CS5670: Computer Vision

Convolutional neural networks

Image Maps -
Input ‘
B T
/ e
Convolutions \ Fully Connected

Subsampling

lllustration of LeCun et al. 1998 from CS231n 2017 Lecture 1

Slides from Fei-Fei Li, Justin Johnson, Serena Yeung
http://vision.stanford.edu/teaching/cs231n/

http://vision.stanford.edu/teaching/cs231n/

Readings

* Neural networks
— http://cs231n.github.io/neural-networks-1/
— http://cs231n.github.io/neural-networks-2/
— http://cs231n.github.io/neural-networks-3/
— http://cs231n.github.io/neural-networks-case-study/

 Convolutional neural networks
— http://cs231n.github.io/convolutional-networks/

http://cs231n.github.io/neural-networks-1/
http://cs231n.github.io/neural-networks-2/
http://cs231n.github.io/neural-networks-3/
http://cs231n.github.io/neural-networks-case-study/
http://cs231n.github.io/convolutional-networks/

Recap: Image Classification -
a core task in computer vision

« Assume given set of discrete labels, e.g.
{cat, dog, cow, apple, tomato, truck, ...

f() = "apple”
f(Rl) = “tomato”
f() — “COW”

Dataset: ETH-80, by B. Leibe Slide credit: L. Lazebnik

Ny

Recap: linear classification

« What we have: a score function and loss function

— Score function maps an input data instance (e.g., an image) to
a vector of scores, one for each category

— Last time, our score function is based on linear classifier

f: score function

f(.f[;, W) — WZE —i— b X: input instance

W, b: parameters of a linear (actually affine) function

* Find W and b that minimize a loss over labeled training

data, e.qg. cross-entropy loss o,
L _ i Z B log e’ Yi
N & Zj el

[/

Linear classifiers separate features space into
half-spaces

4

car classifier

airplane classifier/ &

deer classifier

Figure credit: Fei-Fei Li and Andrej Karpathy

Neural networks

(Before) Linear score function: f = Wz

Slide credit: Fei-Fei Li & Andrej Karpathy & Serena Leu

Neural networks

(Before) Linear score function: f = Wz
(Now) 2-layer Neural Network f = W max (0, Wiz)

Slide credit: Fei-Fei Li & Andrej Karpathy & Serena Leu

Neural networks

(Before) Linear score function: f = Wz
(Now) 2-layer Neural Network f = Wy max(O, Wla:)

x| Wy | h Wo S

3072 100 10

W, Wa

h (10 x 100 matrix)

100D intermediate
vector Slide credit: Fei-Fei Li & Andrej Karpathy & Serena Leu

(100 x 3072 matrix)

Neural networks

(Before) Linear score function: f = Wz
(Now) 2-layer Neural Network f = Wy max(O, Wla:)

X| Wy |[h| Wy |s

3072 100 10

 Total number of weights to learn:
3,072 x 100 + 100 x 10 = 308,200

Adapted from Fei-Fei Li & Andrej Karpathy & Serena Leu

Neural networks

(Before) Linear score function: f = Wz

(Now) 2-layer Neural Network f = W max (0, Wiz)
or 3-layer Neural Network

f = W3 max(0, Ws max(0, Wiz))

'\

also called “Multilayer
Perceptrons” (MLPs)

Adapted from Fei-Fei Li & Andrej Karpathy & Serena Leu

Neural networks

* Very coarse generalization of neural networks:

— Linear functions chained together and separated by non-
linearities (activation functions), e.g. "“max”

f = W3 max(0, Wy max(0, Wiz))

— Why separate linear functions with non-linear functions?
— Very roughly inspired by real neurons ===

dendrite
presynaptic
terminal
a%
—

Impulses carried away
from cell body

Activation functions

Sigmoid

o(r) = —

1+e—=
tanh
tanh(x)

RelLU
max (0, x)

f
©
10 10

Leaky ReLU)
max (0.1, x)
— Lp——] 10

Maxout
max(w{ = + by, wd x + by)

10

ELU

T x>0
04(833—1) £L'<0 - . 10

Slide credit: Fei-Fei Li & Andrej Karpathy & Serena Leul

Neural network architecture

« Computation graph for a 2-layer neural
network

output layer
input layer

hidden layer
Neuron or unit

Adapted from Fei-Fei Li & Andrej Karpathy & Serena Let

Neural networks: Architectures

output layer
input layer

hidden layer

“2-layer Neural Net”\

“1-hidden-layer Neural Net”

<
IS
N

input layer

\
S
:’%{
o;o

N

‘t
N
K
N

.;

tput layer

hidden layer 1 hidden layer 2

@

“3-layer Neural Net”, or
“2-hidden-layer Neural Net”

“Fully-connected” layers

« Deep networks typically have many layers and potentially

millions of parameters

Adapted from Fei-Fei Li & Andrej Karpathy & Serena Let

Deep neural network

1 f
i
' Te T
NNt
figidggdd
uﬂﬁﬂﬁﬁﬂgﬁgﬁﬂgﬂﬁﬂgﬂgg BE EBE égﬂi-?
B B B OO L

* Inception network (Szegedy et al, 2015)
« 22 layers

Adapted from Fei-Fei Li & Andrej Karpathy & Serena Let

Fully Connected Layer

32x32x3 image -> stretch to 3072 x 1

input activation
) Wz)
1] U—»m agry = 1[0 [
3072 X 10
weights

1 number:

the result of taking a dot product
between a row of W and the input
(a 3072-dimensional dot product)

* Just like a linear classifer — but in this case, just one
layer of a larger network

Adapted from Fei-Fei Li & Andrej Karpathy & Serena Let

Summary so far

* A classic neural network arranges neurons into fully-
connected layers

* The layer abstraction enables efficient implementations of

neural networks using vectorized operations like matrix
multiplication

Adapted from Fei-Fei Li & Andrej Karpathy & Serena Let

Optimizing parameters with gradient descent

 How do we find the best W and b parameters?

 In general: gradient descent

1. Start with a guess of a good W and b (or randomly initialize them)

2. Compute the loss function for this initial guess and the gradient of
the loss function

3. Step some distance in the negative gradient direction (direction of
steepest descent)

4. Repeat steps 2 & 3

* Note: efficiently performing step 2 for deep networks is
called backpropagation

/ % ‘ original W

negative gradient direction

Gradient descent: walk in the direction opposite gradient
« Q: How far?

* A: Step size: learning rate

* Too big: will miss the minimum

* Too small: slow convergence

2D example of gradient descent

* In reality, in deep learning
we are optimizing a highly
complex loss function

’ | with millions of variables

< (or more)

« More on this later...

50

Surface plot

https://laptrinhx.com/gradient-descent-animation-2-multiple-linear-regression-3070246823/

https://laptrinhx.com/gradient-descent-animation-2-multiple-linear-regression-3070246823/

2D example: TensorFlow Playground

Tinker With a Neural Network Right Here in Your Browser.

Don't Worry, You Can't Break It. We Promise.

Epoch Learning rate Activation Regularization Regularization rate Problem type
S ° > 000,000 0.03 - Tanh - None -0 - Classificaion -
DATA FEATURES + — 2 HIDDEN LAYERS OUTPUT
Which dataset do Which properties Test loss 0.505
you want to use? fd:egol: 7Wam to Y — £ @ Training loss 0.502

4 neurons 2 neurons
Ratio of training to D D
test data: 50% (

—e X D \ The outputs are
mixed with varying
weights, shown

]
(
\

Noise: 0 by the thickness of
o the lines.
Batch size: 10 XX N This is the output
—e - from one neuron.
Hover to see it 0

larnar

https://playground.tensorflow.org

https://playground.tensorflow.org/

Questions?

Convolutional neural networks
(or CNNs, or ConvNets)

Image Maps
Input

Fully Connected

Convolutions
Subsampl ing

A bit of history...

The Mark | Perceptron machine was the first
implementation of the perceptron algorithm.

The machine was connected to a camera that used
20%20 cadmium sulfide photocells to produce a 400-pixel

image.

fw-z4+b>0

1
. flz) = :
recognized 0 otherwise

letters of the alphabet

update rule:
wi(t + 1) = w;i(t) + a(d; — y;(t))

o

axon fror neu

wo
m aneuron o 2PS
W)L

waLy

e
00
cell body —
w1y /
w,z; +b
activation
i

Frank Rosenblatt, ~1957: Perceptron

MAIN
SEQUENCE

STEP BUTTONS

This image by Rocky Acosta is licensed under CC-BY 3.0

Slide credit: Fei-Fei Li & Andrej Karpathy & Serena Leut

A bit of history...

[Hinton and Salakhutdinov 2006]

Reinvigorated research in
Deep Learning

Restricted Boltzmann Machines

Pretraining RBM-initialized autoencoder Fine-tuning with backprop

lllustration of Hinton and Salakhutdinov 2006 by Lane
Meclntosh, copyright CS231n 2017

Hinton and Salakhutdinov. Reducing the Dimensionality of Data with Neural Networks. Science, 2016.

Slide credit: Fei-Fei Li & Andrej Karpathy & Serena Leu

A bit of history:

Gradient-based learning applied to
document recognition

[LeCun, Bottou, Bengio, Haffner 1998]

Image Maps
Input
7% D\ \\N -
Convolutions Fu IIy Connec ted
Su bsampl ng

LeNet-5

Slide credit: Fei-Fei Li & Andrej Karpathy & Serena Leu

A bit of history:

ImageNet Classification with Deep
Convolutional Neural Networks
[Krizhevsky, Sutskever, Hinton, 2012]

Max
pool

Figure copyright Alex Krizhevsky, llya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

“AlexNet”

Slide credit: Fei-Fei Li & Andrej Karpathy & Serena Leu

Fast-forward to today: ConvNets* are everywhere

Classification Retrieval

agaric
grille mushroom grape spider monkey
pickup jelly fungus elderberry titi
beach wagon gill fungus hire bullterrier indri
fire engine [dead-man's-fingers currant howl: L

Figures copyright Alex Krizhevsky, llya Sutskererlz\d Geoffrey Hinton, 2012. Reproduced with permission.

* and other recent architectures,
Tra nSfO rmers Slide credit: Fei-Fei Li & Andrej Karpathy & Serena Leu

Fast-forward to today: ConvNets are everywhere
© o

AP

Wil } .
™. &
R0y A
A - o pr |
R

4 L

L0 R:0 Fz2 ON:0

L AT MPH St: 1
merge: 1.0 "M 161.7 R
e

+0.0001 ‘RAINING J
+0.0000 TIRE_SPRAY Tesla H100 80GB NVIDIA Deep

0.001 Al
* 3 WET-ROAD Learning GPU Compute Graphics...

0.1539 CONTROLLED_ACCESS 3.3 %k kkk (10) - $43,989.00* - In stock -

Brand: Brand: Generic

©040 um——, 04 59545 04 §504§4 080600060040 08 4040904804
SO0 ———— ot S0 4 00 805000040 P00 00 bas 00 b bt
eh s o A P

Self-driving cars (video courtesy Tesla)
https://www.tesla.com/Al

‘Cloud TPU v4 Pods
https://cloud.google.com/tpu/

https://www.tesla.com/AI
https://cloud.google.com/tpu/

Text-to-image
An astronaut

riding a horse

as a pencil
drawing

https://openai.com/dall-e-2/

https://openai.com/dall-e-2/

/ DEEP LEARNING BEATS w

"A computer vision class watching A computer vision class
a cool lecture, crayon drawing” watching a cool lecture, album
cover”

What is a ConvNet?

* Version of deep neural networks designed for signals
— 1D signals (e.g., speech waveforms)

I
ear [¢] S ee Ci

Motivation — Feature Learning

Life Before Deep Learning

/ Al \
MWW“W - ""'||"'II'|"IVL«'“PI A ’Mﬁ"lll"l"l'r' — | svm |— Ans

Eoh &
_
.
Y ‘*., .Ill-lllllll__
o B % / :

Input Extract Concatenate into Linear
Pixels Hand-Crafted a vector x Classifier
Features

Figure: Karpathy 2016

Why use features? Why not pixels?

airplane at-‘-%\ V..:‘E . — .
P ﬁ; s eE=S f(il?z, W) — WZUz + b
o Emall WD ¥ B

cat EH-EQ’ P Q Whatwould be a

deer .g%%a: very hard set of classes

dog o 20 EA S\ AR A for a linear classifier to

frog i S D A distinguish?

horse !gmg-gm

ship L‘i’: = B - | . o

. =S Er (assuming x = pixels)

Slide from Karpathy 2016

Goal: linearly separable classes

4
NN ES
=
»
V car classifier
airplane classifier &
o

/

deer classifier f(iUz, W) — WCUL 4+ b

Aside: Image Features

f(x) = Wi
—_— —_— Class

_ scores
Feature Representation

Slide credit: Fei-Fei Li & Andrej Karpathy & Serena Leu

Image Features: Motivation

Cannot separate red
and blue points with
linear classifier

Slide credit: Fei-Fei Li & Andrej Karpathy & Serena Leu

Image Features: Motivation

fix, y) = (r(x, y), O(x, ¥))

Cannot separate red
and blue points with
linear classifier

o ©
®
[]
o
®

After applying feature
transform, points can
be separated by linear
classifier

Slide credit: Fei-Fei Li & Andrej Karpathy & Serena Leu

Example: Color Histogram

Slide credit: Fei-Fei Li & Andrej Karpathy & Serena Leu

Example: Histogram of Oriented Gradients (HoG)

Example: 320x240 image gets divided
into 40x30 bins; in each bin there are
9 numbers so feature vector has
30*40*9 = 10,800 numbers

Divide image into 8x8 pixel regions
Within each region quantize edge
direction into 9 bins

Lowe, "Ohject recognition from local scale-invariant features”, ICCY 1999
Dalal and Triggs, "Histograms of ariented gradients for human detection," CVPR 2005

Slide credit: Fei-Fei Li & Andrej Karpathy & Serena Leu

Image features vs ConvNets

scores for classes
b Ll L | —
training I

Krizhevsky, Sutskever, and Hirrton, “Imagenet classifiation
with d itional neural , NIPS 2012,

'J\l i N7] X 3NN “ N / | P Flgure copyright Krizhevsky, Sutskever, and Hintan, 2012.
‘ \ar T - = \ - \\ SN TN Reproduced with permission.
! I = li : (
g =
‘{ W |
P> 10 numbers giving
scores for classes
training

Slide credit: Fei-Fei Li & Andrej Karpathy & Serena Leu

Last layer of many CNNss is a linear classifier

This piece is just a linear classifier

(GoogLeNet)
Input Perform everything with a big neural
Pixels network, trained end-to-end

Key: perform enough processing so that by the time you
get to the end of the network, the classes are linearly
separable

Visualizing AlexNet in 2D with t-SNE

128 2048 2048 \dense
dense’| [dense
: 192 192 128 Max L L
: 2048 2048
Stride Max 128 Max pooling
Uof 4 pooling pooling
3 48

e structure, construction
covering

commodity, trade good, good
conveyance, transport
invertebrate

bird

hunting dog

(2D visualization using t-SNE) (c) DeCAF; (d) D;:CAFG

[Donahue, “DeCAF: DeCAF: A Deep Convolutional ...”, arXiv 2013]

Convolutional neural networks

Input CONV1
CONV2
CONV3 CONV4 CONV5 FC6 FC7 FC8
Layer types. > 27 Dense Dense
13 13 13 Dense
 Convolutional layer Sl
bl > 5~ - 3. C |13 3. e 13 3‘ |13
. 11 AL 27 3 U 3 B\
* Pooling layer -
g y 256 M?_X previiven 1000
9 ng pooling
* Fully-connected layer | =
Input - .
. pooling
image
(RGB) Stride
of 4
[] 1 J 1 J
Image input 5 Convolution layers 3 Fully-connected

layers

Fully Connected Layer

32x32x3 image -> stretch to 3072 x 1

input activation
) Wz)
1] U—»m age = 1[0 [
3072 X 10
weights

Slide credit: Fei-Fei Li & Andrej Karpathy & Serena Leu

Convolution Layer

32x32x3 image -> preserve spatial structure

7

32 height

3 depth

Slide credit: Fei-Fei Li & Andrej Karpathy & Serena Leu

Convolution Layer

32x32x3 image

/ 5x5x3 filter

32 &/
I Convolve the filter with the image
l.e. “slide over the image spatially,

computing dot products”
YA

w |

Slide credit: Fei-Fei Li & Andrej Karpathy & Serena Leu

ConVOI Ution Layer Filters always extend the full
__——— depthoftheinput volume

32x32x3 image /
/ 5x5x3 filter
32 &/
II Convolve the filter with the image
l.e. “slide over the image spatially,

computing dot products”
YA

w |

Slide credit: Fei-Fei Li & Andrej Karpathy & Serena Leu

Convolution Layer

32x32x3 image

7

w |

/£

32

5x5x3 filter

4

Il Convolve the filter with the image
l.e. “slide over the image spatially,
computing dot products”

Number of weights: 5x5x3 + 1 =76
(vs. 3072 for a fully-connected layer)
(+1 for bias term)

Adapted from Fei-Fei Li & Andrej Karpathy & Serena Le!

Convolution Layer

32x32x3 image

5x5x3 filter w
=

™~ 1 number:
the result of taking a dot product between the
filter and a small 5x5x3 chunk of the image
(i.e. 5*5*3 = 75-dimensional dot product + bias)

wlz +b

=\

~

Slide credit: Fei-Fei Li & Andrej Karpathy & Serena Leu

Convolution Layer

=\

V
——0

~

32x32x3 image
5x5x3 filter

convolve (slide) over all
spatial locations

activation map

V-
£

28

Slide credit: Fei-Fei Li & Andrej Karpathy & Serena Leu

Convolution Layer

=\

V
——0

~

consider a second, green filter

32x32x3 image
ox5x3 filter

convolve (slide) over all
spatial locations

activation maps

ya

N

28

Slide credit: Fei-Fei Li & Andrej Karpathy & Serena Leu

For example, if we had 6 5x5 filters, we’'ll get 6 separate activation maps:

7

3

32

Convolution Layer

activation maps

v 4

AN

6

.

We stack these up to get a “new image” of size 28x28x6!

28

(total number of parameters to learn: 6 x (75 + 1) = 456)

slido

How many parameters are in a convolution layer
consisting of 3 3x3x1 filters (each with bias term)?

® Start presenting to display the poll results on this slide.

Preview: ConvNet is a sequence of Convolution Layers, interspersed with
activation functions

V4
Z

w |

32

CONV,

RelLU
e.g.6
5x5x3
filters

A

o |

.

28

Slide credit: Fei-Fei Li & Andrej Karpathy & Serena Leu

Preview: ConvNet is a sequence of Convolution Layers, interspersed with
activation functions

V4
Z

w |

32

CONV,

RelLU
e.g.6
5x5x3
filters

A

.

o |

28

CONV,

RelLU
e.g. 10
5x5x6
filters

7

10

24

CONV,

RelLU

Preview

VGG-16

[Zeiler and Fergus 2013]

Visualization of VGG-16 by Lane Mcintosh. VGG-16
architecture from [Simonyan and Zisserman 2014].

Low-level
features

Mid-level

features

: Linearly
High-level J separable |—
features e
classifier

onvl_

VGG

s
il ¢

-16 Conv3_

Slide credit: Fei-Fei Li & Andrej Karpathy & Serena Leu

A closer look at spatial dimensions:

activation map

__— 32x32x3 image
ox5x3 filter

V
——0

convolve (slide) over all
spatial locations

=\

28

PN

w|
—

Slide credit: Fei-Fei Li & Andrej Karpathy & Serena Leu

A closer look at spatial dimensions:

v

7X7 input (spatially)
assume 3x3 filter

Slide credit: Fei-Fei Li & Andrej Karpathy & Serena Leu

A closer look at spatial dimensions:

v

7X7 input (spatially)
assume 3x3 filter

Slide credit: Fei-Fei Li & Andrej Karpathy & Serena Leu

A closer look at spatial dimensions:

v

7X7 input (spatially)
assume 3x3 filter

Slide credit: Fei-Fei Li & Andrej Karpathy & Serena Leu

A closer look at spatial dimensions:

v

7X7 input (spatially)
assume 3x3 filter

Slide credit: Fei-Fei Li & Andrej Karpathy & Serena Leu

A closer look at spatial dimensions:

v

7X7 input (spatially)
assume 3x3 filter

=> 5x5 output

Slide credit: Fei-Fei Li & Andrej Karpathy & Serena Leu

A closer look at spatial dimensions:

7
/X7 input (spatially)

assume 3x3 filter
applied with stride 2

Slide credit: Fei-Fei Li & Andrej Karpathy & Serena Leu

A closer look at spatial dimensions:

7
/X7 input (spatially)

assume 3x3 filter
applied with stride 2

Slide credit: Fei-Fei Li & Andrej Karpathy & Serena Leu

A closer look at spatial dimensions:

7
/X7 input (spatially)

assume 3x3 filter
applied with stride 2
=> 3x3 output!

Slide credit: Fei-Fei Li & Andrej Karpathy & Serena Leu

A closer look at spatial dimensions:

7
/X7 input (spatially)

assume 3x3 filter
applied with stride 3?

Slide credit: Fei-Fei Li & Andrej Karpathy & Serena Leu

A closer look at spatial dimensions:

7
/X7 input (spatially)

assume 3x3 filter
applied with stride 3?

7 doesn’t fit!
cannot apply 3x3 filter on
7x7 input with stride 3.

Slide credit: Fei-Fei Li & Andrej Karpathy & Serena Leu

Output size:
(N - F) / stride + 1

eg.N=7,F=3:
stride1=>(7-3)/1+1=5
stride2=>(7-3)/2+1=3
stride 3=>(7-3)/3+1=2.33"\

Slide credit: Fei-Fei Li & Andrej Karpathy & Serena Leu

In practice: Common to zero pad the border

010

0

0

0

0

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

(recall:)
(N -F) / stride + 1

Slide credit: Fei-Fei Li & Andrej Karpathy & Serena Leu

In practice: Common to zero pad the border

010

0

0

0

0

e.g. input 7x7

3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

7x7 output!

Slide credit: Fei-Fei Li & Andrej Karpathy & Serena Leu

In practice: Common to zero pad the border

010

0

0

0

0

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

7x7 output!
in general, common to see CONYV layers with
stride 1, filters of size FxF, and zero-padding with
(F-1)/2. (will preserve size spatially)
e.g. F = 3 => zero pad with 1

F =5 =>zero pad with 2

F =7 =>zero pad with 3

Slide credit: Fei-Fei Li & Andrej Karpathy & Serena Leu

Examples time: / /

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2 i

<
<

Output volume size: ?

Slide credit: Fei-Fei Li & Andrej Karpathy & Serena Leu

Examples time: / /

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2 i

<
<

Output volume size:
(32+2%2-5)/1+1 = 32 spatially, so
32x32x10

Slide credit: Fei-Fei Li & Andrej Karpathy & Serena Leu

Examples time: / /

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2 i

<
<

Number of parameters in this layer?

Slide credit: Fei-Fei Li & Andrej Karpathy & Serena Leu

Examples time: / /

Input volume: 32x32x
10 5x5 filters with stride 1, pad 2 i

<
<

Number of parameters in this layer?
each filter has 5*5*3 + 1 = 76 params (+1 for bias)
=>76*10 =760

Slide credit: Fei-Fei Li & Andrej Karpathy & Serena Leu

“1x1 convolutions”

64

56

56

1x1 CONV
with 32 filters

(each filter has size
1x1x64, and performs a
64-dimensional dot
product)

32

56

56

Slide credit: Fei-Fei Li & Andrej Karpathy & Serena Leu

Convolutional layer—properties

* Small number of parameters to learn compared to a fully
connected layer

* Preserves spatial structure—output of a convolutional
layer is shaped like an image

 Translation equivariant: passing a translated image
through a convolutional layer is (almost) equivalent to
translating the convolution output (but be careful of
Image boundaries)

Pooling layer
- makes the representations smaller and more manageable
- operates over each activation map independently:

224x224x64
112x112x64

pool

—

> Mo 112
224 downsampling

224

Slide credit: Fei-Fei Li & Andrej Karpathy & Serena Leu

MAX POOLING

Single depth slice

Jl1l1]2]4
max pool with 2x2 filters
5| 6|7 |8 and stride 2
302010]
112 |3 | 4
y

Slide credit: Fei-Fei Li & Andrej Karpathy & Serena Leu

Fully Connected Layer (FC layer)
- Contains neurons that connect to the entire input volume, as in ordinary Neural
Networks

RELU RELU RELU RELU RELU RELU
CONV lCONVl CONV lCONVl CONV lCONVl
airplane

ship

horse

-
=
-
L
e
.
=
-

Slide credit: Fei-Fei Li & Andrej Karpathy & Serena Leu

[ConvNetJS demo: training on CIFAR-10]

ConvNetJS CIFAR-10 demo

Description

This demo trains a Convolutional Neural Network on the CIFAR-10 dataset in your browser, with nothing but
Javascript. The state of the art on this dataset is about 90% accuracy and human performance is at about 94%

(not perfect as the dataset can be a bit ambiguous). | used this python script to parse the original files (python
version) into batches of images that can be easily loaded into page DOM with img tags.

This dataset is more difficult and it takes longer to train a network. Data augmentation includes random flipping
and random image shifts by up to 2px horizontally and verically.

By default, in this demo we're using Adadelta which is one of per-parameter adaptive step size methods, so we
don't have to worry about changing learning rates or momentum over time. However, | still included the text fields
for changing these if you'd like to play around with SGD+Momentum trainer.

Report questions/bugs/suggestions to @karpathy.

input (32x32x3) Activations:
max activation: 0.34313, min: -0.49608
max gradient: 0.04754, min: -0.0368 ¥

conv (32x32x16) Activations:
filter size 5x5x3, stride 1

max activation: 1.42613, min: -1.28123
max gradient: 0.03521, min: -0.03962
e- .

Activation Gradients:

Weights:
PRYNEEARFEDNNERE
Weight Gradients:

(LI LT ST L]

https://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html

https://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html

AlexNet (2012)

6M parameters in total

Input CONV1
CONV2
CONV3 CONV4 CONV5 FC6 FC7 FC8
55
27 Dense Dense
224 12 1 1] — | Dense
18] e e > =
5 { L
b > ~ 3. 13 3‘:1’ 13 3t> 13 -
114 54 27 3 3 3
384 384 256
55
256 Vax L1 L 1000
ling 4096 4096 T
Max pooli
96
224 pooling
Input . ('::)Ti:‘(l Output: 1,000-D vector
image . Pooing (probabilities over
(RGB) St;'ie 1,000 ImageNet
© categories)
I | | | | |
Image input 5 Convolution layers 3 Fully-connected

layers
Elgendy, Deep Learning for Vision Systems, https://livebook.manning.com/book/grokking-deep-learning-for-computer-vision/chapter-5/v-3/

https://livebook.manning.com/book/grokking-deep-learning-for-computer-vision/chapter-5/v-3/

“AlexNet”

Buijood
xe|

[Krizhevsky et al. NIPS 2012]

“GoogLeNet”

Bjeefjee

= i =
E3 =5 =S =S e
-] L]
B [==]
el L 1|
= | 1 1]

[Szegedy et al. CVPR 2015]

“VGG Net”

[Simonyan & Zisserman,
ICLR 2015]

“ResNet”

[He et al. CVPR 2016]

Big picture

A convolutional neural network can be thought of as a
function from images to class scores
— With millions of adjustable weights...

— ... leading to a very non-linear mapping from images to features
/ class scores.

— We will set these weights based on classification accuracy on
training data...

— ... and hopefully our network will generalize to new images at
test time

Data is key—enter ImageNet

* ImageNet (and the ImageNet Large-Scale Visual Recognition
Challege, aka ILSVRC) has been key to training deep learning

methods
— J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li and L. Fei-Fei, ImageNet: A Large-Scale
Hierarchical Image Database. CVPR, 2009.

« ILSVRC: 1,000 object categories, each with ~700-1300 training
Images. Test set has 100 images per categories (100,000 total).
 Standard ILSVRC error metric: top-5 error

— if the correct answer for a given test image is in the top 5 categories,
your answer is judged to be correct

Performance improvements on ILSVRC

ImageNet competition results

ImageNet Large-Scale

Visual Recognition Pre-deep
Challenge learning era

Held from 2011-2017 e ¢ Deep learning era
1000 categories, 1000 g | SA

training images per
category

Test performance on held- /
out test set of Images 5o Net

222222222222222222222222

30

o
n
T

ImageNet Top-5 Error

—
=
1

N
>
T

-
h
T

28.2
25.8
1.7
L0 6.7
5.0
3.6 ‘o
l l B

2010 2011

2012 2013 2014 2014

2015 2016 2017

Image credit: Zaid Alyafeai, Lahouari Ghouti

Questions?

