parameters, More Problems?

A convolutional layer
looks for components

of a function that are \

S patia I Iy' Invariant Convolutional Layer Fully Connected Layer

QOO OO
OOOOO0

Overfitting in view synthesis

« What happens if you directly optimize an MPI to reconstruct a small
set of input views?

Overfitting in view synthesis

« Answer: you can exactly reconstruct the input views, but produce
garbage for new views

DeepView: View synthesis with
learned gradient descent

John Flynn, Michael Broxton, Paul Debevec, Matthew DuVall, Graham Fyffe,
Ryan Overbeck, Noah Snavely, Richard Tucker

it Google Al * Daydream

Fitting a multi-plane image to a set of views using gradient descent

Overfitting in view synthesis

* Reminiscent of shadow sculptures

Anamorphic Star Wars Shadow Art by Red Hong Vi, via

TKSST

https://thekidshouldseethis.com/post/anamorphic-star-wars-shadow-art-by-red-hong-yi

Overfitting in view synthesis

SHADOW ART
Niloy J. Mitra, Mark Pauly
ACM SIGGRAPH Asia 2009

https://graphics.stanford.edu/~niloy/research/shadowArt/shadowArt_sigA_09.html

Overfitting in view sythesis

* MPI with 64 layers, each storing a 1024 x 768 RGBA image - ~200M
parameters

* If we have 32 input RGB images of 1024x768 resolution > ~75M
Inputs

« Many more parameters than measurements - risk of overfitting

* Compare to NeRF: ~500K - 1M parameters

How to Avoid Overfitting: Regularization

* In general:
« More parameters means higher risk of overfitting
* More constraints/conditions on parameters can help

* If a model is overfitting, we can
» Collect more data to train on

. i‘?egu{arize: add some additional information or assumptions to better constrain
earning

 Reqgularization can be done through:
« the design of architecture
* the choice of loss function
* the preparation of data

Regularization: Architecture Choice

* “Bigger” architectures (typically,
those with more parameters) tend
to be more at risk of overfitting.

* But, we'll see much bigger
architectures (transformers) soon
that work well when given lots of
training data

Convolutional
Layer

QOO OO
OOOOO0

Fully Connected Layer

Regularization reduces overfitting

data

L=Ly+L,, L,.eg=zl||w||§

A =0.001 A=0.01

[Andrej Karpathy http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html]

(1) Data proprocessing

Preprocess the data so that learning is better conditioned:

original data zero-centered data normalized data
A
- o - / I
.'4: 2
\ J
gl 5 19 105 -5 0 5 19 5 =5 0 5 10
X -= np.mean(axis=0, keepdims=True)

X /= np.std(axis=0, keepdims=True)

Figure: Andrej Karpathy

(1) Data proprocessing

An input image (256x256) Minus sign The mean input image

In practice, often perform a single mean RGB value, and divide by a
per-channel standard deviation (recall MOPS, Normalized 8-Point

Algorithm)

(1) Data proprocessing

Data loading code
if args.dummy:
print("=> Dummy data is used!")
train_dataset = datasets.FakeData(1281167, (3, 224, 224), 1000, transforms.ToTensor())

val _dataset = datasets.FakeData(50000, (3, 224, 224), 1000, transforms.ToTensor())
else:

traindir = os.path.join(args.data, ‘'train‘)

valdir = os.path.join(args.data, 'val')

normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],

std=[0.229, 0.224, 0.225])

train_dataset = datasets.ImageFolder(
traindir,

transforms.Compose([

transforms.RandomResizedCrop(224),

Batch normalization

* Side note — can also perform normalization after each
layer of the network to stabilize network training (“batch
normalization”)

(1) Data preprocessing

Augment the data — extract random crops from the
input, with slightly jittered offsets. Without this, typical
ConvNets (e.g. [Krizhevsky 2012]) overfit the data.

E.g. 224x224 patches
extracted from 256x256 images

Randomly reflect horizontally

Perform the augmentation live
during training

Figure: Alex Krizhevsky

Choose your architecture

[@ A Neural Network Playg: x

& C' | @ Secure = https://playground.tensorflow.org/#activation=tanh&batchSize=10&dataset=circle®Dataset=reg-plane&learningRate=0... v¢ | [@

Q-

DATA

Which dataset do
you want to use?

Ratio of training to
test data: 50%
—e

Noise: 0

Batch size: 10
—e

REGENERATE

Epoch Learning rate Activation

000,000 0.03 Tanh None

FEATURES + — 2 HIDDEN LAYERS

Which properties
do you want to
feed in?

+ - + -

4 neurons 2 neurons

X1 D
* The outputs are
mixed with varying
weights, shown

by the thickness of
the lines.

o

Lwooao

This is the output
from one neuron.
Hover to see it
larger.

Regularization

Regularization rate

0

OUTPUT

Test loss 0.507
Training loss 0.504

Colors shows
data, neuron and
weight values.

https://playground.tensorflow.org/

Netln

%R
Problem type

Classification

https://playground.tensorflow.org/

Very common modern choice

(2) Choose your architecture forclassification problems

/

“AlexNet” “GoogLeNet” “VGG Net”

- mege
=
E’ conv-64
i conv-64
= sﬁm maxpool
- T - conv-128
:23 N conv-128
:f maxpool
e i L B conv-256
EEEE conv-256
iﬂ =11 g =] maxpool
T
—_ T T conv-512
.. conv-512
= E’;;E = maxpool
e b
e =] conv-512
: i conv-512
- mEm oo
]
Bl FC-4096
sngasas FC-4096
= —3 ey FC-1000
&— 3§ : softmax
[Krizhevsky et al. NIPS 2012] [Szegedy et al. CVPR 2015] [Simonyan & Zisserman, e et al. CVPR 201§

ICLR 2015]

(3) Initialize your weights

Set the weights to small random numbers:

W = np.random.randn(D, H) * 0.001

(matrix of small random numbers drawn from a Gaussian distribution)

Set the bias to zero (or small nonzero):

b = np.zeros(H)

(if you use RelLU activations, folks tend to initialize bias to small positive number)

Slide: Andrej Karpathy

(4) Overfit a small portion of the data

model = init two layer model(32*32%3, 50, 10) # input size
trainer = ClassifierTrainer()
X_tiny = X train[:20] # take 20 examples <«

y tiny = y train[:20]

best model, stats = trainer.train(X tiny, y tiny, X tiny, y tiny,
model, two layer net,
num epochs=200, reg=0.0,
update='sgd’', learning rate decay=1,
sample batches = False,
learning rate=le-3, verbose=True)

The above code:
- take the first 20 examples from
CIFAR-10
- turn off regularization (reg = 0.0)
- use simple vanilla ‘sgd’

(4) Overfit a small portion of the data

model = init two layer model(32*32%*3, 50, 10) # input
trainer = ClassifierTrainer()

X_tiny = X_train[:20] # take 20 examples <«mm——m—s

y tiny = y train[:20]

best model, stats = trainer.train(X tiny, y tiny, X tiny, y tiny,
model, two layer net,
num epochs=200, reg=0.0,
update='sgd', learning rate decay=1,
sample batches = False,
learning rate=le-3, verbose=True)

Details:

'sgd’: vanilla gradient descent (no momentum etc)
learning_rate_decay = 1. constant learning rate
sample_batches = False (full gradient descent, no batches)

epochs = 200: number of passes through the data
Slide: Andrej Karpathy

(4) Overfit a small portion of the data

100% accuracy on the training set (good)

Finished epoch 1 / 200: cost 2.302603, train: 0.400000, val 0.400000, lr 1.000000e-03 =
Finished epoch 2 / 200: cost 2.302258, train: 0.450000, val 0.450000, lr 1.000000e-03

Finished epoch 3 / 200: cost 2.301849, train: 0.600000, val 0.600000, lr 1.000000e-03

Finished epoch 4 / 200: cost 2.301196, train: 0.650000, val 0.650000, lr 1.000000e-03

Finished epoch 5 / 200: cost 2.300044, train: 0.650000, val 0.650000, Lr 1.000000e-03

Finished epoch 6 / 200: cost 2.297864, train: 0.550000, val 0.550000, lr 1.000000e-03

Finished epoch 7 / 200: cost 2.293595, train: 0.600000, val ©.600000, Lr 1.000000e-03

Finished epoch 8 / 200: cost 2.285096, train: 0.550000, val 0.550000, lr 1.000000e-03

Finished epoch 9 / 200: cost 2.268094, train: 0.550000, val 0.550000, lr 1.000000e-03

Finished epoch 10 / 200: cost 2.234787, train: 0.500000, val 0.5600000, lr 1.000000e-03

Finished epoch 11 / 200: cost 2.173187, train: 0.500000, val ©0.500000, lr 1.000000e-03

Finished epoch 12 / 200: cost 2.076862, train: 0.500000, val 0.5600000, lr 1.000000e-03

Finished epoch 13 / 200: cost 1.974090, train: 0.400000, val 0.4600000, lr 1.000000e-03

Finished epoch 14 / 200: cost 1.895885, train: 0.400000, val 0.400000, lr 1.000000e-03

Finished epoch 15 / 200: cost 1.820876, train: 0.450000, val 0.450000, lr 1.000000e-03

Finished epoch 16 / 200: cost 1.737430, train: 0.450000, val 0.450000, lr 1.000000e-03

Finished epoch 17 / 200: cost 1.642356, train: 0.500000, val 0.500000, lr 1.000000e-03

Finished epoch 18 / 200: cost 1.535239, train: 0.600000, val 0.600000, lr 1.000000e-03

Finished epoch 19 / 200: cost 1.421527, train: 0.600000, val 0.600000, lr 1.000000e-03 .
Fimd abad -— b -~ . -~Aan - El mArTYTE N - - N ECAnnAn cem N BTN T - - e a Eate

P — —_——— R —— ———— o w m——— g s N i s .S g TS O s v i S s

Finished epoch 195 / 200: cost ©.002694, train:}1.000000j§ val 1.000000, 1lr 1.000000e-03
Finished epoch 196 / 200: cost 0.002674, train:}1.000000j§ val 1.000000, lr 1.000000e-03
Finished epoch 197 / 200: cost 0.002655, train:|1.000000) val 1.000000, lr 1.000000e-03
Finished epoch 198 / 200: cost 0.002635, train:}1.000000j§ val 1.000000, 1lr 1.000000e-03
Finished epoch 199 / 200: cost 0.002617, train:}1.000000j§ val 1.000000, 1lr 1.000000e-03
Finished epoch 200 / 200: cost 0.002597, train:}1.000000j§ val 1.000000, 1lr 1.000000e-03
finished optimization. best validation accuracy:

Slide: Andrej Karpathy

(4) Find a learning rate

low learning rate
i Q: Which one of these
high learning rate . .
\ learning rates is best to use?

good learning rate

\

epoch

Learning rate schedule

How do we change the learning rate over time?
Various choices:

e Step down by a factor of 0.1 every 50,000
mini-batches (used by SuperVision [Krizhevsky 2012])

* Decrease by a factor of 0.97 every epoch
(used by GoogleNet [Szegedy 2014])

e Scale by sqgrt(1-t/max_t)
(used by BVLC to re-implement GooglLeNet)

* Scale by 1/t
e Scale by exp(-t)

Summary of things to fiddle with

 Network architecture

Learning rate, decay schedule, update type (+batch size)

Regularization (L2, L1, maxnorm, dropout, ...)

Loss function (softmax, SVM, ...)

Weight initialization

Neural network
parameters

Questions?

Transfer learning

“You need a lot of data if you want
to train/use CNNs for a new
classification task”

Slide credit: Fei-Fei Li, Justin Johnson, and Serena Yeur

Transfer learning

“You need a lo If you want
to train/u s for a new
1@t

claQuif on task”

Slide credit: Fei-Fei Li, Justin Johnson, and Serena Yeur

Transfer learning with CNNs

Step 1: Take a model trained on ImageNet

[Feao00 |
[Fcaoss |
[Fc4oes |

=

axPool
onv-512
onv-512

axPool
onv-512
onv-512

axPool
onv-256
onv-256

axPool
onv-128
nv-128

axPool
onv-64
onv-64

noggﬁgﬁﬂgnﬂgﬁﬁ

Ié

Slide credit: Fei-Fei Li, Justin Johnson, and Serena Yeur

Transfer learning with CNNs

Step 2a: If you have a small amount of new data, adjust a
small number of network weights

FC-1000 | | Fcc |

FC-4096 4096 T
_FC40%6 | - \ Reinitialize
| FC-4096 | | FC-4096 | . .
— — this and train

MaxPool MaxP ool

Conv-512 Conv-512

Conv-512 Conv-512

MaxPool MaxP ool

Conv-512 Conv-512

Conv-512 Conv-512

MaxPool MaxP ool Freeze these

Conv-256 Conv-256

Conv-256 Conv-256

MaxPool MaxP ool

Conv-128 Conv-128

Conv-128 Conv-128

MaxPool MaxP ool

Conv-64 Conv-64

Conv-64 Conv-64 J

Slide credit: Fei-Fei Li, Justin Johnson, and Serena Yeur

Transfer learning with CNNs

Step 2b: If you have a larger amount of new data, adjust a
larger number of network weights

|__Fc-1000 FCC [Fcc
[_Fcaos | C_FCass%] Reinitiali [_Fc40%6 | [¢—— Train these
einitialize

) ponate Foss
MaxPool MaxP ool MaxP ool
Conv-512 Conv-512 Conv-512 th blgger
Conv-512 Conv512 CHEIp dataset, train

]

MaxPool MaxP ool MaxP ool more Iayers
Conv-512 Conv-512 Conv-512
Conv-512 Conv-512 Conv-512
MaxPool MaxP ool > Freeze these MaxP ool
Conv-256 Conv-256 Conv-256 Freeze these
Conv-256 Conv-256 Conv-256
MaxPool MaxP ool MaxP ool .
Conv-128 Conv-128 Conv-128 Lower learning rate
Conv-128 Conv-128 Conv-128 when finetuning;
MaxPool MaxP ool MaxP ool 1/10 of original LR
Conv-64 Conv-64 Conv-64 is good Starting
Conv-64 Conv-64 J Conv-64 j point

Slide credit: Fei-Fei Li, Justin Johnson, and Serena Yeur

FC-1000

FC-4096
FC-4096

MaxPool
Conv-612
Conv612

MaxPool
Conv-612
Conv612

MaxPool
Conv-256
Conv-256

MaxPool
Conv-128
Conv-128

MaxPool
Conv-64
Conv-64

Image

More specific

More generic

/

very similar

very different

dataset dataset
very little data | ? ?
? ?

quite a lot of
data

Slide credit: Fei-Fei Li, Justin Johnson, and Serena Yeur

very similar very different
[Fcaoss | dataset dataset

MaxPool
Conv-612
Conv612

— B very little data | Use Linear ?
pe—— More specific Classifier on
Conv-612 top |ayel'

MaxPool
Conv-256

Cony 286 More generic

MaxPool

Conv-128
Con-128 / quite a lot of Finetune a ?

dexPos data few layers

Conv-64
Conv-64

Image

Slide credit: Fei-Fei Li, Justin Johnson, and Serena Yeur

very similar very different
[Fcaoss | dataset dataset
MaxPool
Conv-612
::"VP“IZ 3 very little data | Use Linear You're in
et More specific Classifier on trouble... Try
Conv 512 top layer linear classifier
s from different
Conv 256 More generic stages
Cony-128 quite a lot of Finetune a Finetune a
oo data few layers larger number
Conv-64 of layers

Slide credit: Fei-Fei Li, Justin Johnson, and Serena Yeur

Transfer learning with CNNs is pervasive

* It's the norm, not the exception

Object Detection
(Fast R-CNN) T Image Captioning: CNN + RNN
t i
[peiobticy ~ “straw” “hat” END

I

Praposal it r
classifisr

Yt

- Wor
External propusal ——— 7 alley Z?’ oh
algorithm L/zj /

e.g. selective searck ,/’) " s }l'

Whe

Tt

START uStFawn uhatn

Karpathy and Fei-Fei, "Deep Visual-Semantic Alignments for
Girshick, "Fast R-CNN", ICCY 2015 Generating Image Descriptions”, CYPR 2015
Figure copyright Ross Girshick, 2015. Reproduc ed with permission. Figure copyright IEEE, 2015. Reproduced for educational purposes.

Slide credit: Fei-Fei Li, Justin Johnson, and Serena Yeur

Transfer learning with CNNs is pervasive

* It's the norm, not the exception

Object Detection

CNN pretrained -
(Fast R-CNN) T Image Captioning: CNN + RNN
7 1 on ImageNet

Pr(‘l-p:?ml Hil I TS Baounding box
classifisr ftmax Line
regrassors

“straw”

External propusal ——
algorithm
e.g. selective zearck

ConvNet 1 / i],‘,"h-r
(applied to entira i

START “straw” “hat”

Karpathy and Fei-Fei, "Deep Visual-Semantic Alignments for
Girshick, "Fast R-CNN", ICCV 2015 Generating Image Descriptions”, CYPR 2015
Figure copyright Ross Girshick, 2015. Reproduc ed with permission. Figure copyright IEEE, 2015. Reproduced for educational purposes.

Slide credit: Fei-Fei Li, Justin Johnson, and Serena Yeur

Other pre-trained models are starting to
become standard

 Swin-transformer pre-trained on ImageNet-21K
* DINO features
* Foundation models (Stable Diffusion, etc)

Takeaway for your projects and beyond

Have some dataset of interest, but it
has << ~1M Iimages?

Common modern approach:

1. Find a large dataset with similar start with a ResNet
data (e.g., ImageNet), train a large architecture pre-trained on
CNN ImageNet, and fine-tune on

2. Apply transfer learning to fine-tune |your (smaller) dataset
on your data

For step 1, many existing models exist
In “Model Zoos”

Slide credit: Fei-Fei Li, Justin Johnson, and Serena Yeur

Questions?

