CS5670: Computer Vision

Image Classification
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Image classifiers in a nutshell

. . classifier ( ) :
* Input: an Image

* Qutput: the class label for that image class label;

* Label is generally one or more of the

discrete labels used in training — Gt
* e.g. {cat, dog, cow, toaster, apple,
tomato, truck, ...}
— l(Dogll

— “Toaster”




Image classification demo
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See also:

https://aws.amazon.com/rekognition/
https://www.clarifai.com/

https://azure.microsoft.com/en-us/services/cognitive-services/computer-vision/
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The Semantic Gap
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Variation Makes Recognition Hard

* The same class of
object can appear very
differently in different
Images

Deformation

Background Clutter

Occlusion




The Problem is Under-constrained

* Distinct realities can produce the same
Image...

* We generally can't compute the “right”
answer, but we can compute the most
likely one...

« We need some kind of prior to
I think there may be

condition on. We can learn this prior | ¢ sy
from data: - .

f(z) = argmaz P({;|data)
by




Images As High-Dimensional Vectors

* An image is just a bunch of
numbers

* Let's stack them up into a vector

 Our training data is just a bunch of
high-dimensional points now

The Space of
All Images




Images As High-Dimensional Vectors

* An image is just a bunch of
numbers

* Let's stack them up into a vector

 Our training data is just a bunch of
high-dimensional points now

* Divide space into different regions
for different classes

The Space of
All Images




Images As High-Dimensional Vectors

* An image is just a bunch of
numbers TONSTER CAT} e

* Let's stack them up into a vector .

 Our training data is just a bunch of
high-dimensional points now

b (o1 |

* Divide space into different regions
for different classes

The Space of
All Images




Images As High-Dimensional Vectors

* An image is just a bunch of
numbers

* Let's stack them up into a vector

 Our training data is just a bunch of
high-dimensional points now

Toasters

* Divide space into different regions
for different classes

or
e Define a distribution over [ The Space of ]

space for each class All Images




Image Features and Dimensionality Reduction

* How high-dimensional is an image?
* Let's consider an iPhone X photo:
* 4032 x 3024 pixels
* Every pixel has 3 colors
° 36,578,304 piXG|S (36.5 Mega pixels)

* In practice, images sit on a lower-
dimensional manifold

* Think of image features and
dimensionality reduction as ways to
represent images by their location

on such manifolds [ The Space of ]

All Images




Image Features and Dimensionality Reduction

* How high-dimensional is an image?
* Let's consider an iPhone X photo:
* 4032 x 3024 pixels
* Every pixel has 3 colors
° 36,578,304 piXG|S (36.5 Mega pixels)

* In practice, images sit on a lower-
dimensional manifold

* Think of image features and
dimensionality reduction as ways to side Note: J

represent images by their location This also lets us deal with images
on such manifolds of different sizes, crops, etc.




Training & Testing a Classifier

* Collect a database of images with labels
« Use ML to train an image classifier
* Evaluate the classifier on test images

Example training set

cat dog hat
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Training & Testing a Classifier

Training Training
Labels
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Dataset: ETH-80, by B. Leibe Slide credit: D. Hoiem, L. Lazebnik



Training & Testing a Classifier
Training {

Training
Labels
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Dataset: ETH-80, by B. Leibe Slide credit: D. Hoiem, L. Lazebnik




Classifiers

* Nearest Neighbor

* KNN ("k-Nearest Neighbors”)
e Linear Classifier

* Neural Network

* Deep Neural Network

* Transformers



First idea: Nearest Neighbor (NN) Classifier

* Train

» Remember all training O

Images and their labels O O

* Predict O O O
* Find the closest (most O O
similar) training image O O
* Predict its label as the true

label O O O



CIFAR-10 and NN results

Example dataset: CIFAR-10

10 labels

50,000 training images
10,000 test images.

airplane
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bird

cat

deer

dog
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horse

ship

truck
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Slides from Andrej Karpathy and Fei-Fei Li
http://vision.stanford.edu/teaching/cs231n/



CIFAR-10 and NN results

Example dataset: CIFAR-10

10 labels

50,000 training images
10,000 test images.

airplane
automobile
bird

cat

deer

dog

frog

horse

ship

truck
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k-nearest neighbor

* Find the k closest points from training data
» Take majority vote from K closest points

the data NN classifier 5-NN classifier




What does this look like?
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What does this look like?
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How to Define Distance Between Images

L1 distance: Il 12 Z |IP IP| Where I, denotes image 1,

and p denotes each pixel

test image training image pixel-wise absolute value differences
56 | 32 | 10 | 18 10 | 20 | 24 | 17 46 | 12 | 14 | 1
90 | 23 [ 128|133 8 | 10 | 89 [ 100 82 |13 (39| 33
= = —> 456
24 | 26 | 178 | 200 12 | 16 | 178 | 170 12 | 10 | 0 | 30
2 0 | 255|220 4 | 32 |233| 112 2 | 32 | 22 | 108

Slides from Andrej Karpathy and Fei-Fei Li http://vision.stanford.edu/teaching/cs231n/



Choice of distance metric

* Hyperparameter
L1 (Manhattan) distance

d(I,I,) =) |I? - I}
P

N
N

L2 (Euclidean) distance

do(Iy, I) = .Z (7 -1)°
\." P

dh
\/

- Two most commonly used special cases of p-norm

1
||pr:(‘wl‘p+"'+‘$n.‘p)? le,ZEERn

Slide composited from Andrej Karpathy and Fei-Fei Li http://vision.stanford.edu/teaching/cs231n/



K-Nearest Neighbors: Distance Metric

L1 (Manhattan) distance L2 (Euclidean) distance
di(Ii, ) =) |If - I} do(I1, Io) = \/Z (1 - 1)’
P ' 4

Demo: http://vision.stanford.edu/teaching/cs231n-demos/knn/
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Hyperparameters

 What is the best distance to use?
* What is the best value of k to use?

* These are hyperparameters: choices about the algorithm that we set
rather than learn

* How do we set them?
* One option: try them all and see what works best



Setting Hyperparameters

Idea #1: Choose hyperparameters

that work best on the data

Your Dataset

Slide composited from Andrej Karpathy and Fei-Fei Li http://vision.stanford.edu/teaching/cs231n/



Setting Hyperparameters

Idea #1: Choose hyperparameters

that work best on the data

BAD: K = 1 always works
perfectly on training data

Your Dataset

Slide composited from Andrej Karpathy and Fei-Fei Li http://vision.stanford.edu/teaching/cs231n/



Setting Hyperparameters

Idea #1: Choose hyperparameters
that work best on the data

BAD: K = 1 always works
perfectly on training data

Your Dataset

Idea #2: Split data into train and test, choose
hyperparameters that work best on test data

train

test

Slide composited from Andrej Karpathy and Fei-Fei Li http://vision.stanford.edu/teaching/cs231n/



Setting Hyperparameters

Idea #1: Choose hyperparameters
that work best on the data

BAD: K = 1 always works
perfectly on training data

Your Dataset

Idea #2: Split data into train and test, choose
hyperparameters that work best on test data

BAD: No idea how algorithm
will perform on new data

train

test

Slide composited from Andrej Karpathy and Fei-Fei Li http://vision.stanford.edu/teaching/cs231n/



Setting Hyperparameters

Idea #1: Choose hyperparameters
that work best on the data

BAD: K = 1 always works
perfectly on training data

Your Dataset

Idea #2: Split data into train and test, choose
hyperparameters that work best on test data

BAD: No idea how algorithm
will perform on new data

train test
Idea #3: Split data into train, val, and test; choose Better!
hyperparameters on val and evaluate on test '
train validation test

Slide composited from Andrej Karpathy and Fei-Fei Li http://vision.stanford.edu/teaching/cs231n/



Setting Hyperparameters

Your Dataset

Idea #4: Cross-Validation: Split data into folds,
try each fold as validation and average the results

fold 1 fold 2 fold 3 fold 4 fold 5 test
fold 1 fold 2 fold 3 fold 4 fold 5 test
fold 1 fold 2 fold 3 fold 4 fold 5 test

Useful for small datasets, but not used too frequently in deep learning

Slide composited from Andrej Karpathy and Fei-Fei Li http://vision.stanford.edu/teaching/cs231n/




Hyperparameter Tuning

032

031

030

T 029

alidation accura
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027

026

025

024

Cross-validation on k

-20

120

Example of
5-fold cross-validation
for the value of k.

Each point: single
outcome.

The line goes

through the mean, bars
indicated standard
deviation

(Seems that k ~= 7 works best
for this data)



Recap: How to pick hyperparameters?

* Methodology
e Train and test
e Train, validate, test

* Train an initial model
» Validate to find hyperparameters
* Test to understand generalizability



kNN - Complexity and Storage

* N training images, M test images

* Training: O(1)
* Testing: O(MN)

« We often need the opposite:
» Slow training is ok
* Fast testing is necessary




k-Nearest Neighbors: Summary

* In image classification we start with a training set of images and
labels, and must predict labels on the test set

* The K-Nearest Neighbors classifier predicts labels based on nearest
training examples

* Distance metric and K are hyperparameters

« Choose hyperparameters using the validation set; only run on the
test set once at the very end!



Problems with KNN: Distance Metrics

- terrible performance at test time
- distance metrics on level of whole images can be
very unintuitive

original shifted messed up darkened

(all 3 images have same L2 distance to the one on the left)



Problems with KNN: The Curse of Dimensionality

* As the number of dimensions
increases, the same amount of data
becomes more sparse.

« Amount of data we need ends up
being exponential in the number of
dimensions

10 00

Animation from https://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote02 kNN.html
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Linear Classifiers

Neural Network

q o 135N
>l 3

Linear
classifiers



Linear Classification vs. Nearest Neighbors

* Nearest Neighbors
 Store every image

 Find nearest neighbors at test
time, and assign same class




Linear Classification vs. Nearest Neighbors

* Nearest Neighbors
* Store every image

 Find nearest neighbors at test
time, and assign same class

e Linear Classifier

» Store hyperplanes that best
separate different classes

« We can compute continuous
class score by calculating
(signed) distance from
hyperplane

@ @ @
@0 o ®

|

We can interpret this as a linear
"score function” for each class.

|




Score functions

- class scores

Slide adapted from Andrej Karpathy and Fei-Fei Li http://vision.stanford.edu/teaching/cs231n/



Parametric Approach

image parameters

f(x, W) 10 numbers,
indicating class
— scores
[32x32x3] = 3072
array of numbers 0...1
(3072 numbers total)

Slide adapted from Andrej Karpathy and Fei-Fei Li http://vision.stanford.edu/teaching/cs231n/



Parametric Approach: Linear Classifier

f(x, W) _ Wlf 3072x1

10x1 10x3072
\ 10 numbers,
” indicating class
i scores

[32x32x3] = 3072
array of numbers 0...1

parameters, or “weights”

Slide adapted from Andrej Karpathy and Fei-Fei Li http://vision.stanford.edu/teaching/cs231n/



Parametric Approach: Linear Classifier

£z, W) =[Wig 3°72%1 | (+b)|10x1

10x1 10x3072
\ 10 numbers,
indicating class
— scores

[32x32x3] = 3072
array of numbers 0...1

parameters, or “weights”

Slide adapted from Andrej Karpathy and Fei-Fei Li http://vision.stanford.edu/teaching/cs231n/



Linear Classifier

define a score function data (image)

/

f(zi,W,b) = Wz; +b

f \

“Weights” bias vector

class scores
“parameters”

Slide adapted from Andrej Karpathy and Fei-Fei Li http://vision.stanford.edu/teaching/cs231n/



Interpretation: Algebraic

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

stretch pixels into single column

02 |-05)| 01| 20 56 11 -96.8 | cat score

TN RO O | 231 | 4 (2N . [FAEEGN o oo

o imag-e. 0 |025| D2 | -03 24 -1.2 61.95 ship score
€L

Slide adapted from Andrej Karpathy and Fei-Fei Li http://vision.stanford.edu/teaching/cs231n/



Interpretation: Geometric

 Parameters define a hyperplane
for each class:

« We can think of each class score
as defining a distribution that is
proportional to distance from
the corresponding hyperplane

The Space of
All Images




Hard Cases for a Linear Classifier

Class 1: Class 1: Class 1:
First and third quadrants 1 <=L2norm <=2 Three modes
Class 2 Class 2: Class 2:

Second and fourth quadrants Everything else Everything else




Interpretation: Template matching

» We can think of the rows id}”  as templates for each class

plane car bird cat deer

horse

Rows of Win f(x;, W,b) = Wx; + b




Linear Classifier: Three Viewpoints

Algebraic Viewpoint Visual Viewpoint Geometric Viewpoint
f(x, W) = Wx One template Hyperplanes
per class cutting up space
Siretch pixel lumni * plane car bird cat deer
15|13 21| 00 2: + 32 |= | 4373 | Dogscore dog frog horse shio mg
0 0.25 0.2 | 0.3 - -1.2 61.95 | Ship score . . -
w b v, v




So far: Defined a (linear) score function f(x,W)=Wx +b

Example class
scores for 3

Images for

; airplane =3 4D -0.51 B2

Some W automobile -8.87 6.04 4.64

bird 0.09 5.31 2.65

cat 2.9 -4.22 5.4

HOW Can We te” deer 4.48 -4.,19 2.64
whether this W dog 8.02 3.58 5.55
. ~ frog 3:78 4.49 -4 .34

IS gOOd Or bad ) horse 1: 086 =4 .37 -1.5
Caomaty st e L0220 ship -0.36 -2.09 -4.79

E[gm“ ﬂpblhlddmr;ﬁn truck -0.72 —ts 183 6.14



Linear classification

airplane
automobile
bird

cat

deer

dog

frog

horse

ship

truck

nsed under CC-BY 2.0 Carimage is C

Out

puts

6.04
L i §
~8;22
=419
3.08
4.49
S ik
=2.09
=2.83

cores

1.0 public domain; Erog imade is in the public domain

TODO:

Define a loss function
that quantifies our
unhappiness with the
scores across the training
data.

Come up with a way of
efficiently finding the
parameters that minimize
the loss function.
(optimization)



Loss functions

Suppose: 3 training examples, 3 classes.

_ A loss function tells how
With some W the scores f(z, W) = Wz are:

good our current classifier is
Given a dataset of examples
N
{(93737 yz) i=1

Where x; is image and

cat 3.2 1.3 2 92 Y; is (integer) label

car 51 4.9 25 Loss over the dataset is a
sum of loss over examples:

- % > Lilf (i W),y




Loss function, cost/objective function

* Given ground truth labels (y;), scores f(x;,, W)
« how unhappy are we with the scores?

* Loss function or objective/cost function measures unhappiness

* During training, want to find the parameters W that minimize
the loss function



Simpler example: binary classification

 Two classes (e.g., “cat” and "not cat”)
« AKA "positive” and “"negative” classes




Linear classifiers

* Find linear function (hyperplane) to
separate positive and negative
examples

X, positive: X,-w+b=>0

X, negative: X, -w+b<0

Which hyperplane is best? We
need a loss function to decide



What is a good loss function?

* One possibility: Number of misclassified examples
* Problems: discrete, can’t break ties
« We want the loss to lead to good generalization
« We want the loss to work for more than 2 classes




Softmax classifier

* Interpret Scores as flzi,W) =Wz (score function)
unnormalized log
probabilities of classes en

Yieh|

(yi | zi; W)

softmax function

Squashes values into probabilities  p
ranging from 0 to 1

Example with three classes:
[1,—2,0] — [e},e2,e%] =[2.71,0.14,1] — [0.7,0.04,0.26]



Softmax classifier

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

stretch pixels into single column

02 | 05| 01 | 20 56 i B -96.8 | cat score 0.06

1.0 | 13 | 21 | €0 231 + 32 | —» | 4379 dog score —— | 0.82
Fy;

e

input image O [Be2ifai ] <09 24 = 61.95 ship score e’ 0.12
W . b f(zi; W, b) Softn.la.u?
“probabilities”




Cross-entropy loss

f(z;,W) =Wz, (score function)



Cross-entropy loss

f(z;,W) =Wz, (score function)

— fy, : score of correct class

efi N\

fy; We call L; cross
L‘i = —]0 .= —T, J i )
g Z] efj Ll f.;i + log jZ ef entropy [OSS




Cross-entropy loss

f(z;,W) =Wz, (score function)

E
e Z We call L; cross-

|

P(y; | ;W)

entropy loss

l.e. we're minimizing
the negative log
likelihood.



Losses

* Cross-entropy loss is just one possible loss function

« One nice property is that it reinterprets scores as probabilities, which have a
natural meaning

* SVM (max-margin) loss functions also used to be popular
 But currently, cross-entropy is the most common classification loss



Summary

 Have score function and loss function
* Currently, score function is based on linear classifier
* Next, will generalize to convolutional neural networks

* Find W and b to minimize loss

1
:Nzi:—log W +/\ZZW'“

Y Regularization term

Average of cross-entropy loss (will talk about this later)
over all training examples



Questions?



