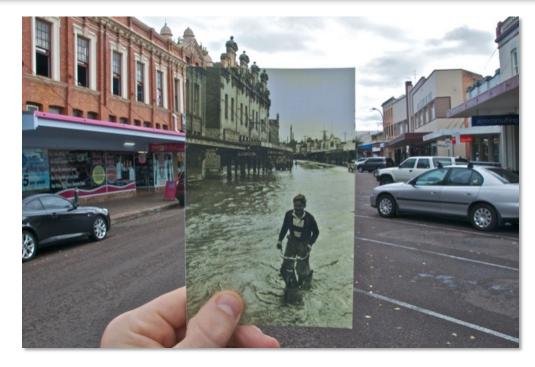
CS5760: Computer Vision Image alignment



http://www.wired.com/gadgetlab/2010/07/camera-software-lets-you-see-into-the-past/

Reading

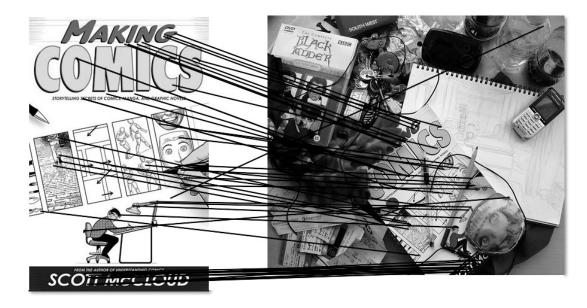
• Szeliski (2nd edition): Chapter 8.1

Announcements

- Project 2 code due this Friday, February 23 by 8pm
 - Please get started now if you haven't already!
 - Report due Thursday, Feb 29 by 8pm on CMSX (note new date)
- Take-home midterm to be released after February Break
 - To be released at 2:40pm Thursday, Feb 29 (end of class)
 - Due Tuesday, March 5 by 1:25pm (beginning of class)
 - Open book, open note (but no Google, ChatGPT, etc)
 - To be done on your own
 - No slip days possible

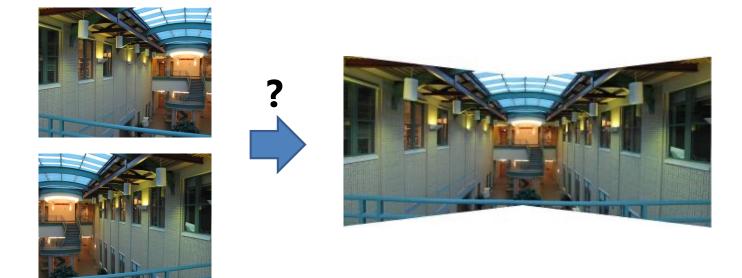
Computing transformations

• Given a set of matches between images A and B – How can we compute the transform T from A to B?

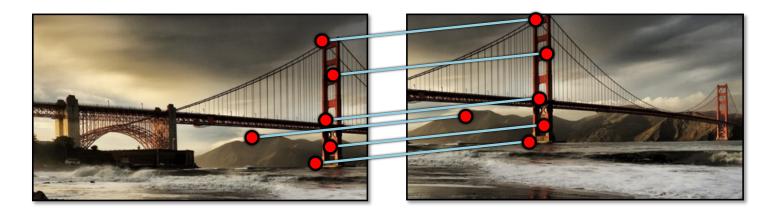


- Find transform T that best "agrees" with the matches

Computing transformations

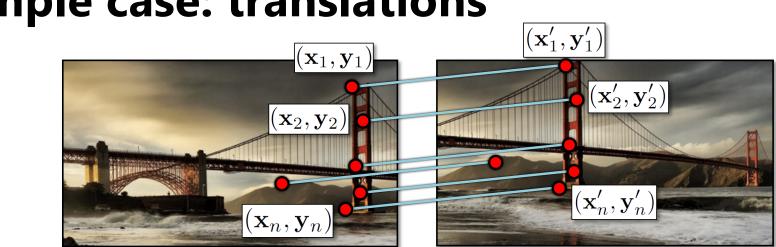


Simple case: translations



How do we solve for $(\mathbf{x}_t, \mathbf{y}_t)$?

 $(\mathbf{x}_t, \mathbf{y}_t)$

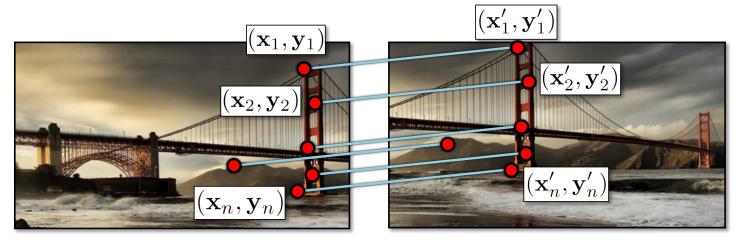


Simple case: translations

Displacement of match
$$i$$
 = $(\mathbf{x}'_i - \mathbf{x}_i, \mathbf{y}'_i - \mathbf{y}_i)$

$$(\mathbf{x}_t, \mathbf{y}_t) = \left(\frac{1}{n} \sum_{i=1}^n \mathbf{x}'_i - \mathbf{x}_i, \frac{1}{n} \sum_{i=1}^n \mathbf{y}'_i - \mathbf{y}_i\right)$$

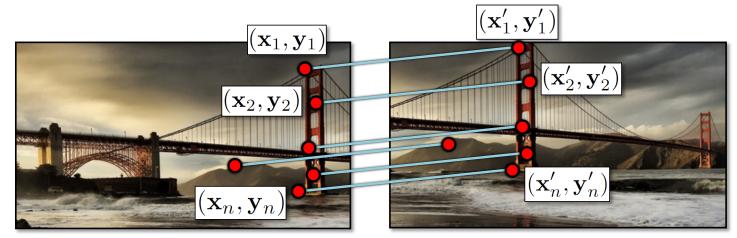
Another view



 $\mathbf{x}_i + \mathbf{x}_{\mathbf{t}} = \mathbf{x}'_i$ $\mathbf{y}_i + \mathbf{y}_{\mathbf{t}} = \mathbf{y}'_i$

- System of linear equations
 - What are the knowns? Unknowns?
 - How many unknowns? How many equations (per match)?

Another view



 $\mathbf{x}_i + \mathbf{x}_{\mathbf{t}} = \mathbf{x}'_i$ $\mathbf{y}_i + \mathbf{y}_{\mathbf{t}} = \mathbf{y}'_i$

- Problem: more equations than unknowns
 - "Overdetermined" system of equations
 - We will find the *least squares* solution

Least squares formulation

- For each point $(\mathbf{x}_i, \mathbf{y}_i)$ $\mathbf{x}_i + \mathbf{x}_t = \mathbf{x}'_i$ $\mathbf{y}_i + \mathbf{y}_t = \mathbf{y}'_i$
- we define the *residuals* as

$$r_{\mathbf{x}_i}(\mathbf{x}_t) = (\mathbf{x}_i + \mathbf{x}_t) - \mathbf{x}'_i$$

$$r_{\mathbf{y}_i}(\mathbf{y}_t) = (\mathbf{y}_i + \mathbf{y}_t) - \mathbf{y}'_i$$

Least squares formulation

- Goal: minimize sum of squared residuals $C(\mathbf{x}_t, \mathbf{y}_t) = \sum_{i=1}^n \left(r_{\mathbf{x}_i}(\mathbf{x}_t)^2 + r_{\mathbf{y}_i}(\mathbf{y}_t)^2 \right)$
- "Least squares" solution
- For translations, is equal to mean (average) displacement

Least squares formulation

• Can also write as a matrix equation

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \\ 0 & 1 \\ \vdots \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_t \\ y_t \end{bmatrix} = \begin{bmatrix} x'_1 - x_1 \\ y'_1 - y_1 \\ x'_2 - x_2 \\ y'_2 - y_2 \\ \vdots \\ x'_n - x_n \\ y'_n - y_n \end{bmatrix}$$
$$\underbrace{\mathbf{A}}_{2n \times 2} \quad \underbrace{\mathbf{t}}_{2 \times 1} = \underbrace{\mathbf{b}}_{2n \times 1}$$

Least squares

At = b

• Find **t** that minimizes

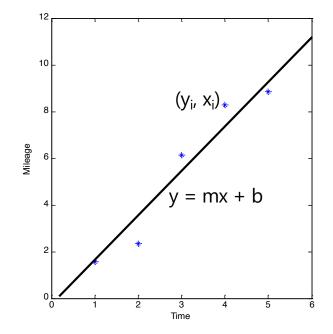
$$||\mathbf{At} - \mathbf{b}||^2$$

• To solve, form the *normal equations*

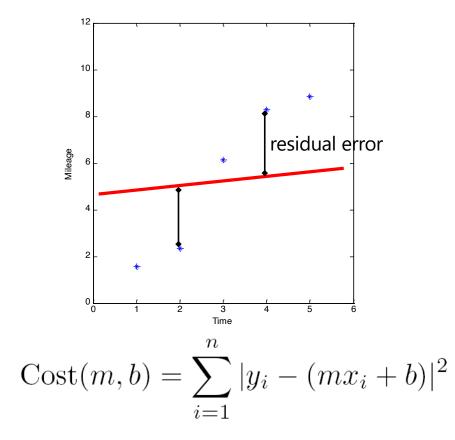
$$\mathbf{A}^{\mathrm{T}}\mathbf{A}\mathbf{t} = \mathbf{A}^{\mathrm{T}}\mathbf{b}$$
$$\mathbf{t} = \left(\mathbf{A}^{\mathrm{T}}\mathbf{A}\right)^{-1}\mathbf{A}^{\mathrm{T}}\mathbf{b}$$

Questions?

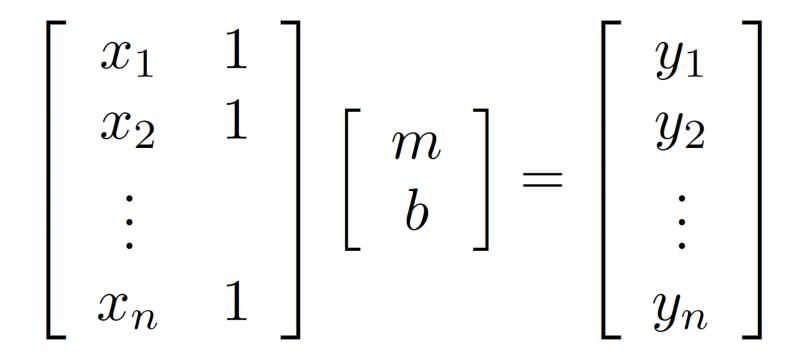
Least squares: linear regression



Linear regression



Linear regression



Affine transformations

$$\begin{bmatrix} x'\\y'\\1 \end{bmatrix} = \begin{bmatrix} a & b & c\\d & e & f\\0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x\\y\\1 \end{bmatrix}$$

- How many unknowns?
- How many equations per match?
- How many matches do we need?

Affine transformations

• Residuals:

$$r_{x_i}(a, b, c, d, e, f) = (ax_i + by_i + c) - x'_i$$

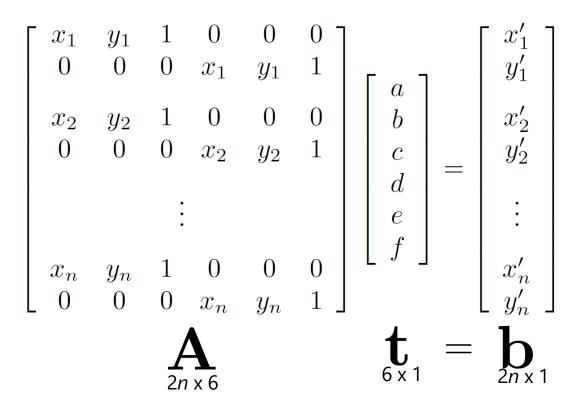
$$r_{y_i}(a, b, c, d, e, f) = (dx_i + ey_i + f) - y'_i$$

• Cost function:

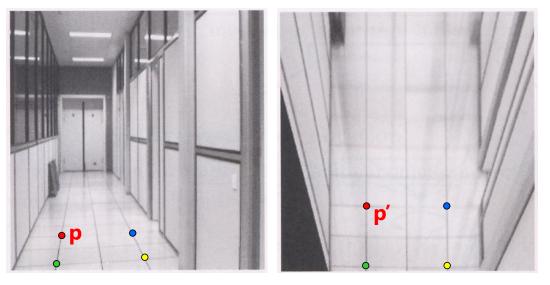
$$C(a, b, c, d, e, f) = \sum_{i=1}^{n} \left(r_{x_i}(a, b, c, d, e, f)^2 + r_{y_i}(a, b, c, d, e, f)^2 \right)$$

Affine transformations

• Matrix form



Homographies



To unwarp (rectify) an image

- solve for homography H given p and p'
- solve equations of the form: wp' = Hp
 - linear in unknowns: w and coefficients of ${\boldsymbol{\mathsf{H}}}$
 - H is defined up to an arbitrary scale factor
 - how many matches are necessary to solve for H?

slido

What is the minimum number of image matches needed to solve for a homography?

① Start presenting to display the poll results on this slide.

Solving for homographies

$$\begin{bmatrix} x'_i \\ y'_i \\ 1 \end{bmatrix} \cong \begin{bmatrix} h_{00} & h_{01} & h_{02} \\ h_{10} & h_{11} & h_{12} \\ h_{20} & h_{21} & h_{22} \end{bmatrix} \begin{bmatrix} x_i \\ y_i \\ 1 \end{bmatrix}$$

$$x'_{i} = \frac{h_{00}x_{i} + h_{01}y_{i} + h_{02}}{h_{20}x_{i} + h_{21}y_{i} + h_{22}}$$

$$y'_{i} = \frac{h_{10}x_{i} + h_{11}y_{i} + h_{12}}{h_{20}x_{i} + h_{21}y_{i} + h_{22}}$$

Not linear!

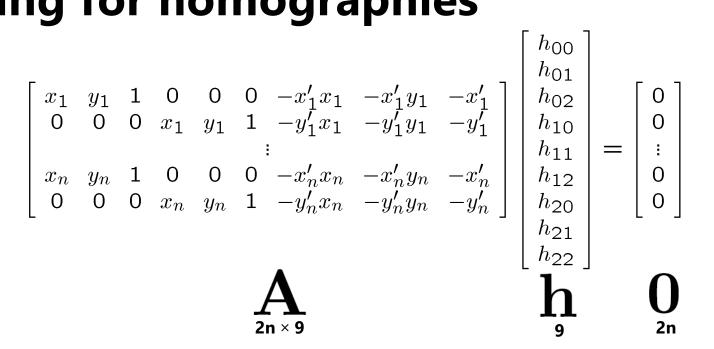
$$\begin{aligned} x_i'(h_{20}x_i + h_{21}y_i + h_{22}) &= h_{00}x_i + h_{01}y_i + h_{02} \\ y_i'(h_{20}x_i + h_{21}y_i + h_{22}) &= h_{10}x_i + h_{11}y_i + h_{12} \end{aligned}$$

Solving for homographies

 $\begin{aligned} x_i'(h_{20}x_i + h_{21}y_i + h_{22}) &= h_{00}x_i + h_{01}y_i + h_{02} \\ y_i'(h_{20}x_i + h_{21}y_i + h_{22}) &= h_{10}x_i + h_{11}y_i + h_{12} \end{aligned}$

$$\begin{bmatrix} x_i & y_i & 1 & 0 & 0 & 0 & -x'_i x_i & -x'_i y_i & -x'_i \\ 0 & 0 & 0 & x_i & y_i & 1 & -y'_i x_i & -y'_i y_i & -y'_i \end{bmatrix} \begin{bmatrix} h_{00} \\ h_{01} \\ h_{02} \\ h_{10} \\ h_{11} \\ h_{12} \\ h_{20} \\ h_{21} \\ h_{22} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Solving for homographies



Defines a least squares problem minimize $||Ah - 0||^2$

- Since ${f h}$ is only defined up to scale, solve for unit ve ${f h}$ or
- Solution: $\hat{\mathbf{h}}$ = eigenvector $\mathbf{A}^T \mathbf{A}$ with smallest eigenvalue
- Works with 4 or more points

Recap: Two Common Optimization Problems

Problem statement

Solution

 $\mathbf{x} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{b}$

minimize $\|\mathbf{A}\mathbf{x} - \mathbf{b}\|^2$

(least squares solution to Ax = b)

 $\mathbf{x} = \mathbf{A} \setminus \mathbf{b}$ (matlab)

Problem statement

minimize $\mathbf{x}^T \mathbf{A}^T \mathbf{A} \mathbf{x}$ s.t. $\mathbf{x}^T \mathbf{x} = 1$

(non-trivial lsq solution to Ax = 0)

Solution

 $[\mathbf{v}, \lambda] = \operatorname{eig}(\mathbf{A}^T \mathbf{A})$ $\lambda_1 < \lambda_{2..n} : \mathbf{x} = \mathbf{v}_1$

Computing transformations

Questions?

Image alignment algorithm

Given images A and B

- 1. Compute image features for A and B
- 2. Match features between A and B
- 3. Compute homography between A and B using least squares on set of matches

What could go wrong?

Outliers outliers MAKING on Dian DDE 100000000000000 1111 STORYTELUNG SECRETS OF COMIT inliers