CS5760: Computer Vision RANSAC

http://www.wired.com/gadgetlab/2010/07/camera-software-lets-you-see-into-the-past/

Reading

• Szeliski (2nd edition): Chapter 8.1

Announcements

- Project 2 due Thursday, February 22, by 8pm on GitHub – Report due Thursday, Feb 22 by 8pm on CMSX
- Take-home midterm to be released after February Break
 - To be distributed in class at 2:40pm Thursday, Feb 29
 - Due Tuesday, March 5 by 1:25pm (beginning of class)
 - Open book, open note (but no Google or ChatGPT)
 - To be done on your own
- No class on Tuesday (February Break)

Recap: Image alignment algorithm

Given images A and B

- 1. Compute image features for A and B
- 2. Match features between A and B
- 3. Compute homography between A and B using least squares on set of matches

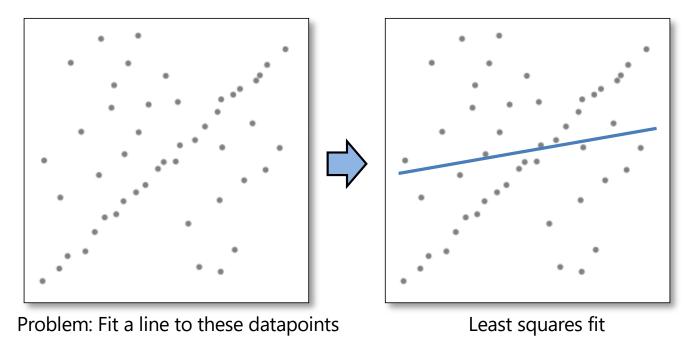
What could go wrong?

Today: we tie up any loose ends and finish image alignment

Outliers outliers MAKING ovo Dian DDE 100000000000000 1111 STORYTELUNG SECRETS OF COMIT inliers

Robustness

• Let's consider the problem of linear regression



• How can we fix this?

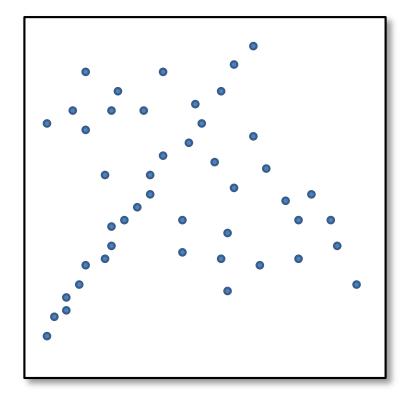
We need a better cost function...

• Suggestions?

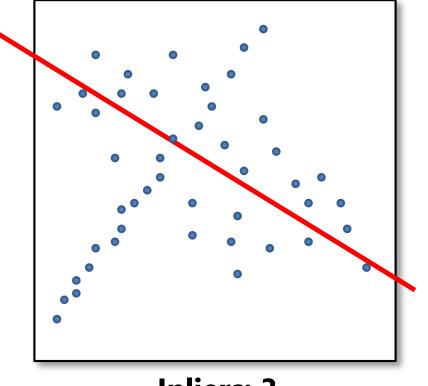
Idea

- Given a hypothesized line
- Count the number of points that "agree" with the line
 - "Agree" = within a small distance of the line
 - I.e., the **inliers** to that line
- For all possible lines, select the one with the largest number of inliers

Counting inliers

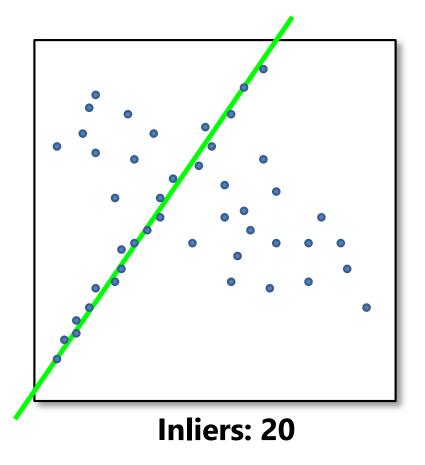


Counting inliers



Inliers: 3

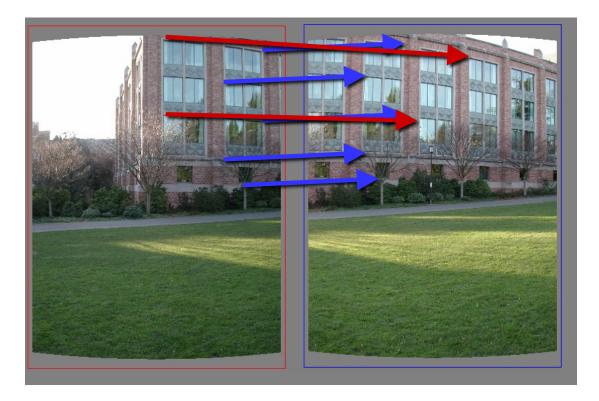
Counting inliers



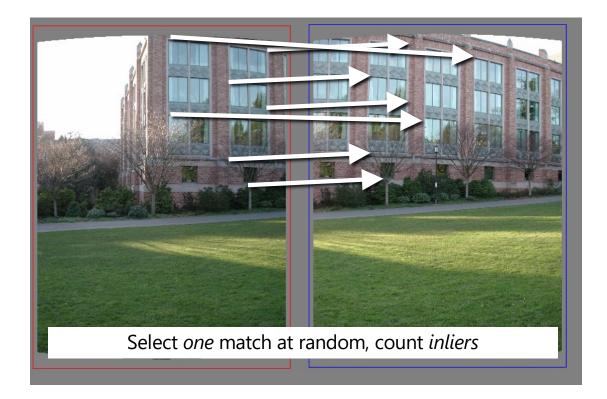
How do we find the best line?

- Unlike least-squares, no simple closed-form solution
- Hypothesize-and-test
 - Try out many lines, keep the best one
 - Which lines?

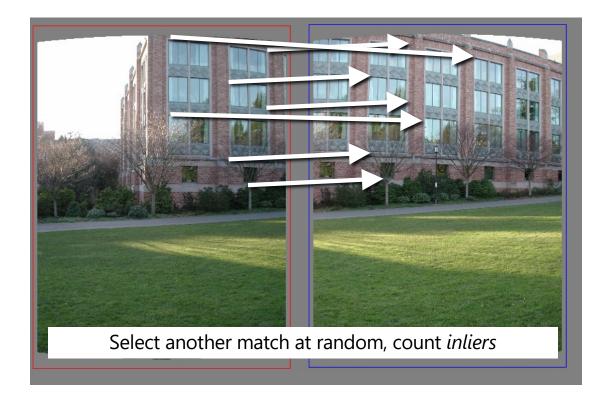
Translations



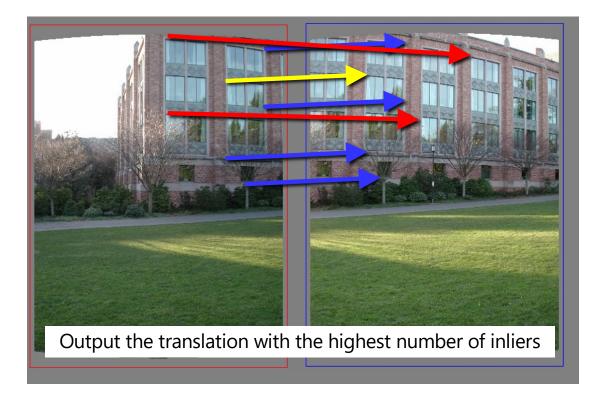
<u>RAndom SAmple Consensus</u>



<u>RAndom SAmple Consensus</u>



<u>RAndom SAmple Consensus</u>



- Idea:
 - All the inliers will agree with each other on the translation vector; the (hopefully small) number of outliers will (hopefully) disagree with each other
 - RANSAC only has guarantees if there are < 50% outliers
 - "All good matches are alike; every bad match is bad in its own way."

Tolstoy via Alyosha Efros

- Inlier threshold related to the amount of noise we expect in inliers
 - Often model noise as Gaussian w/ some standard deviation (e.g. 3 pixels)
- Number of rounds related to the percentage of outliers we expect, and the probability of success we'd like to guarantee
 - Suppose there are 20% outliers, and we want to find the correct answer with at least 99% probability
 - How many rounds do we need?

slido

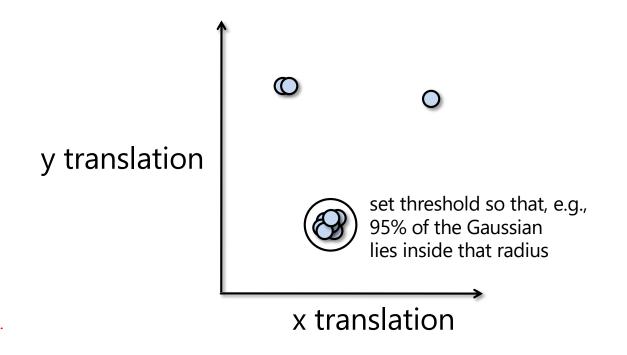
Suppose we are running RANSAC to compute a translation on a problem with 20% outliers, and we want to find the correct answer with 99% probability. How many rounds do we need?

① Start presenting to display the poll results on this slide.

Scratch space

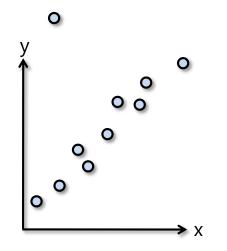
 $D_{n} Z_{-}^{N} \leq |-..., 29 = 0.01$

RANSAC: Another view



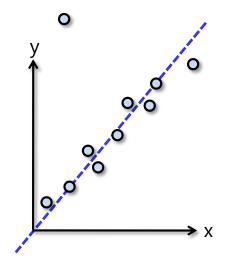
0

- Back to linear regression
- How do we generate a hypothesis?



0

- Back to linear regression
- How do we generate a hypothesis?



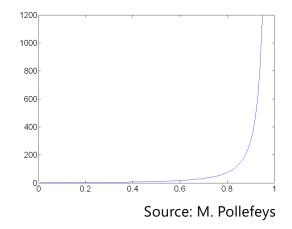
- General version:
 - 1. Randomly choose *s* samples
 - Typically *s* = minimum sample size that lets you fit a model
 - 2. Fit a model (e.g., line) to those samples
 - 3. Count the number of inliers that approximately fit the model
 - 4. Repeat *N* times
 - 5. Choose the model that has the largest set of inliers

How many rounds?

- If we have to choose s samples each time
 - with an outlier ratio e
 - and we want the right answer with probability p

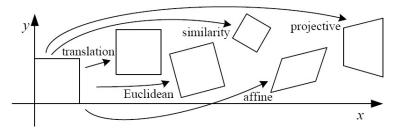
$$N \ge \frac{\log(1-p)}{\log(1-(1-e)^s)}$$

		proportion of outliers <i>e</i>							
S	5%	10%	20%	25%	30%	40%	50%		
2	2	3	5	6	7	11	17		
3	3	4	7	9	11	19	35		
4	3	5	9	13	17	34	72		
5	4	6	12	17	26	57	146		
6	4	7	16	24	37	97	293		
7	4	8	20	33	54	163	588		
8	5	9	26	44	78	272	1177		
p = 0.99									



How big is s?

- For alignment, depends on the motion model
 - Here, each sample is a correspondence (pair of matching points)

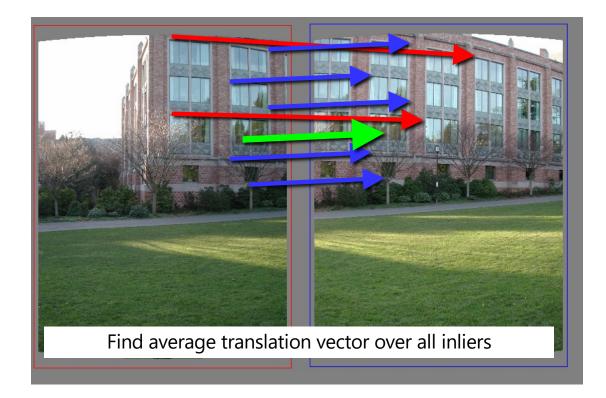


Name	Matrix	# D.O.F. Preserves:		Icon
translation	$igg[egin{array}{c c} I & t \end{array} igg]_{2 imes 3} igg]$	2	orientation $+\cdots$	
rigid (Euclidean)	$\left[egin{array}{c c c c c c c c c c c c c c c c c c c $	3	lengths $+\cdots$	\bigcirc
similarity	$\left[\left s \boldsymbol{R} \right \boldsymbol{t} ight]_{2 imes 3}$	4	angles $+ \cdots$	\Diamond
affine	$\left[egin{array}{c} oldsymbol{A} \end{array} ight]_{2 imes 3}$	6	parallelism $+\cdots$	
projective	$\left[egin{array}{c} ilde{m{H}} \end{array} ight]_{3 imes 3}$	8	straight lines	

RANSAC pros and cons

- Pros
 - Simple and general
 - Applicable to many different problems
 - Often works well in practice
- Cons
 - Parameters to tune
 - Sometimes too many iterations are required
 - Can fail for extremely low inlier ratios
 - We can often do better than brute-force sampling

Final step: least squares fit

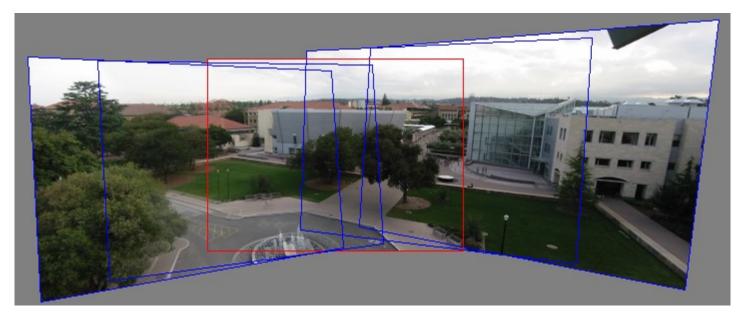


- An example of a "voting"-based fitting scheme
- Each hypothesis gets voted on by each data point, best hypothesis wins
- There are many other types of voting schemes
 - E.g., Hough transforms...

Panoramas

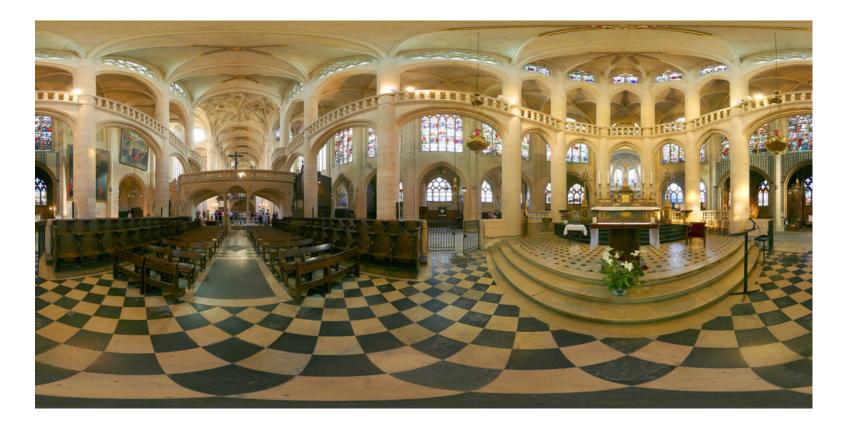
- Now we know how to create panoramas!
- Given two images:
 - Step 1: Detect features
 - Step 2: Match features
 - Step 3: Compute a homography using RANSAC
 - Step 4: Combine the images together (somehow)
- What if we have more than two images?

Can we use homographies to create a 360 panorama?



• To figure this out, we need to know what a **camera** is

360 panorama



Questions?