CS5670: Computer Vision

Image Classification

Some Slides from Fei-Fei Li, Justin Johnson, Serena Yeung <u>http://vision.stanford.edu/teaching/cs231n/</u>

References

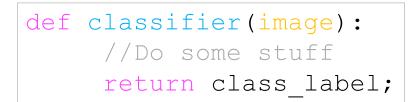
• Stanford CS231N

<u>http://cs231n.stanford.edu/</u>

• Many slides courtesy of Abe Davis

Image classifiers in a nutshell

- Input: an image
- Output: the class label for that image
- Label is generally one or more of the discrete labels used in training
 - e.g. {cat, dog, cow, toaster, apple, tomato, truck, ... }



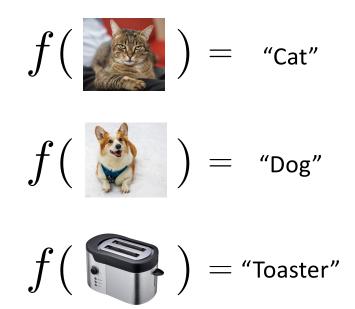
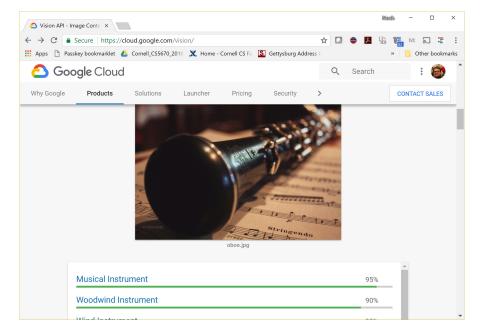


Image classification demo



https://cloud.google.com/vision/docs/drag-and-drop

See also:

https://aws.amazon.com/rekognition/

https://www.clarifai.com/

https://azure.microsoft.com/en-us/services/cognitive-services/computer-vision/

•••

The Semantic Gap

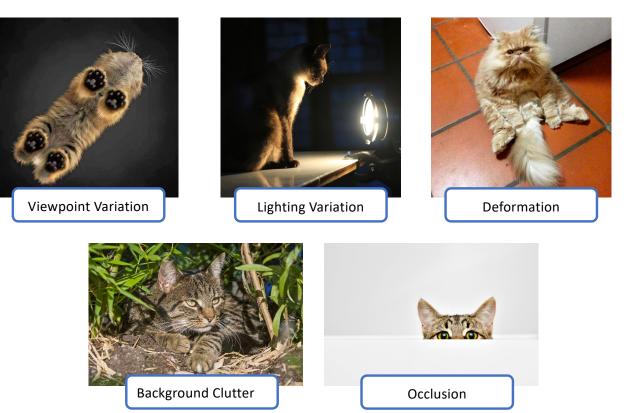
What we see

JTTTO TTTOTOOTOTTT r oroor rrrororrr(J0707077770777077(PICOTITICOI I OI I(POT TITOT TOOTOOTO] 10077777 700077700]]07007007007770007] 10000 J000JJ70JJ70(0770000007777 7][) JOJJOOJ OJOOJJ][PT TOOOT TTTT 101] JTTT TOTOTO TOTTT]00070707070707070] 1007 7777000070 77(JOTTTTOOOOTTTT TTO]

What the computer sees

Variation Makes Recognition Hard

• The same class of object can appear *very* differently in different images



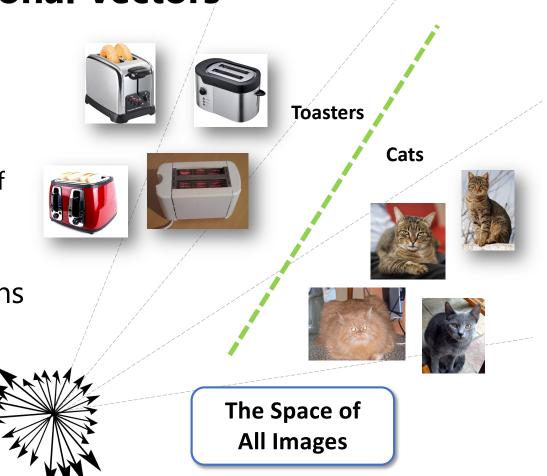
The Problem is Under-constrained

- Distinct realities can produce the same image...
- We generally can't compute the "right" answer, but we can compute the most likely one...
- We need some kind of prior to condition on. We can learn this prior from data:

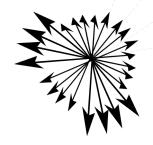
$$f(x) = \underset{\ell_x}{\operatorname{argmax}} P(\ell_x | data)$$

- An image is just a bunch of numbers
- Let's stack them up into a vector
 - Our training data is just a bunch of high-dimensional points now

- An image is just a bunch of numbers
- Let's stack them up into a vector
 - Our training data is just a bunch of high-dimensional points now
- Divide space into different regions for different classes



- An image is just a bunch of numbers
- Let's stack them up into a vector
 - Our training data is just a bunch of high-dimensional points now
- Divide space into different regions for different classes



The Space of All Images

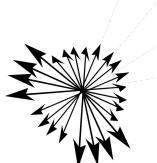
TOASTER CAT

YOUR ARGUMENT IS INVALID

- An image is just a bunch of numbers
- Let's stack them up into a vector
 - Our training data is just a bunch of high-dimensional points now
- Divide space into different regions for different classes

or

 Define a distribution over space for each class



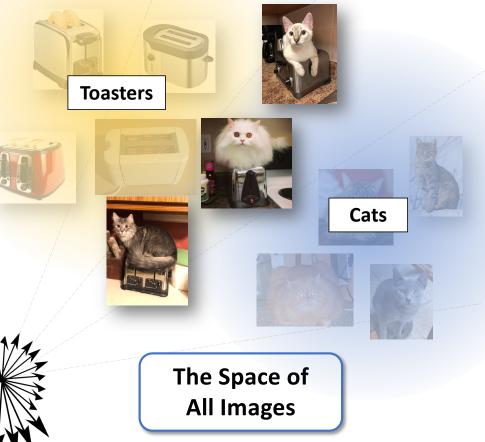


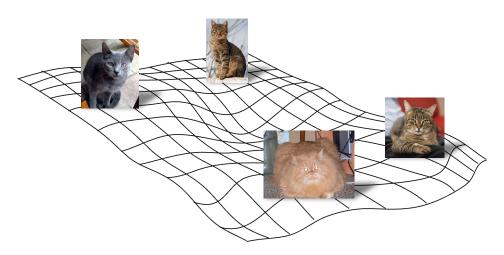
Image Features and Dimensionality Reduction

- How high-dimensional is an image?
 - Let's consider an iPhone X photo:
 - 4032 x 3024 pixels
 - Every pixel has 3 colors
 - 36,578,304 pixels (36.5 Mega pixels)
- In practice, images sit on a lowerdimensional manifold
- Think of image features and dimensionality reduction as ways to represent images by their location on such manifolds

The Space of All Images

Image Features and Dimensionality Reduction

- How high-dimensional is an image?
 - Let's consider an iPhone X photo:
 - 4032 x 3024 pixels
 - Every pixel has 3 colors
 - 36,578,304 pixels (36.5 Mega pixels)
- In practice, images sit on a lowerdimensional manifold
- Think of image features and dimensionality reduction as ways to represent images by their location on such manifolds



Side Note: This also lets us deal with images of different sizes, crops, etc.

Training & Testing a Classifier

- Collect a database of images with labels
- Use ML to train an image classifier
- Evaluate the classifier on test images

catdogmughatImage: Image: Image:

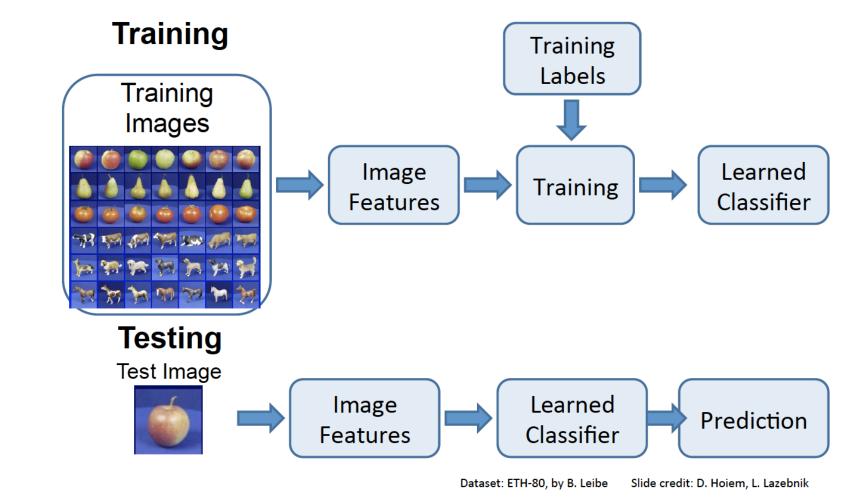
Example training set

Training Images Image Image Features Image Features Image Im

Training & Testing a Classifier

Dataset: ETH-80, by B. Leibe S

Slide credit: D. Hoiem, L. Lazebnik



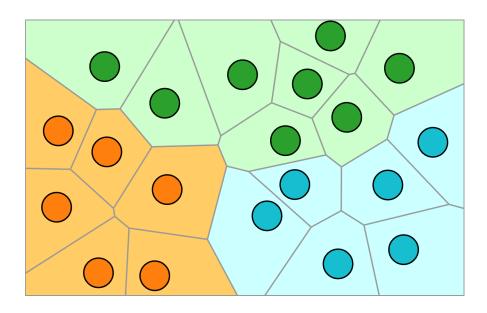
Training & Testing a Classifier

Classifiers

- Nearest Neighbor
- kNN ("k-Nearest Neighbors")
- Linear Classifier
- Neural Network
- Deep Neural Network
- Transformers
- ...

First idea: Nearest Neighbor (NN) Classifier

- Train
 - Remember all training images and their labels
- Predict
 - Find the closest (most similar) training image
 - Predict its label as the true label



CIFAR-10 and NN results

Example dataset: CIFAR-10 10 labels 50,000 training images 10,000 test images.

airplane	🛁 🐹 🌉 📈 🍬 = 🛃 🎆 🛶 😂
automobile	an 😂 🚵 💁 🔤 🜌 🚔 🐝
bird	S 🗾 🖉 🕺 🚑 S 😵 🔛 🐙
cat	Ni N
deer	M M M M M M M M M M M M M M M M M M M
dog	N 🔊 🐔 🐘 🎘 🏹 🧑 🚺 🌋
frog	
horse	📲 🗶 🕸 🚵 🕅 📷 🖙 🛣 🌋 🐲
ship	🗃 😼 🚈 📥 🚔 🕪 💋 🖉 🙇
truck	🛁 🍱 🚛 🌉 👹 🔤 📷 🖓

CIFAR-10 and NN results

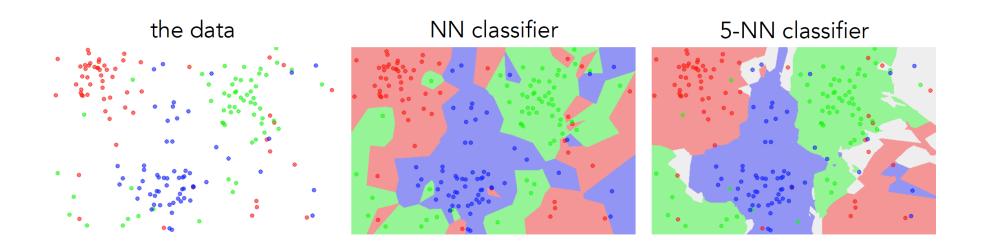
Example dataset: CIFAR-10 10 labels 50,000 training images 10,000 test images.

airplane	🚧 🐹 🚒 📈 🏏 = 🛃 🔐 🛶 😂
automobile	an 😂 🧱 🤮 🕹 🔛 🐝 🛸 🐝
bird	S 🖬 🖉 🕺 🚑 🔨 🌮 🔄 📐 🐖
cat	in i
deer	M M M M M M M M M M M M M M M M M M M
dog	N 🕼 🦔 🦳 🎘 🏹 🔊 🛣
frog	Se S
horse	🕋 🗶 🔯 🔛 👘 📷 🖙 🐼 🐞
ship	🗃 😼 🚈 📥 📥 🥩 🖉 🚈 🙇
truck	i i i i i i i i i i i i i i i i i i i

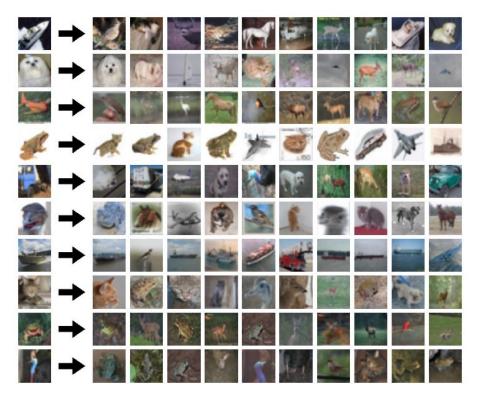
For every test image (first column), examples of nearest neighbors in rows

k-nearest neighbor

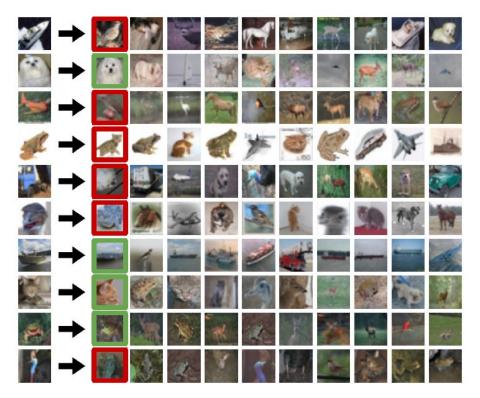
- Find the k closest points from training data
- Take **majority vote** from K closest points



What does this look like?



What does this look like?



How to Define Distance Between Images

L1 distance:

$$d_1(I_1,I_2) = \sum_p |I_1^p - I_2^p|$$

Where I_1 denotes image 1, and p denotes each pixel

ĺ.,	test image					
	56	32	10	18		
	90	23	128	133		
	24	26	178	200		
	2	0	255	220		

training image						
10	20	24	17			
8	10	89	100			
12	16	178	170			
4	32	233	112			

pixel-wise absolute value differences

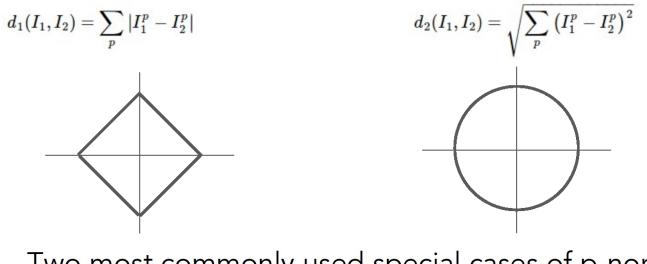
	46	12	14	1	
	82	13	39	33	450
-	12	10	0	30	→ 456
	2	32	22	108	

Choice of distance metric

• Hyperparameter

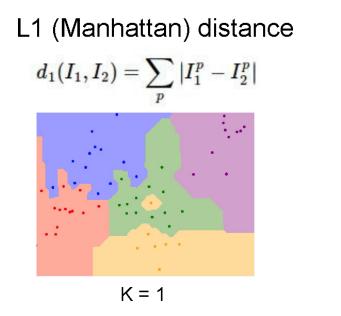
L1 (Manhattan) distance

L2 (Euclidean) distance

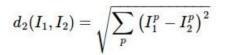


- Two most commonly used special cases of p-norm $||x||_p = \left(|x_1|^p + \dots + |x_n|^p\right)^{\frac{1}{p}} \quad p \ge 1, x \in \mathbb{R}^n$

K-Nearest Neighbors: Distance Metric



L2 (Euclidean) distance



Demo: http://vision.stanford.edu/teaching/cs231n-demos/knn/

Hyperparameters

- What is the **best distance** to use?
- What is the **best value of k** to use?
- These are **hyperparameters**: choices about the algorithm that we set rather than learn
- How do we set them?
 - One option: try them all and see what works best

Idea #1: Choose hyperparameters that work best on the data

Your Dataset

Idea #1: Choose hyperparameters that work best on the data

BAD: K = 1 always works perfectly on training data

Your Dataset

Idea #1: Choose hyperparameters that work best on the data

BAD: K = 1 always works perfectly on training data

Your Dataset

Idea #2: Split data into train and test, choose hyperparameters that work best on test data

train test	
------------	--

	D : K = 1 always works rfectly on training data
Your Dataset	
	D : No idea how algorithm I perform on new data
train	test

Idea #1: Choose hyperparameters that work best on the data		= 1 always wor on training dat		
Your Dataset				
Idea #2: Split data into train and test , choose hyperparameters that work best on test data	idea how algo rm on new dat			
train	test			
Idea #3: Split data into train, val, and test; choose Better!				
train	test			

Your Dataset

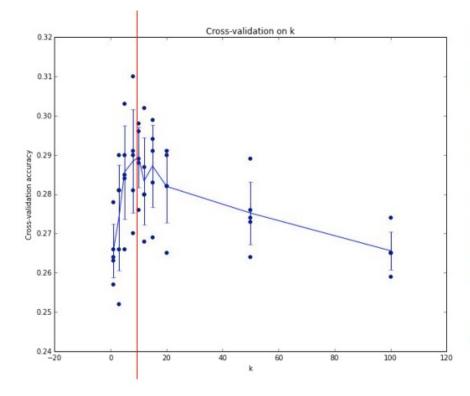
Idea #4: Cross-Validation: Split data into folds,

try each fold as validation and average the results

fold 1	fold 2	fold 3	fold 4	fold 5	test
fold 1	fold 2	fold 3	fold 4	fold 5	test
fold 1	fold 2	fold 3	fold 4	fold 5	test

Useful for small datasets, but not used too frequently in deep learning

Hyperparameter Tuning



Example of 5-fold cross-validation for the value of **k**.

Each point: single outcome.

The line goes through the mean, bars indicated standard deviation

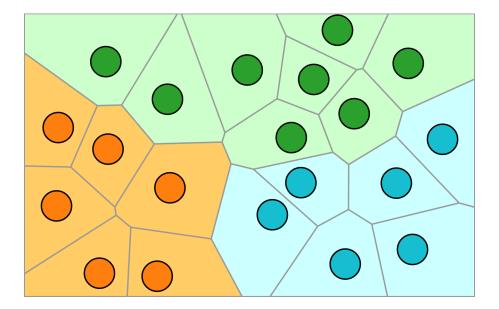
(Seems that k ~= 7 works best for this data)

Recap: How to pick hyperparameters?

- Methodology
 - Train and test
 - Train, validate, test
- Train an initial model
- Validate to find hyperparameters
- Test to understand generalizability

kNN – Complexity and Storage

- N training images, M test images
- Training: O(1)
- Testing: O(MN)
- We often need the opposite:
 - Slow training is ok
 - Fast testing is necessary

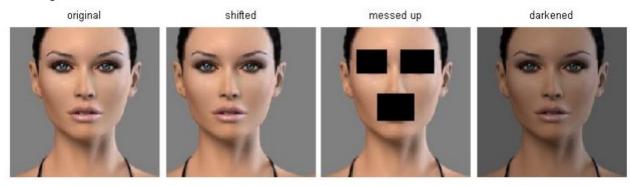


k-Nearest Neighbors: Summary

- In **image classification** we start with a **training set** of images and labels, and must predict labels on the **test set**
- The **K-Nearest Neighbors** classifier predicts labels based on nearest training examples
- Distance metric and K are **hyperparameters**
- Choose hyperparameters using the validation set; only run on the test set once at the very end!

Problems with KNN: Distance Metrics

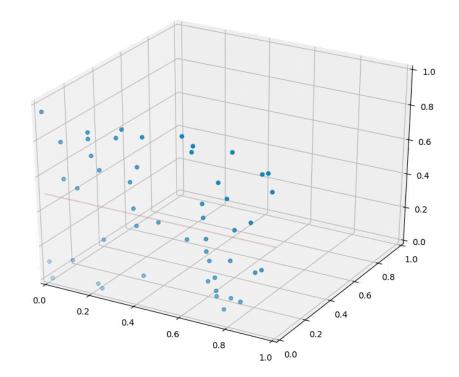
- terrible performance at test time
- distance metrics on level of whole images can be very unintuitive



(all 3 images have same L2 distance to the one on the left)

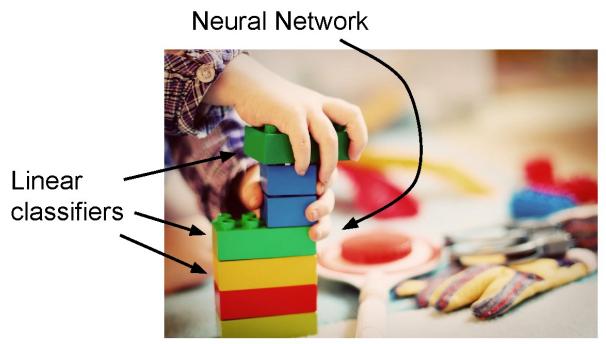
Problems with KNN: The Curse of Dimensionality

- As the number of dimensions increases, the same amount of data becomes more sparse.
- Amount of data we need ends up being exponential in the number of dimensions



Animation from https://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote02 kNN.html

Linear Classifiers

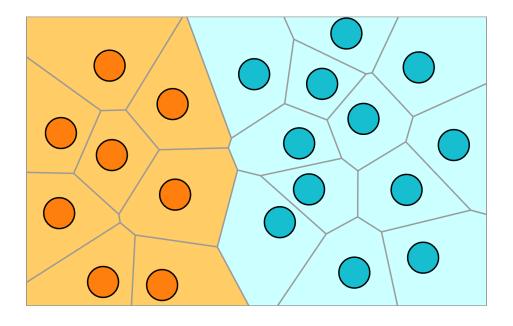


This image is <u>CC0 1.0</u> public domain

Linear Classification vs. Nearest Neighbors

• Nearest Neighbors

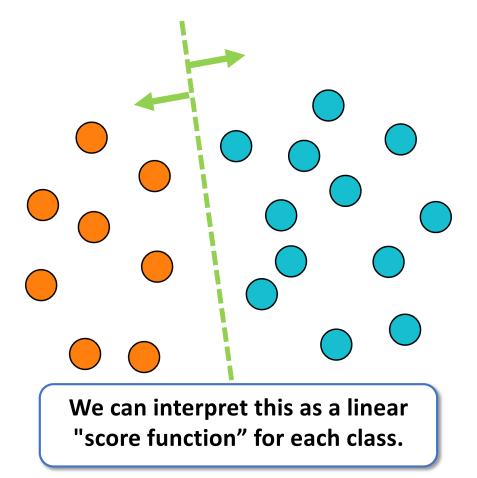
- Store every image
- Find nearest neighbors at test time, and assign same class



Linear Classification vs. Nearest Neighbors

• Nearest Neighbors

- Store every image
- Find nearest neighbors at test time, and assign same class
- Linear Classifier
 - Store hyperplanes that best separate different classes
 - We can compute continuous class score by calculating (signed) distance from hyperplane



Score functions

class scores

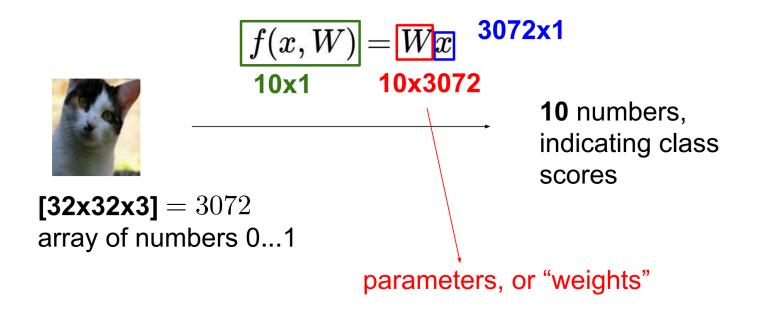
Parametric Approach

image parameters
f(x,W)

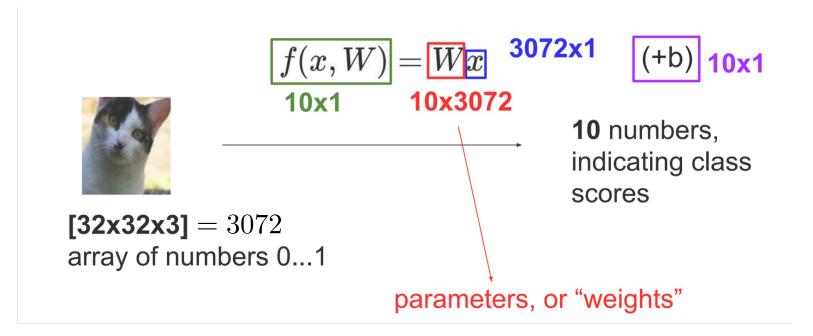
10 numbers, indicating class scores

[32x32x3] = 3072array of numbers 0...1 (3072 numbers total)

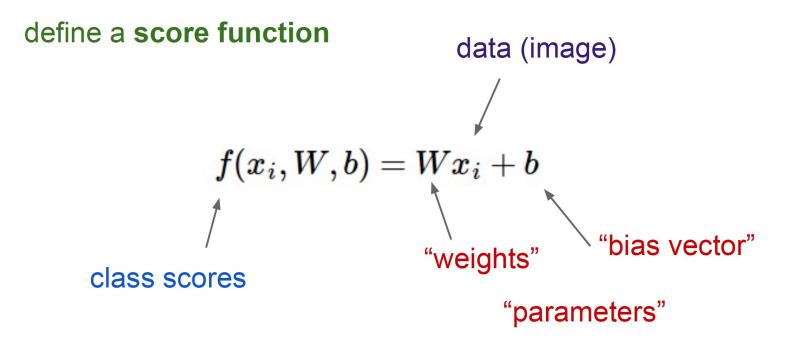
Parametric Approach: Linear Classifier



Parametric Approach: Linear Classifier

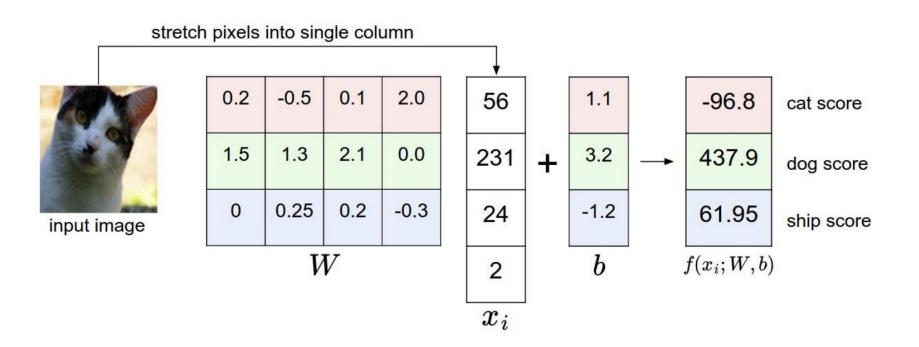


Linear Classifier



Interpretation: Algebraic

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

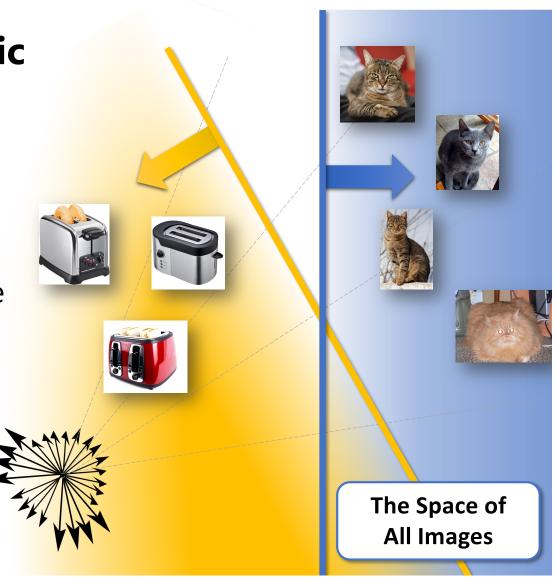


Interpretation: Geometric

• Parameters define a hyperplane for each class:

 $f(x_i, W, b) = Wx_i + b$

 We can think of each class score as defining a distribution that is proportional to distance from the corresponding hyperplane



Hard Cases for a Linear Classifier

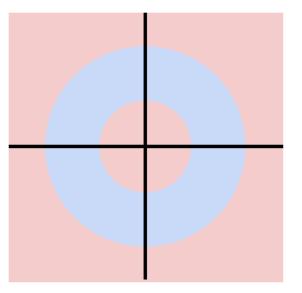
Class 1: First and third quadrants

Class 2:

Second and fourth quadrants

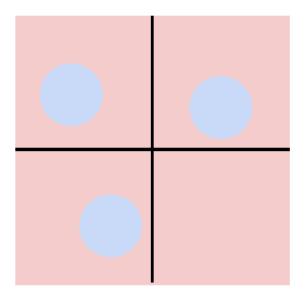
Class 1: 1 <= L2 norm <= 2

Class 2: Everything else



Class 1: Three modes

Class 2: Everything else



Interpretation: Template matching

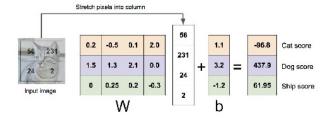
• We can think of the rows in $\!W\!$ as templates for each class

Rows of W in $f(x_i, W, b) = Wx_i + b$

Linear Classifier: Three Viewpoints

Algebraic Viewpoint

f(x,W) = Wx

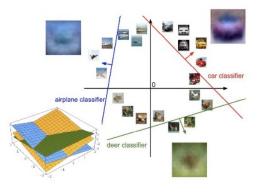


Visual Viewpoint

One template per class

Geometric Viewpoint

Hyperplanes cutting up space



So far: Defined a (linear) <u>score function</u> f(x,W) = Wx + b

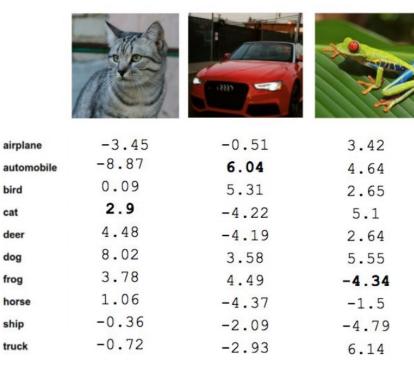
Example class scores for 3 images for some W:

How can we tell whether this W is good or bad?

Cat image by <u>Nikita</u> is licensed under <u>CC-BY 2.0</u> Car image is <u>CC0 1.0</u> public domain <u>Frod image</u> is in the public domain

airplane	-3.45	-0.51	3.42
automobile	-8.87	6.04	4.64
bird	0.09	5.31	2.65
cat	2.9	-4.22	5.1
deer	4.48	-4.19	2.64
dog	8.02	3.58	5.55
frog	3.78	4.49	-4.34
horse	1.06	-4.37	-1.5
ship	-0.36	-2.09	-4.79
truck	-0.72	-2.93	6.14

Linear classification



Cat image by Nikita is licensed under CC-BY 2.0; Car image is CC0 1.0 public domain; Frog image is in the public domain

Output scores

TODO:

- Define a loss function that quantifies our unhappiness with the scores across the training data.
- Come up with a way of efficiently finding the parameters that minimize the loss function. (optimization)

Loss functions

Suppose: 3 training examples, 3 classes. With some W the scores f(x, W) = Wx are:

2.2

2.5

1.3 3.2 cat 5.1 4.9 car -3.1 -1.7 2.0 frog

A loss function tells how good our current classifier is

Given a dataset of examples $\{(x_i, y_i)\}_{i=1}^N$

Where x_i is image and y_i is (integer) label

Loss over the dataset is a sum of loss over examples:

$$L = \frac{1}{N} \sum_{i} L_i(f(x_i, W), y_i)$$

Loss function, cost/objective function

- Given ground truth labels (y_i), scores $f(x_i, \mathbf{W})$
 - how unhappy are we with the scores?
- Loss function or objective/cost function measures unhappiness
- During training, want to find the parameters W that minimize the loss function

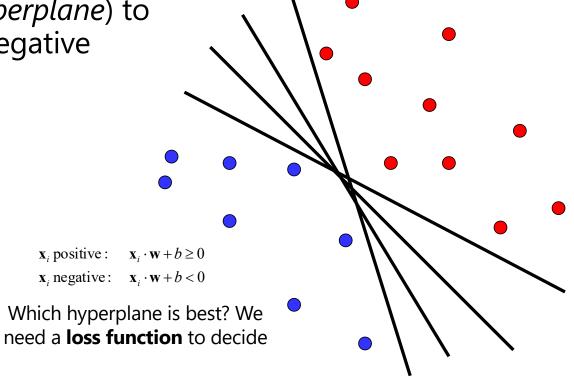
Simpler example: binary classification

- Two classes (e.g., "cat" and "not cat")
 - AKA "positive" and "negative" classes

not cat

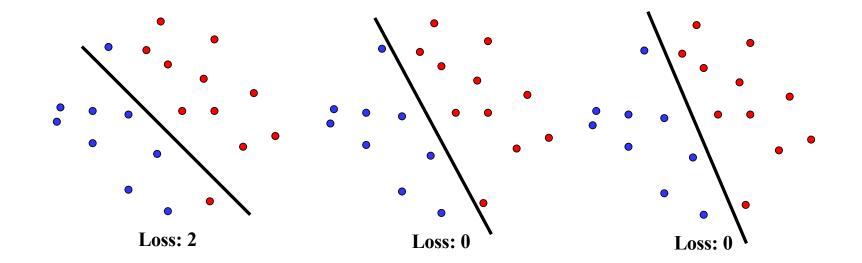
Linear classifiers

• Find linear function (*hyperplane*) to separate positive and negative examples



What is a good loss function?

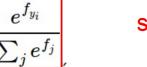
- One possibility: Number of misclassified examples
 - Problems: discrete, can't break ties
 - We want the loss to lead to good generalization
 - We want the loss to work for more than 2 classes



Softmax classifier

 Interpret Scores as unnormalized log probabilities of classes

$$f(x_i, W) = Wx_i$$
 (score function)



softmax function

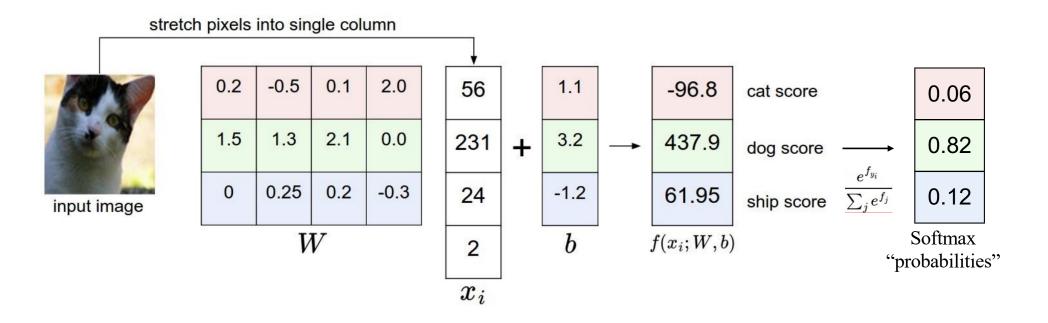
Squashes values into probabilities $P(y_i \mid x_i; W)$ ranging from 0 to 1

Example with three classes:

 $[1,-2,0]
ightarrow [e^1,e^{-2},e^0] = [2.71,0.14,1]
ightarrow [0.7,0.04,0.26]$

Softmax classifier

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)



Cross-entropy loss

 $f(x_i, W) = W x_i$ (score function)

Cross-entropy loss

 $f(x_i, W) = W x_i$ (score function) $L_i = -\log\left(\frac{e^{f_{y_i}}}{\sum_j e^{f_j}}\right)^{f_{y_i}: \text{ score of correct class}}$ $L_i = -f_{y_i} + \log\sum_j e^{f_j}$ We call L_i crossentropy loss

Cross-entropy loss

 $f(x_i, W) = Wx_i$ (score function)

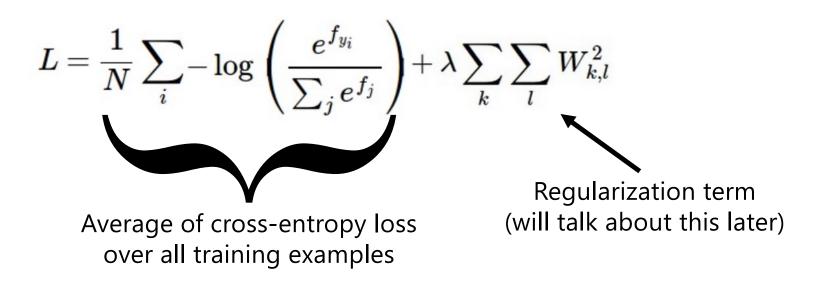
$$\begin{split} L_{i} = -\log\left(\frac{e^{f_{y_{i}}}}{\sum_{j}e^{f_{j}}}\right) & L_{i} = -f_{y_{i}} + \log\sum_{j}e^{f_{j}} & \text{We call } L_{i} \, cross-entropy \, loss \\ & \bullet & \bullet & \bullet \\ P(y_{i} \mid x_{i}; W) & \text{i.e. we're minimizing} \\ & \text{the negative log} \\ & \text{likelihood.} \end{split}$$

Losses

- Cross-entropy loss is just one possible loss function
 - One nice property is that it reinterprets scores as probabilities, which have a natural meaning
- SVM (max-margin) loss functions also used to be popular
 - But currently, cross-entropy is the most common classification loss

Summary

- Have score function and loss function
 - Currently, score function is based on linear classifier
 - Next, will generalize to convolutional neural networks
- Find W and b to minimize loss



Questions?