CS5670: Computer Vision

Training Deep Networks

Image credit: <u>https://blog.imarticus.org/what-are-some-tips-and-tricks-for-training-deep-neural-networks/</u>

Some content adapted from material from Andrej Karpathy, Sean Bell, Kavita Bala, and

Announcements

- Project 5 (Neural Radiance Fields) due Weds, May 1 by 8pm
- In class final on May 7
 - Allowed two sheets of notes (front and back sides)
- Course evaluations are open starting Monday, April 29
 - We would love your feedback!
 - Small amount of extra credit for filling out
 - What you write is still anonymous, instructors only see whether students filled it out
 - Link coming soon

Readings

- Convolutional neural networks
 Szeliski (2nd Edition) Chapter 5.4
- Best practices for training CNNs
 - http://cs231n.github.io/neural-networks-2/
 - http://cs231n.github.io/neural-networks-3/

Deep networks can be used for...

Image classification

View synthesis

And much more!

A Recent Example: Segment Anything

Segment Anything

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr Dollár, Ross Girshick

Another Recent Example: Tracking Everything Everywhere All at Once

Tracking Everything Everywhere All At Once

Paper ID: 2206 (with audio 🄊)

Tracking Everything Everywhere All At Once

Qianqian Wang, Yen-Yu Chang, Ruojin Cai, Zhengqi Li, Bharath Hariharan, Aleksander Holynski, Noah Snavely

Back to convolutional neural networks

Layer types:

- Convolutional layer
- Pooling layer
- Fully-connected layer

Training a network

• Given a network architecture (CNN, MLP, etc) and some training data, how do we actually set the weights of the network?

Gradient descent: iteratively follow the slope

https://laptrinhx.com/gradient-descent-animation-2-multiple-linear-regression-3070246823/

Stochastic gradient descent (SGD)

- Computing the exact gradient over the training set is expensive
- Train on batches of data (e.g., 32 images or 32 rays) at a time
- A full pass through the dataset (i.e., using batches that cover the training data) is called an **epoch**
- Usually need to train for multiple epochs, i.e., multiple full passes through the dataset to converge
- Stochastic gradient descent only approximates the true gradient, but works remarkably well in practice
- Use **backpropagation** to automatically compute gradients on each batch

How do you actually train these things?

Roughly speaking:

Gather labeled data Find a ConvNet architecture

Minimize the loss

But lots of details to get right!

Training a convolutional neural network

- Split and preprocess your data
- Choose your network architecture
- Initialize your network weights
- Find a learning rate and regularization weight
- Minimize the loss and monitor progress
- Fiddle with knobs...

Why so complicated?

• Training deep networks can be finicky – lots of parameters to learn, complex, non-linear optimization function

What makes training deep networks hard?

- It's easy to get high training accuracy:
 - Use a huge, fully connected network with tons of layers
 - Let it memorize your training data
- It's harder to get high *test* accuracy

This would be an example of *overfitting*

Related Question: Why Convolutional Layers?

- A fully connected layer can generally represent the same functions as a convolutional one
 - Think of the convolutional layer as a version of the FC layer with constraints on parameters
- What is the advantage of CNNs?

Convolutional Layer

Fully Connected Layer

Overfitting: More Parameters, More Problems

- Non-Deep Example: consider the function $x^2 + x$
- Let's take some noisy samples of the function...

Overfitting: More Parameters, More Problems

• Now lets fit a polynomial to our samples of the form $P_N(x) = \sum x^k p_k$

N

k=0

Overfitting: More Parameters, More Problems

• A model with more parameters can represent more functions

- More parameters will often reduce training error but increase testing error. This is overfitting.
- When overfitting happens, models do not generalize well

Deep Learning: More Parameters, More Problems?

- More parameters let us represent a larger space of functions
- The larger that space is, the harder our optimization becomes
- This means we need:
 - More data
 - More compute resources
 - Etc.

Convolutional Layer

Fully Connected Layer

Deep Learning: More Parameters, More Problems?

• What happens if you directly optimize an MPI to reconstruct a small set of input views?

• Answer: you can exactly reconstruct the input views, but produce garbage for new views

Fitting a multi-plane image to a set of views using gradient descent

• Reminiscent of *shadow sculptures*

Anamorphic Star Wars Shadow Art by Red Hong Yi, via TKSST

SHADOW ART Niloy J. Mitra, Mark Pauly ACM SIGGRAPH Asia 2009

- MPI with 64 layers, each storing a 1024 x 768 RGBA image \rightarrow ~200M parameters
- If we have 32 input RGB images of 1024x768 resolution → ~75M inputs
- Many more parameters than measurements → risk of overfitting
- Compare to NeRF: ~500K 1M parameters

How to Avoid Overfitting: Regularization

- In general:
 - More parameters means higher risk of overfitting
 - More constraints/conditions on parameters can help
- If a model is overfitting, we can
 - Collect more data to train on
 - *Regularize*: add some additional information or assumptions to better constrain learning
- Regularization can be done through:
 - the design of architecture
 - the choice of loss function
 - the preparation of data
 - ...

Regularization: Architecture Choice

- "Bigger" architectures (typically, those with more parameters) tend to be more at risk of overfitting.
- But, we'll see much bigger architectures (transformers) soon that work well when given lots of training data

Convolutional Layer

Fully Connected Layer

Regularization reduces overfitting

$$L = L_{\text{data}} + L_{\text{reg}} \qquad \qquad L_{\text{reg}} = \lambda \frac{1}{2} ||W||_2^2$$

[Andrej Karpathy http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html]

(1) Data proprocessing

Preprocess the data so that learning is better conditioned:

Figure: Andrej Karpathy

(1) Data proprocessing

An input image (256x256)

Minus sign

The mean input image

In practice, often perform a single mean RGB value, and divide by a per-channel standard deviation (recall MOPS, Normalized 8-Point Algorithm)

(1) Data proprocessing

	225	# Data loading code
	226	if args.dummy:
	227	print("=> Dummy data is used!")
	228	train_dataset = datasets.FakeData(1281167, (3, 224, 224), 1000, transforms.ToTensor())
	229	val_dataset = datasets.FakeData(50000, (3, 224, 224), 1000, transforms.ToTensor())
	230	else:
	231	traindir = os.path.join(args.data, 'train')
	232	valdir = os.path.join(args.data, 'val')
•••	233	normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
	234	std=[0.229, 0.224, 0.225])
	235	
	236	<pre>train_dataset = datasets.ImageFolder(</pre>
	237	traindir,
	238	transforms.Compose([
	239	transforms.RandomResizedCrop(224),

Batch normalization

• Side note – can also perform normalization after each layer of the network to stabilize network training ("*batch normalization*")

(1) Data preprocessing

Augment the data — extract random crops from the input, with slightly jittered offsets. Without this, typical ConvNets (e.g. [Krizhevsky 2012]) overfit the data.

E.g. 224x224 patches extracted from 256x256 images

Randomly reflect horizontally

Perform the augmentation live during training

Figure: Alex Krizhevsky

(2) Choose your architecture

https://playground.tensorflow.org/

Very common modern choice

(3) Initialize your weights

Set the weights to small random numbers:

W = np.random.randn(D, H) * 0.001

(matrix of small random numbers drawn from a Gaussian distribution)

Set the bias to zero (or small nonzero):

b = np.zeros(H)

(if you use ReLU activations, folks tend to initialize bias to small positive number)

Slide: Andrej Karpathy

(4) Overfit a small portion of the data

The above code:

- take the first 20 examples from CIFAR-10
- turn off regularization (reg = 0.0)
- use simple vanilla 'sgd'

(4) Overfit a small portion of the data

Details:

'sgd': vanilla gradient descent (no momentum etc)

learning_rate_decay = 1: constant learning rate

sample_batches = False (full gradient descent, no batches)

epochs = 200: number of passes through the data

Slide: Andrej Karpathy

(4) Overfit a small portion of the data

100% accuracy on the training set (good)

_														
	Finished	epoch	1 / 200	: cost	2.302603,	train:	0.40000	, val	0.400000,	lr :	1.00000	0e-03		-
	Finished	epoch	2 / 200	: cost :	2.302258,	train:	0.450000	, val	0.450000,	lr	1.00000	0e-03		
	Finished	epoch	3 / 200	: cost :	2.301849,	train:	0.60000	, val	0.600000,	lr	1.00000	0e-03		
	Finished	epoch	4 / 200	: cost	2.301196,	train:	0.650000	, val	0.650000,	lr	1.00000	0e-03		
1	Finished	epoch	5 / 200	: cost	2.300044,	train:	0.650000	, val	0.650000,	lr :	1.00000	0e-03		
	Finished	epoch	6 / 200	: cost	2.297864,	train:	0.550000	, val	0.550000,	lr	1.00000	0e-03		
	Finished	epoch	7 / 200	: cost	2.293595,	train:	0.60000	, val	0.600000,	lr	1.00000	0e-03		
	Finished	epoch	8 / 200	: cost :	2.285096,	train:	0.550000	, val	0.550000,	lr :	1.00000	0e-03		
	Finished	epoch	9 / 200	: cost	2.268094,	train:	0.550000	, val	0.550000,	lr	1.00000	0e-03		
	Finished	epoch	10 / 20	0: cost	2.234787	train:	. 0.50000	0, va	0.500000	, lr	1.0000	00e-0	3	
	Finished	epoch	11 / 20	0: cost	2.173187	train:	. 0.50000	0, va	0.500000	, lr	1.0000	00e-0	3	
	Finished	epoch	12 / 20	0: cost	2.076862	train:	. 0.50000	0, va	0.500000	, lr	1.0000	000e-0	3	
	Finished	epoch	13 / 20	0: cost	1.974090	, train:	: 0.40000	0, va	0.400000	, lr	1.0000	00e-0	3	
	Finished	epoch	14 / 20	0: cost	1.895885	train:	. 0.40000	0, va	0.400000	, lr	1.0000	00e-0	3	
	Finished	epoch	15 / 20	0: cost	1.820876	train:	: 0.45000	0, va	0.450000	, lr	1.0000	00e-0	3	
	Finished	epoch	16 / 20	0: cost	1.737430	train:	: 0.45000	0, va	0.450000	, lr	1.0000	00e-0	3	
	Finished	epoch	17 / 20	0: cost	1.642356	train:	: 0.50000	0, va	0.500000	, lr	1.0000	00e-0	3	
	Finished	epoch	18 / 20	0: cost	1.535239	train:	0.60000	0, va	0.600000	, lr	1.0000	00e-0	3	
	Finished	epoch	19 / 20	0: cost	1.421527	train:	. 0.60000	0, va	0.600000	, lr	1.0000	00e-0	3	_
Ĵ	Finished		20 / 20	2t	1 205760	t and a	0 65000	0	0 650000	1-	1 0000		`	
F	inished	epoch	195 /	200: C	ost 0.002	2694. t	train: 1	.0000	00. val 1	.00	0000.	lr 1.	000000e-	03
F	inished	epoch	196 /	200: 0	ost 0.00	2674. 1	train: 1	0000	00 val 1	.00	0000	lr 1.	000000e-	03
Ē	inished	enoch	197 /	200. 0	ost 0 00	2655 1	train: 1	0000	00 val 1	00	0000	11 1	00000000	03
2	inished	opoch	100 /	200. 0	ost 0.001	2625 +	train. 1		oo val 1		0000,	1 1.	0000000	02
2	inished	epoch	190 /	200: 0	051 0.00	2035, 1		.0000	val 1		0000,	1 1.	0000000-	03
	inished	epoch	199 /	200: 0	OST 0.00.	2017, 1	rain: 1	.0000	val 1		0000,	tr 1.	0000000-0	03
F	inished	epoch	200 /	200: C	ost 0.002	2597, t	train: 1	.0000	00, val 1	00	0000,	tr 1.	000000e-	03
f	inished	optim	ization	. best	validat	ion acc	curacy:	1.000						

Slide: Andrej Karpathy

(4) Find a learning rate

Q: Which one of these learning rates is best to use?

Learning rate schedule

How do we change the learning rate over time?

Various choices:

- Step down by a factor of 0.1 every 50,000 mini-batches (used by SuperVision [Krizhevsky 2012])
- Decrease by a factor of 0.97 every epoch (used by GoogLeNet [Szegedy 2014])
- Scale by sqrt(1-t/max_t) (used by BVLC to re-implement GoogLeNet)
- Scale by 1/t
- Scale by exp(-t)

Summary of things to fiddle with

- Network architecture
- Learning rate, decay schedule, update type (+batch size)
- Regularization (L2, L1, maxnorm, dropout, ...)
- Loss function (softmax, SVM, ...)
- Weight initialization

Neural network parameters

Questions?

Transfer learning

"You need a lot of data if you want to train/use CNNs for a new classification task"

Transfer learning

Transfer learning with CNNs

Step 1: Take a model trained on ImageNet

FC-1000
FC-4096
FC-4096
MaxPool
Conv-512
Conv-512
MaxPool
Conv-512
Conv-512
MaxPool
Conv-256
Conv-256
MaxPool
Conv-128
Conv-128
MaxPool
Conv-64
Conv-64
Image

Transfer learning with CNNs

Step 2a: If you have a small amount of new data, adjust a small number of network weights

FC-1000	FC-C
FC-4096	FC-4096 Reinitialize
FC-4096	FC-4096 this and train
MaxPool	MaxPool
Conv-512	Conv-512
Conv-512	Conv-512
MaxPool	MaxPool
Conv-512	Conv-512
Conv-512	Conv-512
MaxPool	MaxPool Freeze these
Conv-256	Conv-256
Conv-256	Conv-256
MaxPool	MaxPool
Conv-128	Conv-128
Conv-128	Conv-128
MaxPool	MaxPool
Conv-64	Conv-64
Conv-64	Conv-64
Image	Image

Transfer learning with CNNs

Г

Step 2b: If you have a larger amount of new data, adjust a larger number of network weights

FC-1000 FC-4096 FC-4096	FC-4096 FC-4096	Reinitialize	FC-C FC-4096 FC-4096	Train these
MaxPool Conv-512 Conv-512	MaxPool Conv-512 Conv-512		MaxPool Conv-512 Conv-512	With bigger dataset, train
MaxPool Conv-512 Conv-512	MaxPool Conv-512 Conv-512		MaxPool Conv-512 Conv-512	more layers
MaxPool Conv-256 Conv-256	MaxPool Conv-256 Conv-256	Freeze these	MaxPool Conv-256 Conv-256	Freeze these
MaxPool Conv-128 Conv-128	MaxPool Conv-128 Conv-128		MaxPool Conv-128 Conv-128	Lower learning rate when finetuning;
MaxPool Conv-64 Conv-64	MaxPool Conv-64 Conv-64	J	MaxPool Conv-64 Conv-64	1/10 of original LR is good starting point
Image	Image	-	Image	

FC-1000 FC-4096 FC-4096 MaxPool		very similar dataset	very different dataset
Conv-512 MaxPool Conv-512 MaxPool Conv-256 Conv-256 MaxPool MaxPool	very little data	?	?
Conv-128 Conv-128 MaxPool Conv-64 Conv-64 Image	quite a lot of data	?	?

FC-1000 FC-4096 FC-4096 MaxPool Conv-512		very similar dataset	very different dataset
Conv-512 MaxPool Conv-512 MaxPool Conv-256 Conv-256 More generic MaxPool	very little data	Use Linear Classifier on top layer	?
Conv-128 Conv-128 MaxPool Conv-64 Conv-64 Image	quite a lot of data	Finetune a few layers	?

FC-1000 FC-4096 FC-4096 MaxPool Conv-512		very similar dataset	very different dataset
Conv-512 MaxPool Conv-512 MaxPool Conv-256 Conv-256 More generic MaxPool	very little data	Use Linear Classifier on top layer	You're in trouble Try linear classifier from different stages
Conv-128 Conv-128 MaxPool Conv-64 Conv-64 Image	quite a lot of data	Finetune a few layers	Finetune a larger number of layers

Transfer learning with CNNs is pervasive

• It's the norm, not the exception

Girshick, "Fast R-CNN", ICCV 2015 Figure copyright Ross Girshick, 2015. Reproduced with permission. Image Captioning: CNN + RNN

Karpathy and Fei-Fei, "Deep Visual-Semantic Alignments for Generating Image Descriptions", CVPR 2015 Figure copyright IEEE, 2015. Reproduced for educational purposes.

Transfer learning with CNNs is pervasive

• It's the norm, not the exception

Girshick, "Fast R-CNN", ICCV 2015 Figure copyright Ross Girshick, 2015. Reproduced with permission. Karpathy and Fei-Fei, "Deep Visual-Semantic Alignments for Generating Image Descriptions", CVPR 2015 Figure copyright IEEE, 2015. Reproduced for educational purposes.

Other pre-trained models are starting to become standard

- Swin-transformer pre-trained on ImageNet-21K
- DINO features
- Foundation models (Stable Diffusion, etc)

Takeaway for your projects and beyond

Have some dataset of interest, but it has << ~1M images?

- Find a large dataset with similar data (e.g., ImageNet), train a large CNN
- 2. Apply transfer learning to fine-tune on your data

For step 1, many existing models exist in "Model Zoos"

Common modern approach: start with a ResNet architecture pre-trained on ImageNet, and fine-tune on your (smaller) dataset

Questions?