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Reading

« Szeliski 2"? Edition: Chapter 2.2 & 13.1



Roadmap for the rest of the course

* The next three lectures will finish up geometry and image
formation
— Next up (after Spring Break): deep learning, image recognition,
neural radiance fields, image generation models
« Coming up
— Reflectance and Photometric Stereo (today)
— Two-view geometry
— Multi-view geometry



Can we determine shape from lighting?

 Are these spheres?

* Or just flat discs painted with varying
albedo?
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Light sources

* Basic types
— point source

— directional source
* a point source that is infinitely far away

— dlfeéa source
* a union of point sources

« What happens when light hits an object?



Modeling Image Formation

We need to reason about:

* How light interacts with the scene

* How a pixel value is related to light energy
in the world

Track a “ray” of light all the way
from light source to the sensor



Directional Lighting

- Key property: all rays are parallel

- Equivalent to an infinitely distant
point source




Lambertian Reflectance

ions
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Image — Surface o Light
Intensity normal  direction
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intensity X cos(angle between N and L)



Materials - Three Forms

Ideal diffuse
(Lambertian)

Ideal
specular

Directional
diffuse

© Kavita Bala, Computer Science, Cornell University




ldeal diffuse |deal Directional
(Lambertian) specular diffuse

AR

© Kavita Bala, Computer Science, Cornell University




Ideal Diffuse Reflection

 Characteristic of multiple scattering materials
 An idealization but reasonable for matte surfaces

© Kavita Bala, Computer Science, Cornell University




Lambertian Reflectance

1. Reflected energy is proportional to cosine of angle between L
and N (incoming)

2. Measured intensity is viewpoint-independent (outgoing)



Lambertian Reflectance: Incoming

 Reflected energy is proportional to cosine of angle
between L and N




Lambertian Reflectance: Incoming

 Reflected energy is proportional to cosine of angle
between L and N
/
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Lambertian Reflectance: Incoming

 Reflected energy is proportional to cosine of angle
between L and N
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Light hitting surface is proportional to the cosine



Lambertian appearance is view-
independent

* Number of photons reflected to a
given angle @ is proportional to

Lambert's cosine law:B = B cos(6)



Lambertian appearance is view-

independent

« But appearance is the same
N.umber Olf peprtons refltgctecil ,;[O A from every angle due to
given angie & 15 proportionat to larger pixel footprint at larger
cos(6) o angles

|

Lambert's cosine law:B = B cos(6)



Lambertian appearance is view-

independent
* Number of photons reflected to a . Egtn?zssf;aa?\cgelels dtSee ts(?me
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Lambert's cosine law:B = B cos(6)



Lambertian appearance is view-

independent

* Number of photons reflected to a
given angle @ is proportional to

Lambert's cosine law:B = B cos(6)

« But appearance is the same
from every angle due to
larger pixel footprint at larger

angles
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Final Lambertian image formation model
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1. Diffuse albedo: what fraction of incoming light is reflected?
. Introduce scale factork g

2. Light intensity: how much light is arriving?
- Compensate with camera exposure (global scale factor)

3. Camera response function

- Assume pixel value is linearly proportional to incoming energy
(perform radiometric calibration if not)



Albedo

Sample albedos

Surface Typical Clementine Global Albedo Images
albedo (750 nm filter)
Fresh asphalt | 0.04[%]
Open ocean 0.06[°]
Worn asphalt 0.1214

Conifer forest
0.08,[61 0.09 to 0.15!7]
(Summer)

Deciduous trees | 0.15 to 0.18[7]

Bare soil 0.1718

Near Side Far Side

Green grass 0.2508l : :
Objects can have varying albedo and

Desert sand 0.400° . .
albedo varies with wavelength

New concrete | 0.55!8l

Sriey U Source: https://en.wikipedia.org/wiki/Albedo
Fresh snow 0.80-0.90(€!



https://en.wikipedia.org/wiki/Albedo

A Smgle Image: Shape from shading
Suppose (for now) kg =1

I = k/N-L
N - L

cos 0;

You can directly measure angle between normal and light source
« Not quite enough information to compute surface shape
« But can be if you add some additional info, for example
— assume a few of the normals are known (e.g., along silhouette)
— constraints on neighboring normals—"integrability”
— smoothness
« Hard to get it to work well in practice
— plus, how many real objects have constant albedo?
— But, deep learning can help



Application: Detecting composite photos

Real photo

Fake photo




Let's take more than one photo!



Photometric stereo

<ﬁl>
m v N 1 = kyN-L
Io = kyN-Lo
Is = kyN-Lg




Solving the equations

(L] | L G=1L"I
I | = | Lyl | k4N

I3 ] | Lg’ | kg = |G|

¥ Y N=1G
1 L G d
3x1 3x3 3x1

Solve one such linear system per pixel to solve for that pixel’s surface normal



More than three lights

Can get better results by using more than 3 lights

I Ly
== : de
L In - L Ln -
Least squares solution:
I = LG
L't = LLG

G = @' t@wry

Solve for N, k4 as before \

What's the size of LTL?



Computing light source directions

Trick: place a chrome sphere in the scene

— the location of the highlight tells you where the light source is



Example

lnpUt - E

I Recovered albedo

Recovered normal field




Depth from normals

 Solving the linear system per-
pixel gives us an estimated
surface normal for each pixel

« How can we compute depth
from nOI’ma|S7 Input photo Estimated normals Estimated normals

(needle diagram)
* Normals are like the “derivative” of
the true depth



Normal Integration

* Integrating a set of derivatives is easy in 1D

* (similar to Euler’s method from diff. eq. class)

» Could integrate normals in each column /
row separately
« Wouldn't give a good surface

* Instead, we formulate as a linear system
and solve for depths that best agree with
the surface normals

A
A, A3 A,
A;
Ao
>




Depth from normals

Vi = (33 + 1,9, Zx+1,y) - (:v,y, ny)
= (1,0, 2541, — Zy)
(z,y+1)
(w,y)/: 0 0 =N Vl
(z+1,y) = (nx, Ny, nz) ) (17 0, Fr+1ly ny)
A/ = ng+ nz{zx—i—l,y - ny)

Get a similar equation for V,
— Each normal gives us two linear constraints on z
— compute z values by solving a matrix equation



Results

from Athos Georghiades






Extension

« Photometric Stereo from Colored Lighting

a4

Fig. 2. Applying the original algorithm to a face with white makeup.
Top: example input frames from video of an actor smiling and grimacing.
Bottom: the resulting integrated surfaces.

Video Normals from Colored Lights

Gabriel J. Brostow, Carlos Hernandez, George Vogiatzis, Bjorn Stenger, Roberto Cipolla
|[EEE TPAMI, Vol. 33, No. 10, pages 2104-2114, October 2011.



http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5719620&tag=1

Questions?



For now, ignore specular reflection

Slides from Photometric Methods for 3D Modeling, Matsushita, Wilburn, Ben-Ezra



And Refraction...

Slides from Photometric Methods for 3D Modeling, Matsushita, Wilburn, Ben-Ezra



And Interreflections...

[

Slides from Photometric Methods for 3D Modeling, Matsushita, Wilburn, Ben-Ezra



And Subsurface Scattering...

Slides from Photometric Methods for 3D Modeling, Matsushita, Wilburn, Ben-Ezra



Limitations

Bigger problems
— doesn't work for shiny things, semi-translucent things
— shadows, inter-reflections

Smaller problems

— camera and lights have to be distant
— calibration requirements

» measure light source directions, intensities
» camera response function

Newer work addresses some of these issues
Some pointers for further reading:

Zickler, Belhumeur, and Kriegman, "Helmholtz Stereopsis: Exploiting Reciprocity for Surface Reconstruction." IJCV, Vol. 49 No. 2/3,
pp 215-227.

Hertzmann & Seitz, "Example-Based Photometric Stereo: Shape Reconstruction with General, Varying BRDFs." |IEEE Trans. PAMI
2005



http://www.eecs.harvard.edu/~zickler/helmholtz.html
http://grail.cs.washington.edu/projects/sam/

GELSIGHT
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Johnson and Adelson, 2009



Cookie

Clear Elastomer

Johnson and Adelson, 2009









Lights, camera, action

Sensor

Camera






(a) bench configuration (b) captured

(d) portable configuration

Figure 7: Comparison with the high-resolution result from the
original retrographic sensor. (a) Rendering of the high-resolution
$20 bill example from the original retrographic sensor with a close-
up view. (b) Rendering of the captured geometry using our method.

(e) reconstruction



nylon fabric Greek coin

leather vertically milled metal paper brick
(a) bench configuration (b) portable configuration

Figure 9: Example geometry measured with the bench and portable configurations. Outer image: rendering under direct lighting. Inset:
macro photograph of original sample. Scale shown in upper left. Color images are shown for context and are to similar, but not exact scale.



Sensing Surfaces with GelSight

kimoatmit

o o 138,850 views
https://www.youtube.com/watch?v=S7gXih4XS7A



https://www.youtube.com/watch?v=S7gXih4XS7A

InverseRenderNet: Learning single image inverse rendering

Ye Yu and William A. P. Smith
Department of Computer Science, University of York, UK
{yyl571,william.smith}@york.ac.uk
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Input " Diffuse albedo  Illumination “Frontal shading " Shading

Figure 1: From a single image (col. 1), we estimate albedo and normal maps and illumination (col. 2-4); comparison multi-
view stereo result from several hundred images (col. 5); re-rendering of our shape with frontal/estimated lighting (col. 6-7).



Questions?



