CS5670: Computer Vision

Single-View Modeling

Announcements

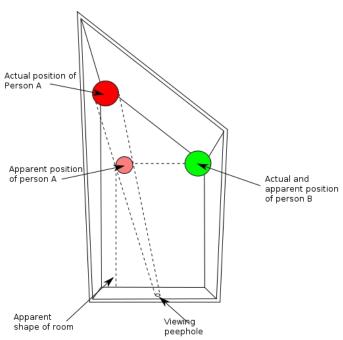
- Project 3: Autostitch (Panorama Stitching)
 - Due on Friday, March 15, by 8pm
 - To be done in groups of 2
 - If you need help finding a team member, let us know

Single-View Modeling

Ames Room

• Reading: Szeliski Chapter 11.1

Ames Room



Forced perspective in film

How Lord of the Rings used forced perspective shots with a moving camera https://www.youtube.com/watch?v=QWMFpxkGOs

Forced perspective illusions

https://richardwiseman.wordpress.com/magic-illusion/

Projective geometry—what's it good for?

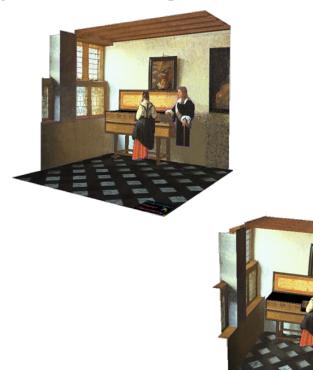
- Uses of projective geometry
 - Drawing
 - Measurements
 - Mathematics for projection
 - Undistorting images
 - Camera pose estimation
 - Object recognition



Paolo Uccello

Applications of projective geometry

Vermeer's Music Lesson



Reconstructions by Criminisi et al.

Making measurements in images

WARBY PARKER

Measure your pupillary distance (PD)

Your PD is the distance between your pupils. To measure it, follow the instructions below — once you submit your photo, our team of experts will determine your PD and email you once we've applied it to your order.

1

Wearing glasses?
Take 'em off before you get started.

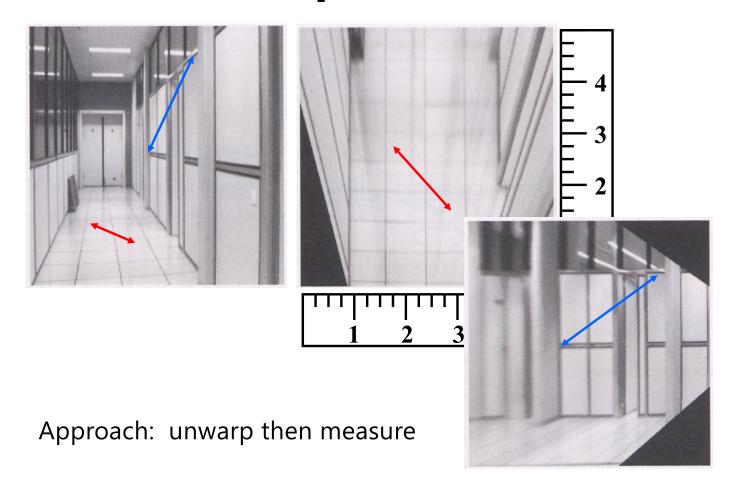
2

Hold up any card with a magnetic strip (we use this for scale).

3

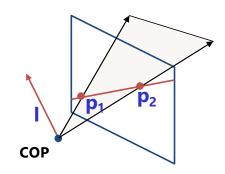
Look straight ahead and snap a photo.

Measurements on planes



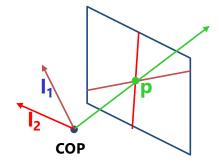
Point and line duality

- A line I is a homogeneous 3-vector
- It is \perp to every point (ray) **p** on the line: **l·p**=0



What is the line \mathbf{l} spanned by points $\mathbf{p_1}$ and $\mathbf{p_2}$?

- I is \perp to $\mathbf{p_1}$ and $\mathbf{p_2} \implies \mathbf{I} = \mathbf{p_1} \times \mathbf{p_2}$
- I can be interpreted as a *plane normal*

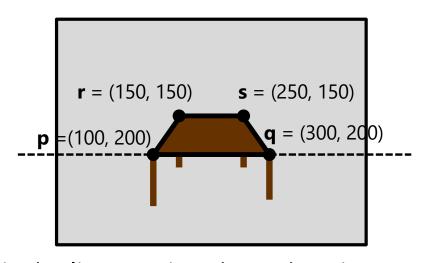


What is the intersection of two lines l_1 and l_2 ?

• \mathbf{p} is \perp to $\mathbf{l_1}$ and $\mathbf{l_2}$ \Rightarrow $\mathbf{p} = \mathbf{l_1} \times \mathbf{l_2}$

Points and lines are *dual* in projective space

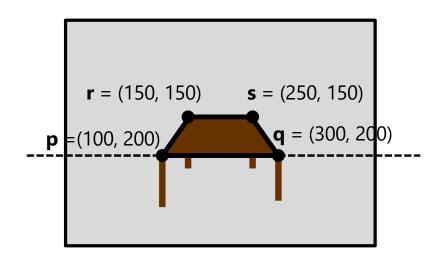
Example



What is the line passing through points **p** and **q**?

 $\mathbf{p}\times\mathbf{q}$

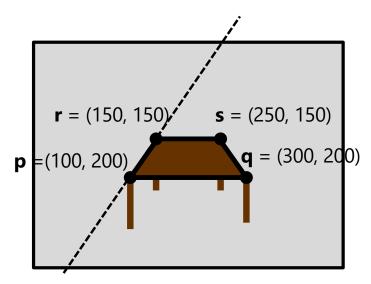
Example



How do we interpret the line $\ell = \begin{bmatrix} 0 \\ 1 \\ -200 \end{bmatrix}$

Answer: the set of points (x, y) such that $\begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = 0$, y - 200 = 0 i.e.,

Example

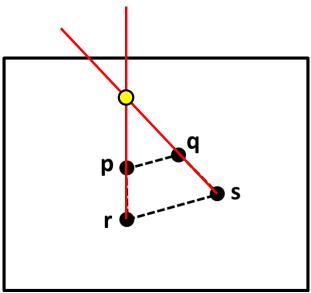


What is the line passing through points \mathbf{p} and \mathbf{r} ?

$$\mathbf{p} \times \mathbf{r} = \begin{bmatrix} 100 \\ 200 \\ 1 \end{bmatrix} \times \begin{bmatrix} 150 \\ 150 \\ 1 \end{bmatrix} = \begin{bmatrix} 200 \cdot 1 - 150 \cdot 1 \\ 150 \cdot 1 - 100 \cdot 1 \\ 100 \cdot 150 - 150 \cdot 200 \end{bmatrix} = \begin{bmatrix} 50 \\ 50 \\ -15000 \end{bmatrix} \sim \begin{bmatrix} 1 \\ 1 \\ -300 \end{bmatrix}$$

i.e., all points (x, y) such that x + y = 300

Question time



Consider the above image, with four points \mathbf{p} , \mathbf{q} , \mathbf{r} , \mathbf{s} , labeled (assume these are 2D homogeneous points).

What is a simple expression for the point of intersection between the line through **p** and **r** and the line through **q** and **s**?

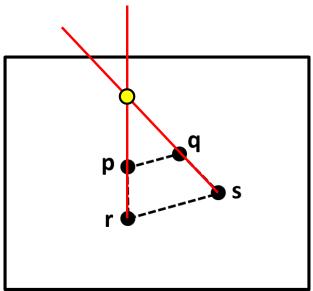
slido

Consider the following image, with four points p, q, r, s, labeled (assume these are 2D homogeneous points).

What is a simple expression for the point of intersection between the line through p and r and the line through q and s?

① Start presenting to display the poll results on this slide.

Question time

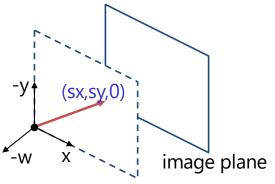


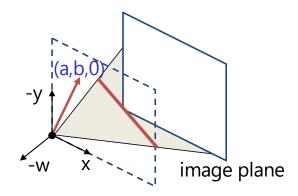
Consider the above image, with four points **p**, **q**, **r**, **s**, labeled (assume these are 2D homogeneous points).

What is a simple expression for the point of intersection between the line through **p** and **r** and the line through **q** and **s**?

Answer: $(p \times r) \times (q \times s)$

Ideal points and lines





- Ideal point ("point at infinity")
 - $-p \cong (x, y, 0)$ parallel to image plane
 - It has infinite image coordinates
- Ideal line
 - $I \cong (a, b, 0)$ parallel to image plane
 - Corresponds to a line in the image (finite coordinates)
 - goes through image origin (principal point)

3D projective geometry

- These concepts generalize naturally to 3D
 - Homogeneous coordinates
 - Projective 3D points have four coords: $\mathbf{P} = (X,Y,Z,W)$
 - Duality
 - A plane **N** is also represented by a 4-vector
 - Points and planes are dual in 3D: **N P**=0
 - Three points define a plane, three planes define a point

3D to 2D: perspective projection

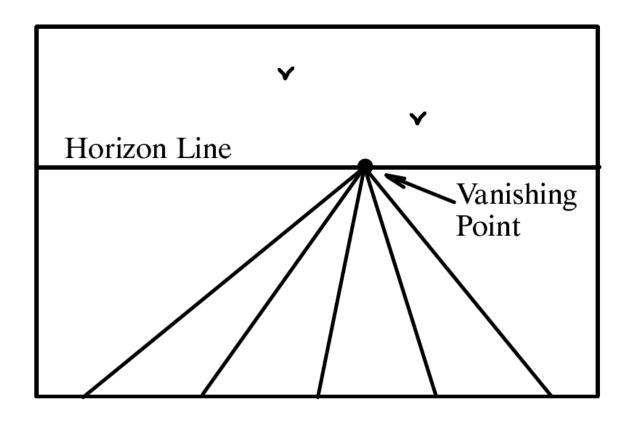
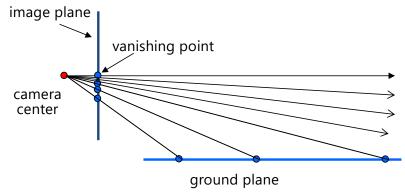
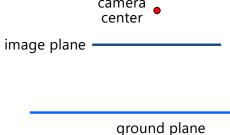


Figure 23.4
A perspective view of a set of parallel lines in the plane. All of the lines converge to a single vanishing point.

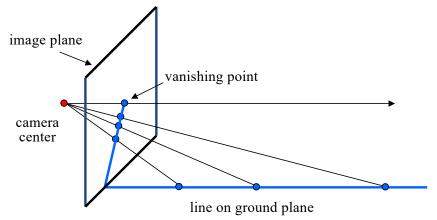
Vanishing points (1D)



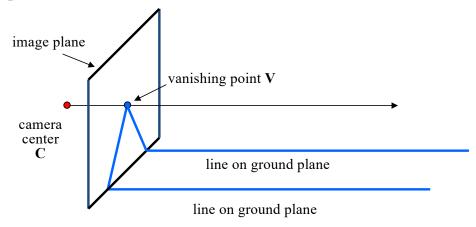
- Vanishing point
 - projection of a point at infinity
 - can often (but not always) project to a finite
 point in the image



Vanishing points (2D)



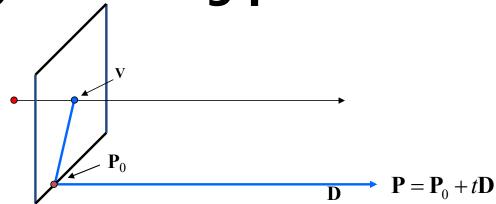
Vanishing points



Properties

- Any two parallel lines (in 3D) have the same vanishing point **v**
- The ray from C through v is parallel to the lines
- An image may have more than one vanishing point
 - in fact, every image point is a potential vanishing point

Computing vanishing points

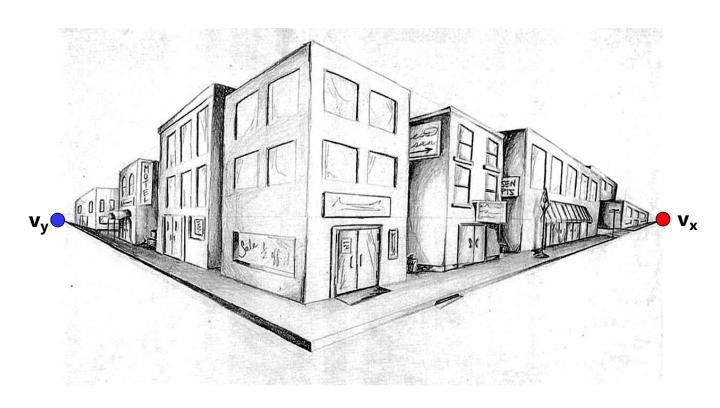


$$\mathbf{P}_{t} = \begin{bmatrix} P_{X} + tD_{X} \\ P_{Y} + tD_{Y} \\ P_{Z} + tD_{Z} \\ 1 \end{bmatrix} \cong \begin{bmatrix} P_{X} / t + D_{X} \\ P_{Y} / t + D_{Y} \\ P_{Z} / t + D_{Z} \\ 1 / t \end{bmatrix}$$

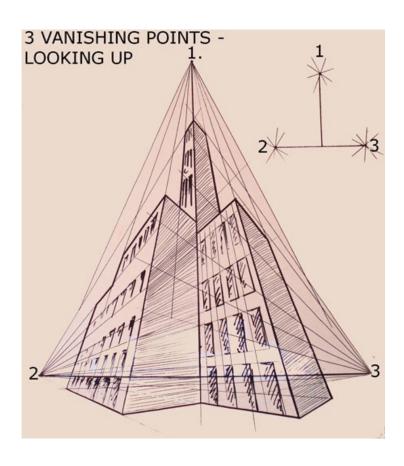
- Properties $v = \Pi P_{\infty}$
 - \mathbf{P}_{∞} is a point at *infinity*, \mathbf{v} is its projection
 - Depends only on line direction
 - Parallel lines \mathbf{P}_0 + t \mathbf{D} , \mathbf{P}_1 + t \mathbf{D} intersect at \mathbf{P}_{∞}

One-point perspective

Two-point perspective

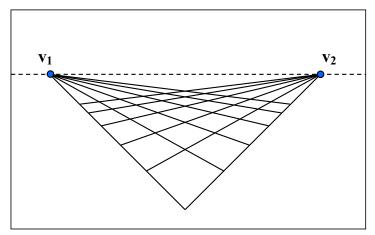


Three-point perspective



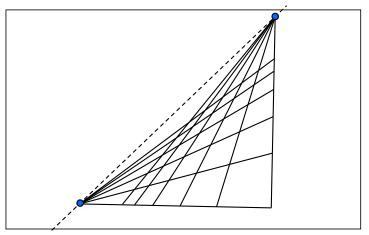
Questions?

Vanishing lines



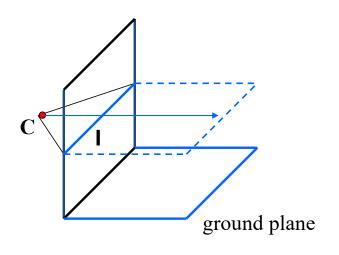
- Multiple Vanishing Points
 - Any set of parallel lines on the plane define a vanishing point
 - The union of all of these vanishing points is the horizon line
 - also called vanishing line
 - Note that different planes (can) define different vanishing

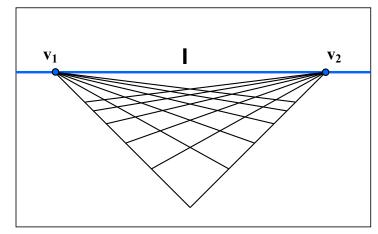
Vanishing lines



- Multiple Vanishing Points
 - Any set of parallel lines on the plane define a vanishing point
 - The union of all of these vanishing points is the horizon line
 - also called vanishing line
 - Note that different planes (can) define different vanishing

Computing vanishing lines



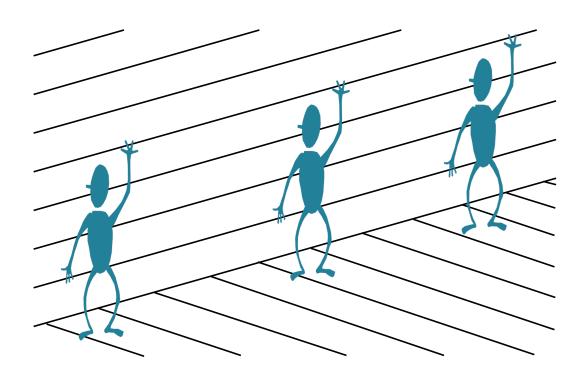


Properties

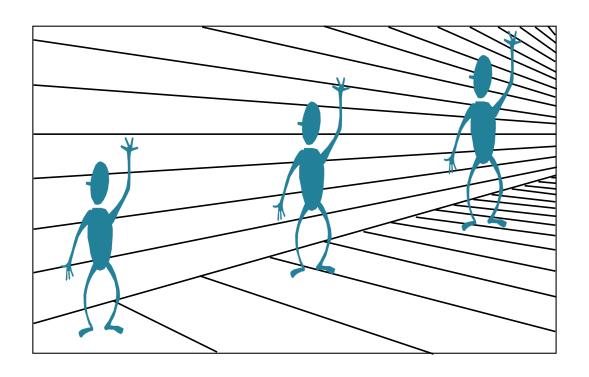
- I is intersection of horizontal plane through C with image plane
- Compute I from two sets of parallel lines on ground plane
- All points at same height as C project to I
 - points higher than C project above I
- Provides way of comparing height of objects in the scene

Lots of fun with vanishing points

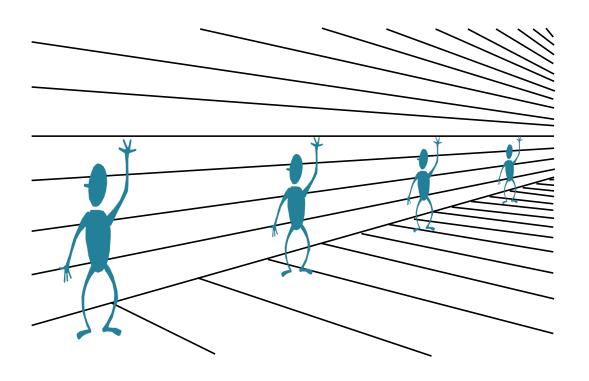
Perspective cues



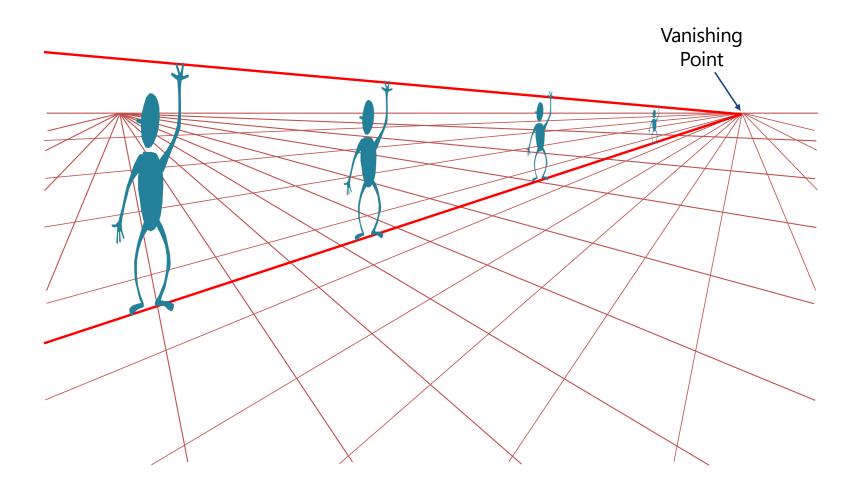
Perspective cues



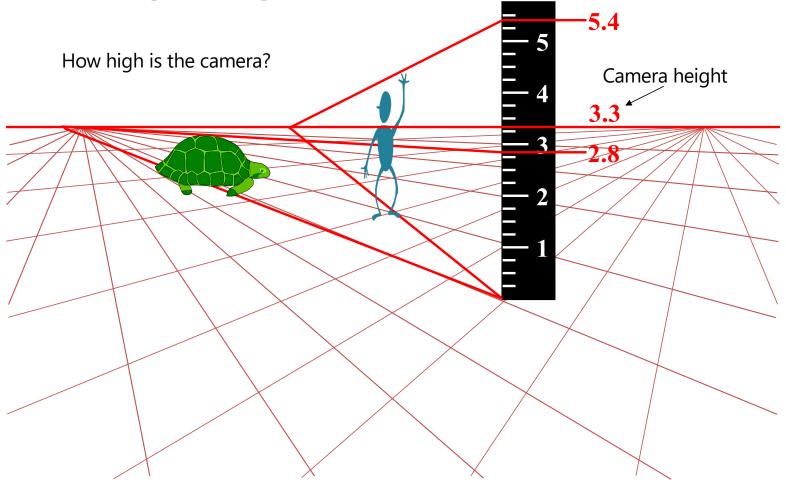
Perspective cues



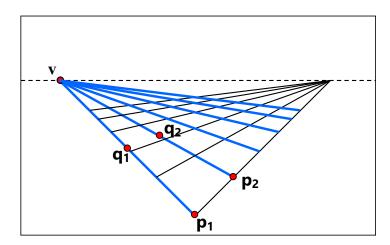
Comparing heights



Measuring height



Computing vanishing points (from lines)

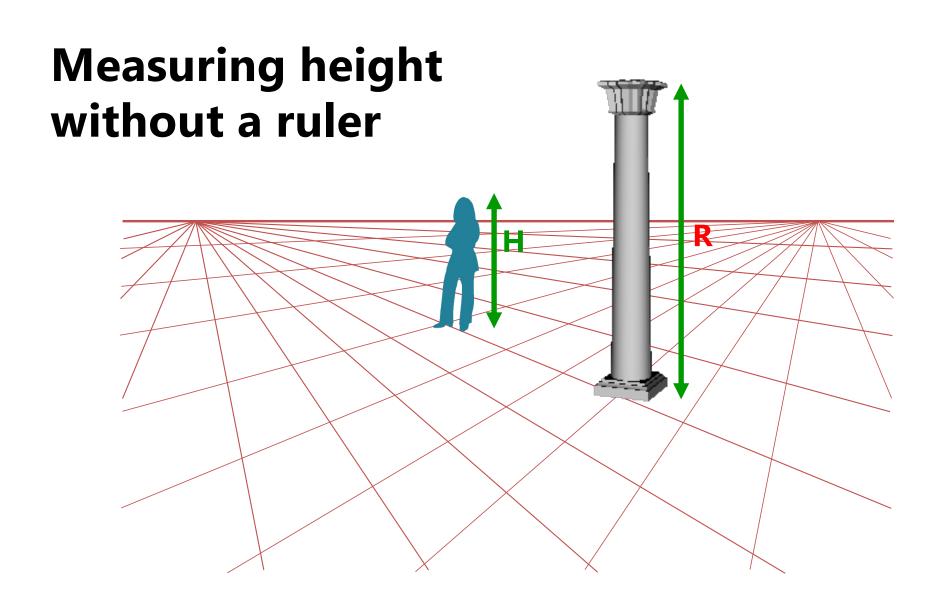


Intersect p₁q₁ with p₂q₂

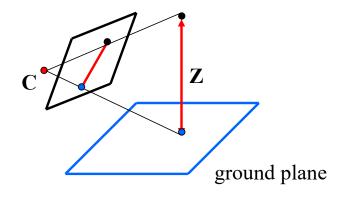
$$v = (p_1 \times q_1) \times (p_2 \times q_2)$$

Least squares version

- Better to use more than two lines and compute the "closest" point of intersection
- See notes by **Bob Collins** for one good way of doing this:
 - http://www-2.cs.cmu.edu/~ph/869/www/notes/vanishing.txt



Measuring height without a ruler



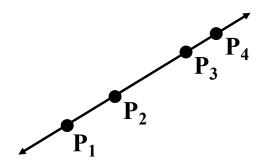
Compute Z from image measurements

• Need more than vanishing points to do this

The cross ratio

- A Projective Invariant
 - Something that does not change under projective transformations (including perspective projection)

The *cross-ratio* of 4 collinear points



$$\frac{\|\mathbf{P}_{3} - \mathbf{P}_{1}\| \|\mathbf{P}_{4} - \mathbf{P}_{2}\|}{\|\mathbf{P}_{3} - \mathbf{P}_{2}\| \|\mathbf{P}_{4} - \mathbf{P}_{1}\|}$$

$$\mathbf{P}_i = \begin{bmatrix} X_i \\ Y_i \\ Z_i \\ 1 \end{bmatrix}$$

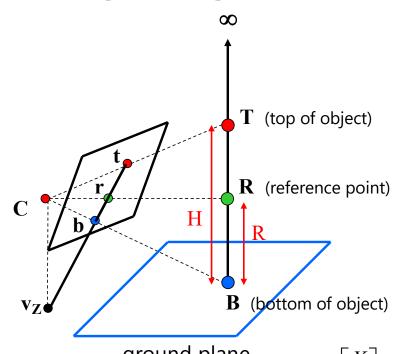
Can permute the point ordering

4! = 24 different orders (but only 6 distinct values)

This is the fundamental invariant of projective geometry

$$\frac{\|\mathbf{P}_{1} - \mathbf{P}_{3}\| \|\mathbf{P}_{4} - \mathbf{P}_{2}\|}{\|\mathbf{P}_{1} - \mathbf{P}_{2}\| \|\mathbf{P}_{4} - \mathbf{P}_{3}\|}$$

Measuring height



$$\frac{\|\mathbf{I} - \mathbf{B}\| \|\infty - \mathbf{R}\|}{\|\mathbf{R} - \mathbf{B}\| \|\infty - \mathbf{T}\|} = \frac{H}{R}$$

scene cross ratio

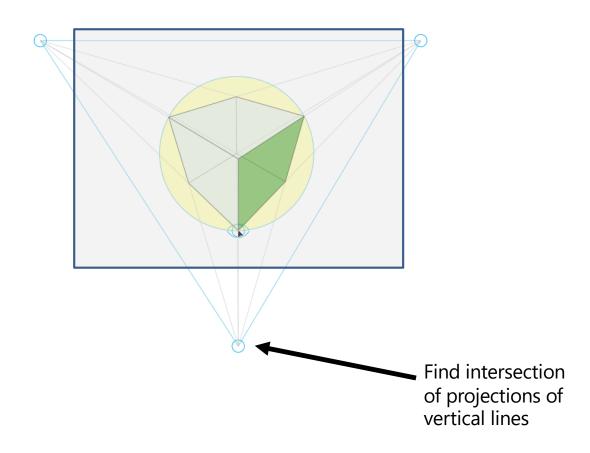
$$\frac{\|\mathbf{t} - \mathbf{b}\| \|\mathbf{v}_Z - \mathbf{r}\|}{\|\mathbf{r} - \mathbf{b}\| \|\mathbf{v}_Z - \mathbf{t}\|} = \frac{H}{R}$$

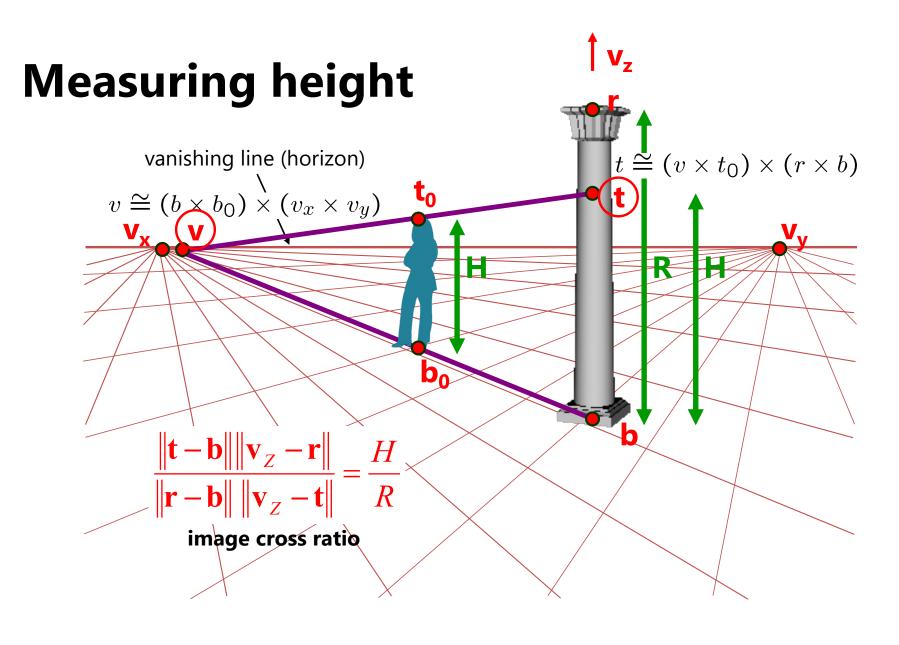
image cross ratio

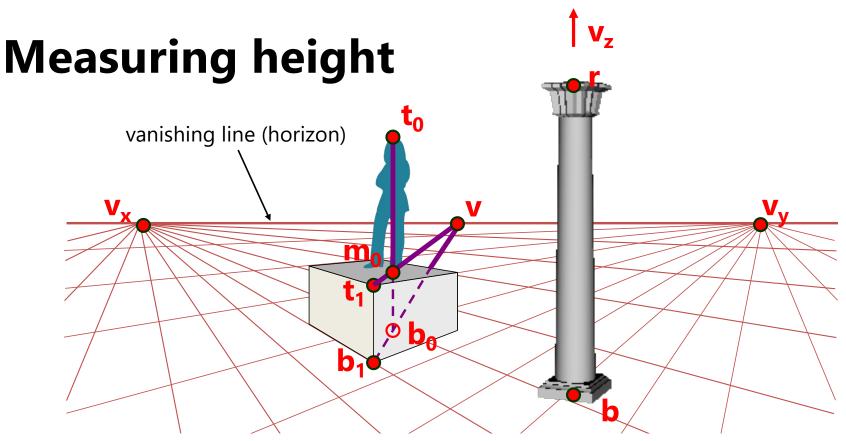
ground plane scene points represented as
$$\mathbf{P} = \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$
 image points as $\mathbf{p} = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$

image points as
$$\mathbf{p} = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Finding the vertical (z) vanishing point





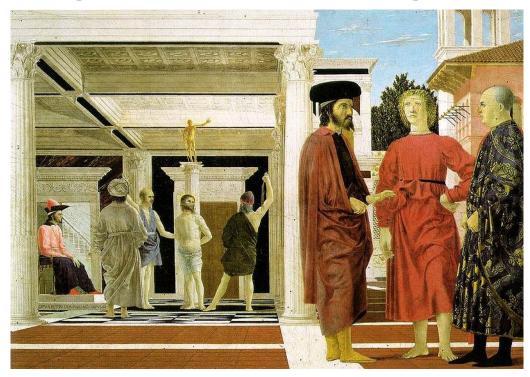


What if the point on the ground plane $\mathbf{b_0}$ is not known?

- Here the person is standing on the box, height of box is known
- Use one side of the box to help find ${f b_0}$ as shown above

St. Jerome in his Study, H. Steenwick

Bringing Pictorial Space to Life: Computer Techniques for the Analysis of Paintings. Antonio Criminisi, Martin Kemp, Andrew Zisserman. 2002.



Flagellation, Piero della Francesca

video by Antonio Criminisi

Flagellation. Piero della Francesca. c1453.

Related problem: camera calibration

- Goal: estimate the camera parameters
 - Version 1: solve for 3x4 projection matrix

- Version 2: solve for camera parameters separately
 - intrinsics (focal length, principal point, pixel size)
 - extrinsics (rotation angles, translation)
 - radial distortion

Vanishing points and projection matrix

- $\boldsymbol{\pi}_1 = \boldsymbol{\Pi} \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^T = \mathbf{v}_x$ (X vanishing point)
- similarly, $\boldsymbol{\pi}_2 = \boldsymbol{v}_Y$, $\boldsymbol{\pi}_3 = \boldsymbol{v}_Z$
- $\pi_4 = \Pi[0 \ 0 \ 0 \ 1]^T = \text{projection of world origin}$

$$\mathbf{\Pi} = \begin{bmatrix} \mathbf{v}_X & \mathbf{v}_Y & \mathbf{v}_Z & \mathbf{o} \end{bmatrix}$$

Not So Fast! We only know v's up to a scale factor

$$\mathbf{\Pi} = \begin{bmatrix} a \mathbf{v}_X & b \mathbf{v}_Y & c \mathbf{v}_Z & \mathbf{o} \end{bmatrix}$$

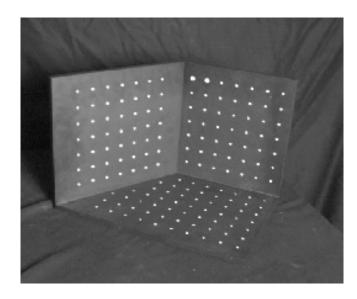
• Can fully specify by providing 3 reference points with known coordinates

Calibration using a reference object

- Place a known object in the scene
 - identify correspondence between image and scene
 - compute mapping from scene to image

Issues

- must know geometry very accurately
- must know 3D -> 2D correspondence



AR codes

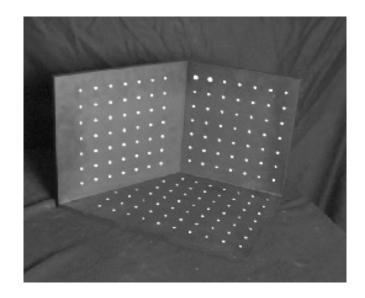


ArUco

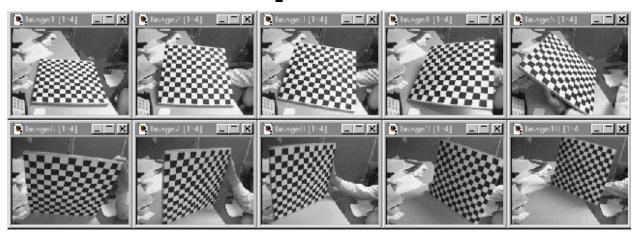
Estimating the projection matrix

- Place a known object in the scene
 - identify correspondence between image and scene
 - compute mapping from scene to image

$$\begin{bmatrix} u_i \\ v_i \\ 1 \end{bmatrix} \cong \begin{bmatrix} m_{00} & m_{01} & m_{02} & m_{03} \\ m_{10} & m_{11} & m_{12} & m_{13} \\ m_{20} & m_{21} & m_{22} & m_{23} \end{bmatrix} \begin{bmatrix} X_i \\ Y_i \\ Z_i \\ 1 \end{bmatrix}$$



Alternative: multi-plane calibration

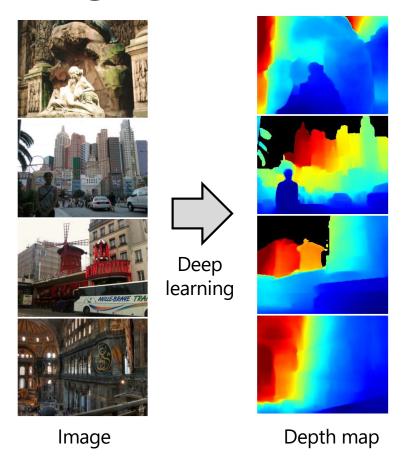


Images courtesy Jean-Yves Bouquet

Advantage

- Only requires a plane
- Don't have to know positions/orientations
- Good code available online! (including in OpenCV)
 - Matlab version by Jean-Yves Bouget: http://www.vision.caltech.edu/bouguetj/calib_doc/index.html
 - Amy Tabb's camera calibration software: https://github.com/amy-tabb/basic-camera-calibration

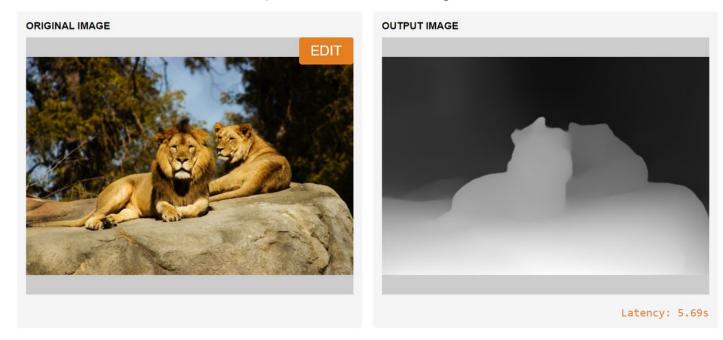
Single-image depth prediction using deep learning



Li and Snavely. Megadepth: Learning single-view depth prediction from internet photos. CVPR 2018.

MiDaS depth prediction

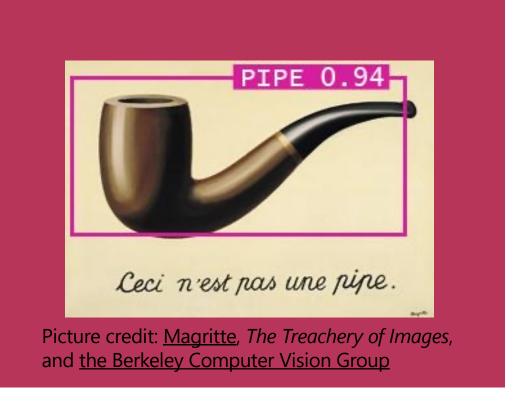
Ranftl et al. Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-shot Cross-dataset Transfer.



https://gradio.app/g/AK391/MiDaS

https://github.com/intel-isl/MiDaS

Single-image depth prediction



Miangoleh*, Dille*, Mai, Paris, and Aksoy.

Boosting Monocular Depth Estimation Models to High-Resolution via Content-Adaptive Multi-Resolution Merging.

C\/DD 2021

Deep geometry prediction

• More on this topic later!

Questions?