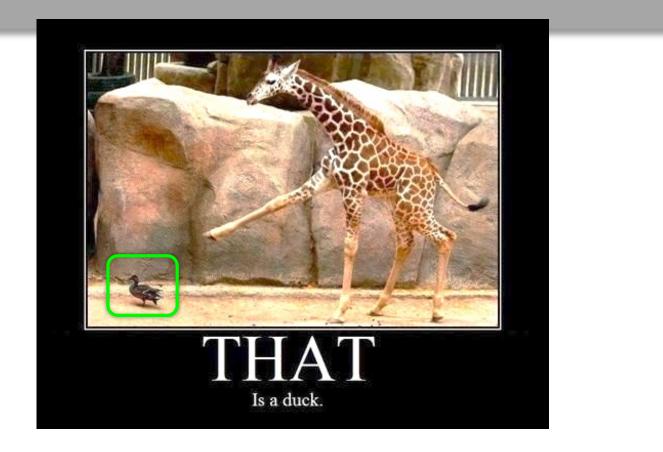
CS5670: Computer Vision

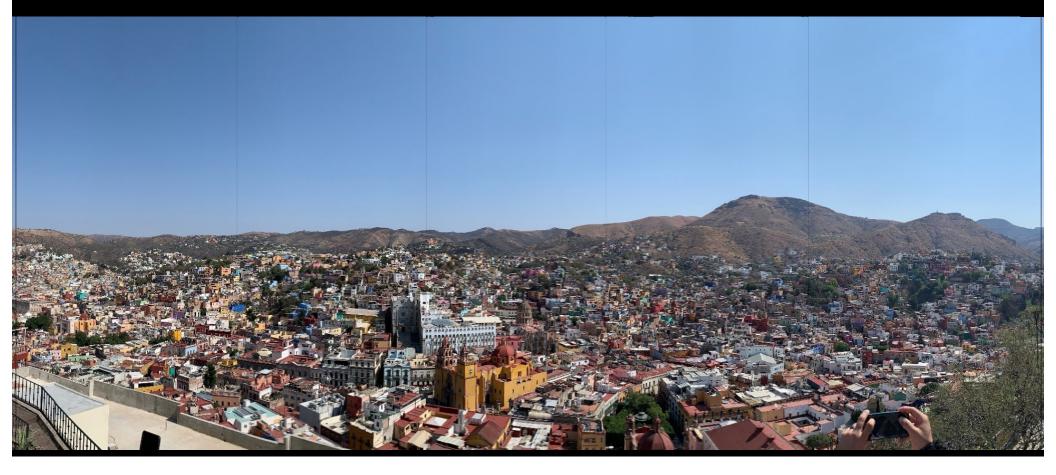
Introduction to Recognition



Announcements

- One more project to go Project 5: Neural Radiance Fields
 - Tentative release date: Thursday, April 18
 - Tentative due date: Wednesday, May 1
- In-class Final Exam during the last lecture: Tuesday, May 7

Giacomo Glotzer and Kirby Leo



Second Place

Akhil Raj and Justin Ryan Olson

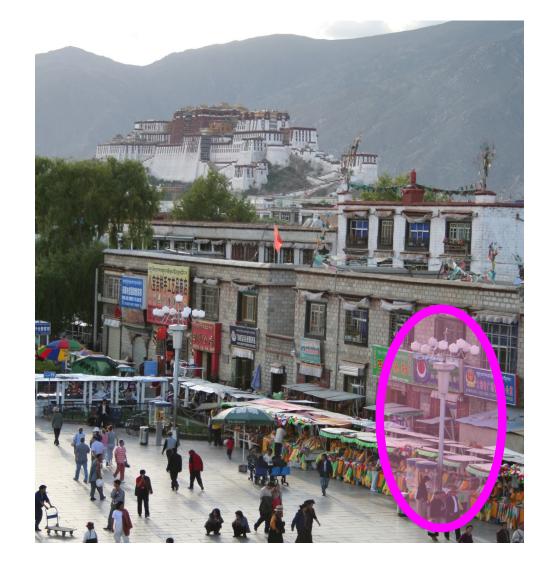
Genki Miyasato and Philip Ian Tempelman

Where we go from here

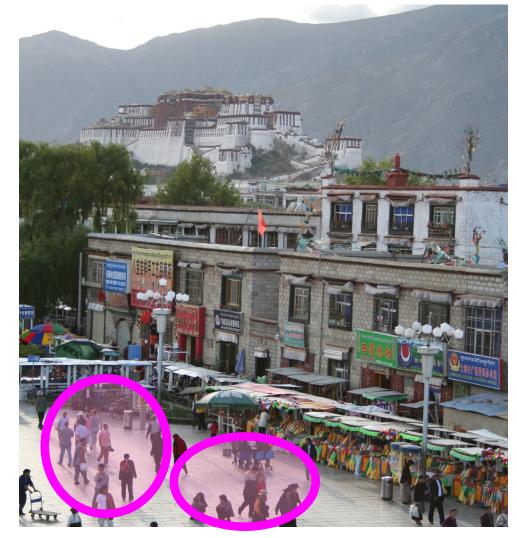
- What we know: Geometry
 - What is the shape of the world?
 - How does that shape appear in images?
 - How can we infer that shape from one or more images?
- What's next: Recognition
 - What are we looking at?
 - Representations of visual content
- New representations for 3D geometry
- Generative models

Next few slides adapted from Li, Fergus, & Torralba's excellent <u>short course</u> on category and object recognition

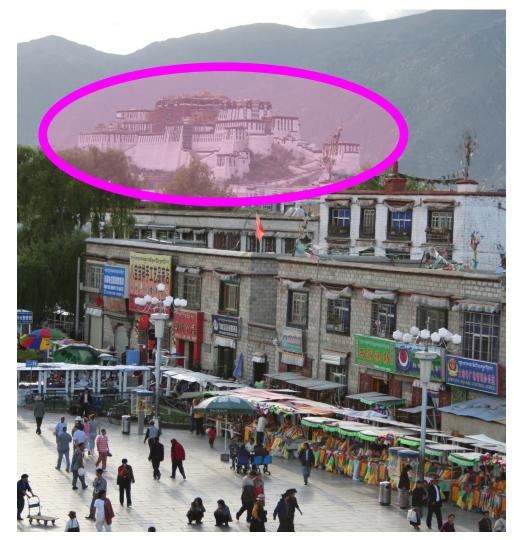
• Verification: is that a lamp?



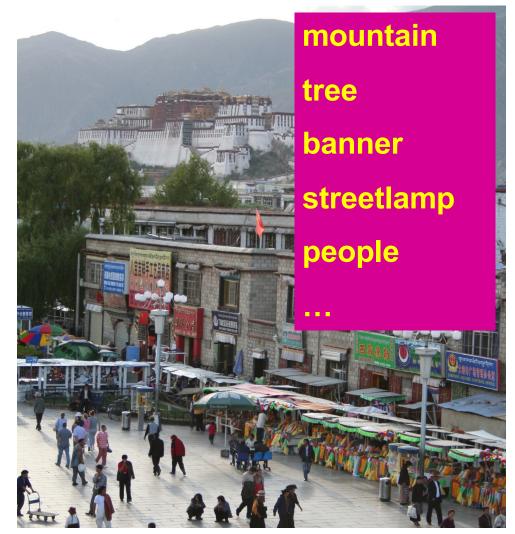
- Verification: is that a lamp?
- Detection: where are the people?



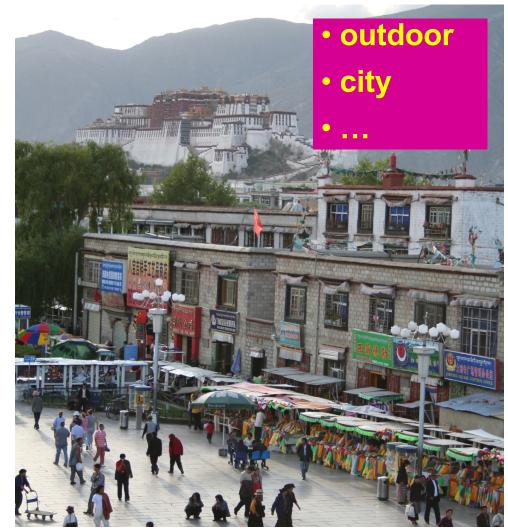
- Verification: is that a lamp?
- Detection: where are the people?
- Identification: is that Potala Palace?



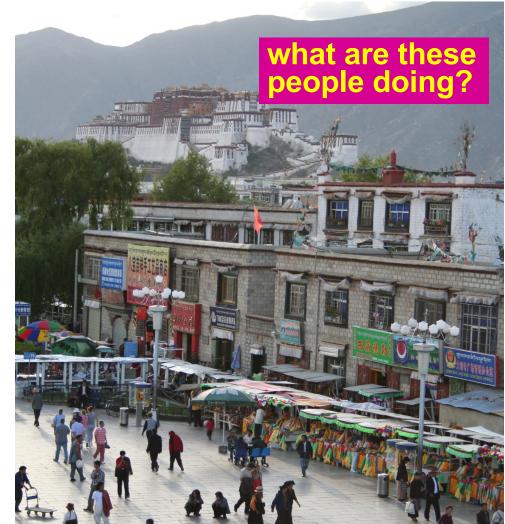
- Verification: is that a lamp?
- Detection: where are the people?
- Identification: is that Potala Palace?
- Classification: what objects are present?



- Verification: is that a lamp?
- Detection: where are the people?
- Identification: is that Potala Palace?
- Classification: what objects are present?
- Scene and context categorization



- Verification: is that a lamp?
- Detection: where are the people?
- Identification: is that Potala Palace?
- Classification: what objects are present?
- Scene and context categorization
- Activity / Event Recognition

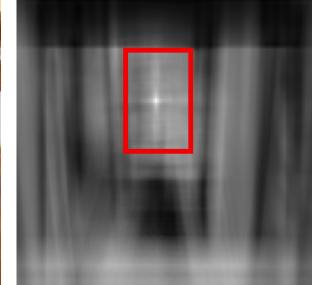


Object recognition: Is it really so hard?

This is a chair

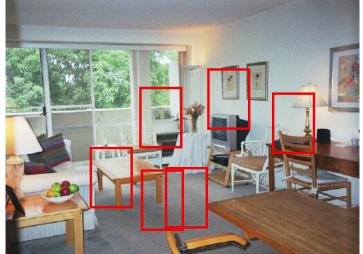
Find the chair in this image

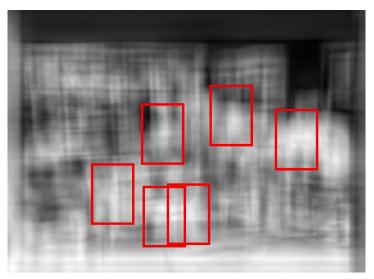
Output of normalized correlation



Object recognition: Is it really so hard?

Find the chair in this image





Pretty much garbage: Simple template matching is not going to do the trick

Object recognition: Is it really so hard?

Find the chair in this image

A "popular method is that of template matching, by point to point correlation of a model pattern with the image pattern. These techniques are inadequate for three-dimensional scene analysis for many reasons, such as occlusion, changes in viewing angle, and articulation of parts." Nivatia & Binford, 1977.

Why not use SIFT matching for everything?

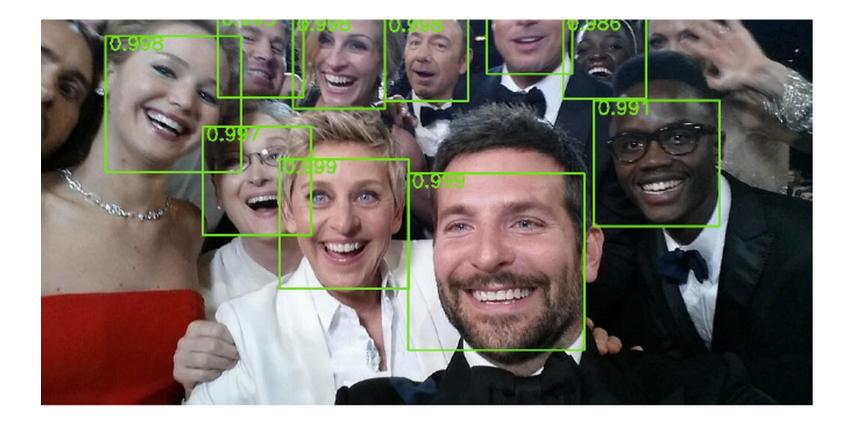
• Works well for object *instances* (or distinctive images such as logos)

• Not great for generic object categories

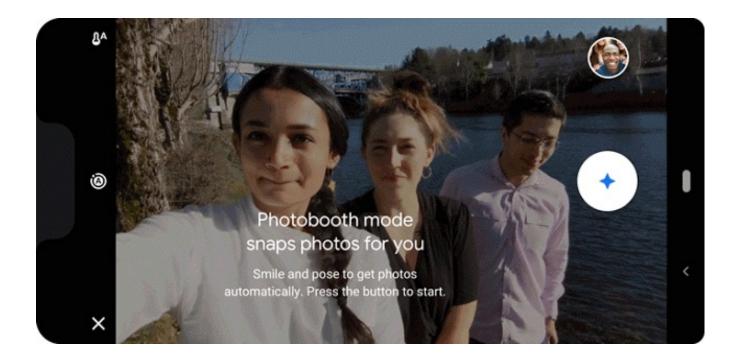
And it can get a lot harder

Brady, M. J., & Kersten, D. (2003). Bootstrapped learning of novel objects. J Vis, 3(6), 413-422

Applications: Photography



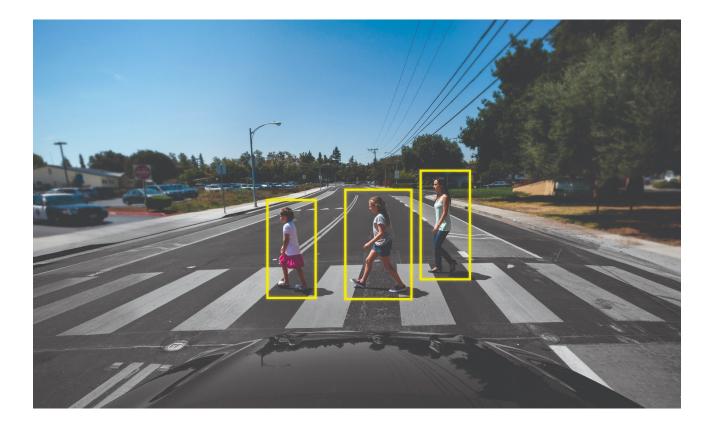
Applications: Shutter-free Photography



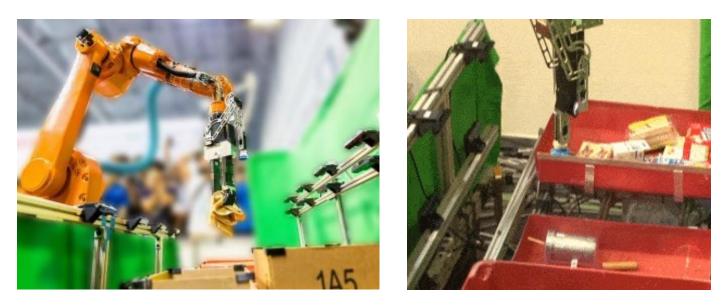
Take Your Best Selfie Automatically, with Photobooth on Pixel 3

https://ai.googleblog.com/2019/04/take-your-best-selfie-automatically.html (Also features "kiss detection")

Applications: Assisted / autonomous driving

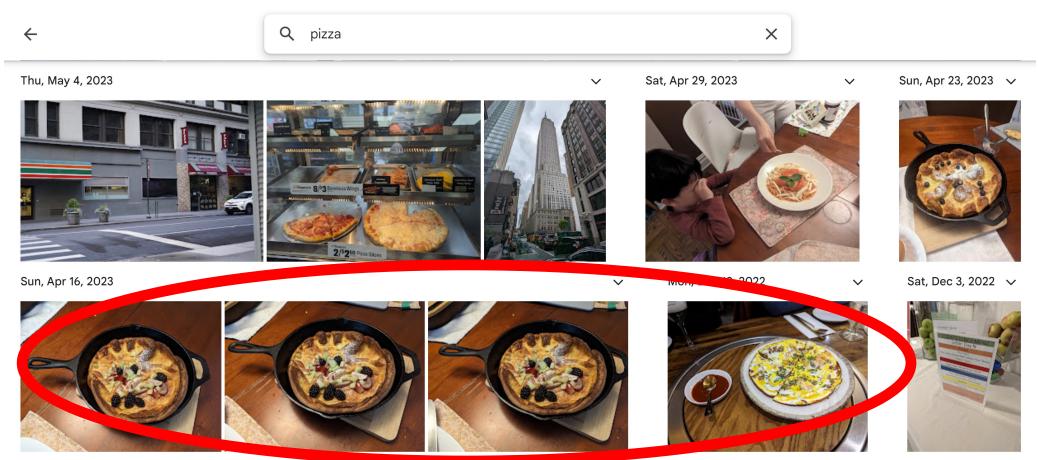


Applications: Robotics



https://arc.cs.princeton.edu/

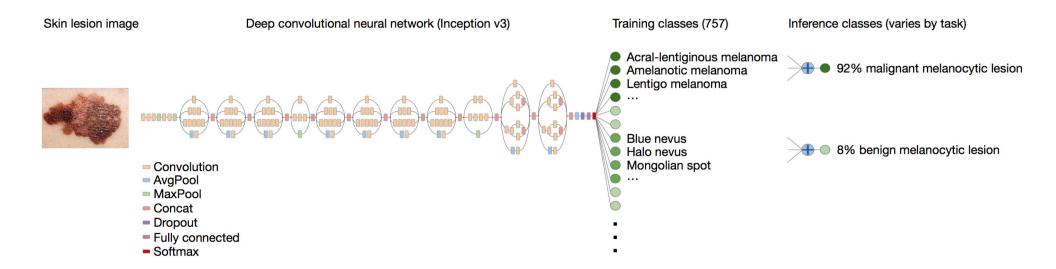
Applications: Photo organization



Source: Google Photos

Not Pizzas!

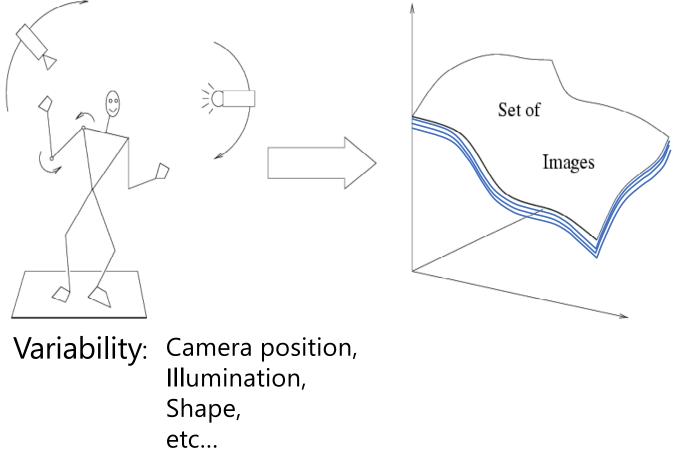
Applications: medical imaging



Dermatologist-level classification of skin cancer

https://cs.stanford.edu/people/esteva/nature/

Why is recognition hard?



Svetlana Lazebnik

Challenge: lots of potential classes

Challenge: variable viewpoint

Michelangelo 1475-1564

Challenge: variable illumination

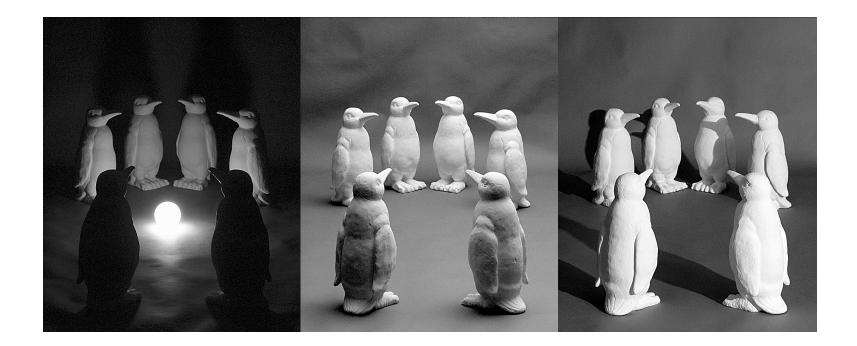
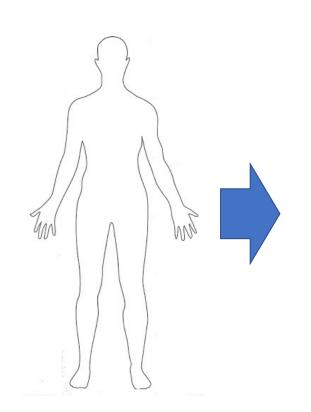
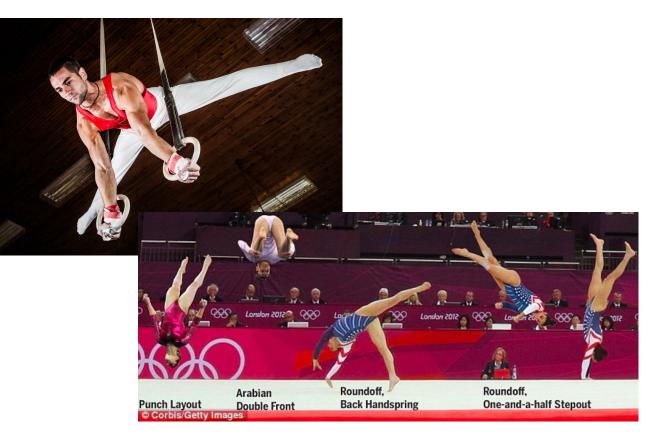


image credit: J. Koenderink

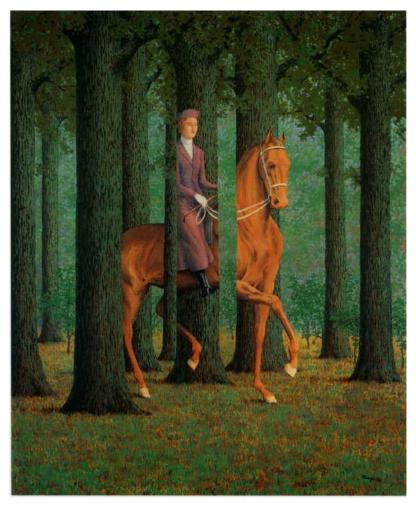
Challenge: scale

Challenge: deformation



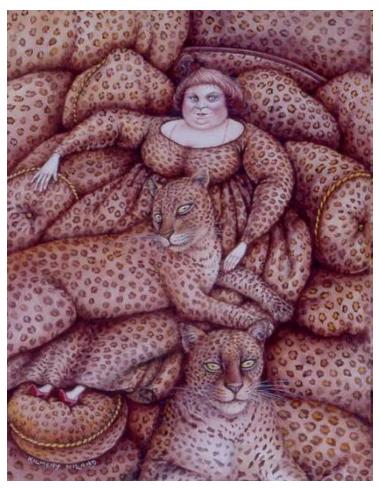


Challenge: Occlusion



Magritte, 1957

Challenge: background clutter

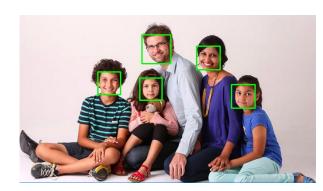


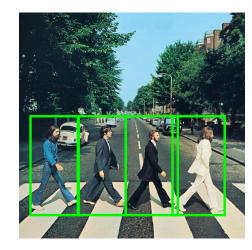
Kilmeny Niland. 1995

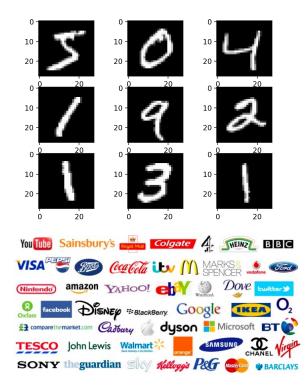
Challenge: intra-class variations

Svetlana Lazebnik

- What worked in 2011 (pre-deep-learning era in computer vision)
 - Optical character recognition
 - Face detection
 - Instance-level recognition (what logo is this?)
 - Pedestrian detection (sort of)
 - ... that's about it







- What works now, post-2012 (deep learning era and beyond)
 - Robust object classification across thousands of object categories (rivalling human capabilities)

"Spotted salamander"

Account

- What works now, post-2012 (deep learning era and beyond)
 - Face recognition at scale
 - The New Hork Times =

The Secretive Company That Might End Privacy as We Know It

A little-known start-up helps law enforcement match and "might lead to a dystopian future or something," a backer says.

https://www.nytimes.com/2020/01/18/technology/clearview-privacy-facial-recognition.html

Dmitry Kalenichenko dkalenichenko@google.com Google Inc.

FaceNet: A Unified Embedding for Face Recognition and Clustering

FaceNet, CVPR 2015

Florian Schroff

fschroff@google.com

Google Inc.

James Philbin jphilbin@google.com Google Inc.

Figure 1. Illumination and Pose invariance. Pose and illumination have been a long standing problem in face recognition. This figure shows the output distances of FaceNet between pairs of faces of the same and a different person in different pose and illumination combinations. A distance of 0.0 means the faces are identical, 4.0 corresponds to the opposite spectrum, two different identities. You can see that a threshold of 1.1 would classify every pair correctly.

- What works now, post-2012 (deep learning era and beyond)
 - High-quality image/video synthesis

A Style-Based Generator Architecture for Generative Adversarial Networks

Tero Karras (NVIDIA), Samuli Laine (NVIDIA), Timo Aila (NVIDIA) <u>http://stylegan.xyz/paper</u>

These people are not real – they were produced by our generator that allows control over different aspects of the image.

- What works now, post-2012 (deep learning era and beyond)
 - High-quality image/video synthesis

An illustration of an avocado sitting in a therapist's chair, saying 'I just feel so empty inside' with a pit-sized hole in its center. The therapist, a spoon, scribbles notes.

Several giant wooly mammoths approach treading through a snowy meadow, their long wooly fur lightly blows in the wind as they walk, snow covered trees and dramatic snow capped mountains in the distance...

Societal impacts

. . .

- Privacy invasion (e.g., face/person recognition, biometrics)
- Bias in AI methods (e.g., recognition systems that perform worse on certain demographics)
- Bias in training data (e.g., used to learn or perpetuate biased associations)
- Sources of training data (copyright issues, consent issues, etc.)
- Generative media (e.g., deepfakes, disinformation)

What Matters in Recognition?

- Learning Techniques
 - E.g. choice of classifier or inference method
- Representation
 - Low level: SIFT, HoG, GIST, edges
 - Mid level: Bag of words, sliding window, deformable model
 - Deep learned features
 - Latent diffusion models
- Data
 - More is always better (as long as it is good data)
 - Annotation (labeling data) has historically been a key challenge
 - Now we are seeing powerful models trained from more noisy labels

What Matters in Recognition?

- Learning Techniques
 - E.g. choice of classifier or inference method
- Representation
 - Low level: SIFT, HoG, GIST, edges
 - Mid level: Bag of words, sliding window, deformable model
 - Deep learned features
 - Latent diffusion models
- Data
 - More is always better (as long as it is good data)
 - Annotation (labeling data) has historically been a key challenge
 - Now we are seeing powerful models trained from more noisy labels

24 Hrs in Photos

Flickr Photos From 1 Day in 2011

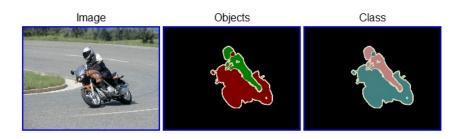
https://www.kesselskramer.com/project/24-hrs-in-photos/

Datasets

- PASCAL VOC [2005-2012]
 - Not Crowdsourced, bounding boxes, 20 categories
- CIFAR-10 [2009]
 - 60000 32x32 color images in 10 classes (6000 images per class)
- ImageNet [2010 current]
 - Huge, Crowdsourced, Hierarchical, Iconic objects
- COCO (Common Objects in Context) [2014 current]
 - Crowdsourced, large-scale objects
- LAION 5B [2022 current]
 - 5.85 billion noisy image-text pairs

The PASCAL Visual Object Classes Challenge 2009 (VOC2009)

- 20 object categories (aeroplane to TV/monitor)
- Three challenges:
 - Classification challenge (is there an X in this image?)
 - Detection challenge (draw a box around every X)
 - Segmentation challenge (which class is each pixel?)



ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 2010-2017 IM GENET

20 object classes 22,591 images

1000 object classes 1,431,167 images

http://image-net.org/challenges/LSVRC/{2010,2011,2012}

Variety of object classes in ILSVRC

PASCAL

birds

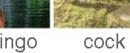
bird

bottles

bottle

cars

car



flamingo

ruffed grouse

ILSVRC

partridge

pill bottle

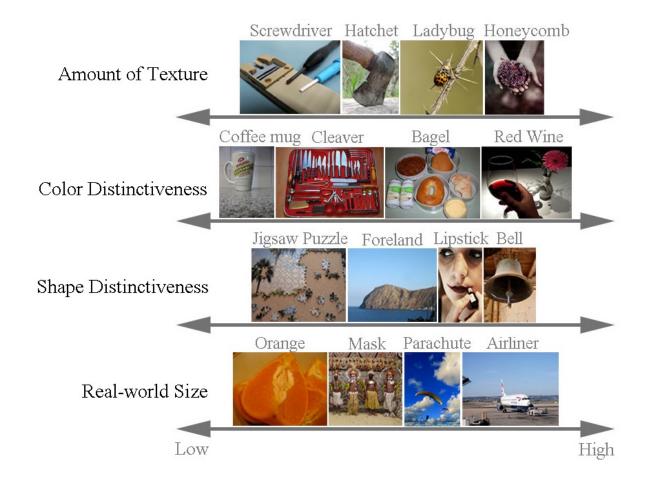
beer bottle wine bottle water bottle pop bottle . . .

wagon race car

minivan

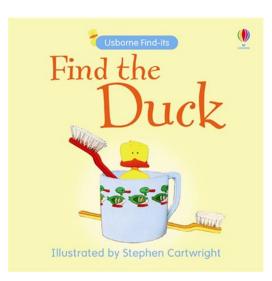
jeep

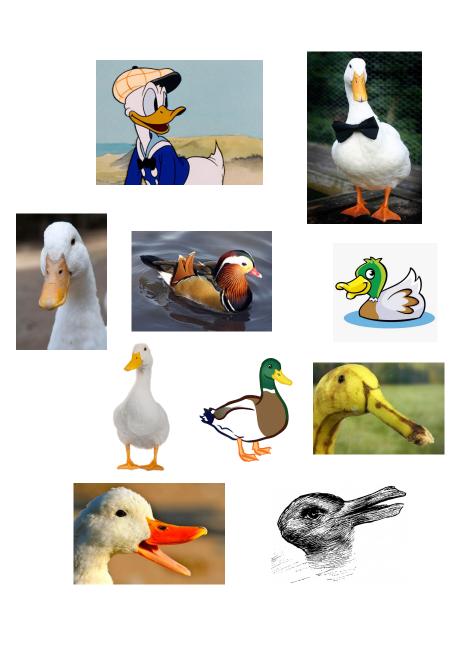
Variety of object classes in ILSVRC



What's Still Hard?

- Few shot learning
 - How do we generalize from only a small number of examples?





What's Still Hard?

- Few shot learning
 - How do we generalize from only a small number of examples?
- Fine-grained classification
 - How do we distinguish between more subtle class differences?

Animal->Bird->Oriole...

Scott Oriole

Questions?

Next

- Image classification pipeline
- Training, validation, testing
- Nearest neighbor classification
- Linear classification
- Building up to Convolutional Neural Networks (CNNs) and beyond