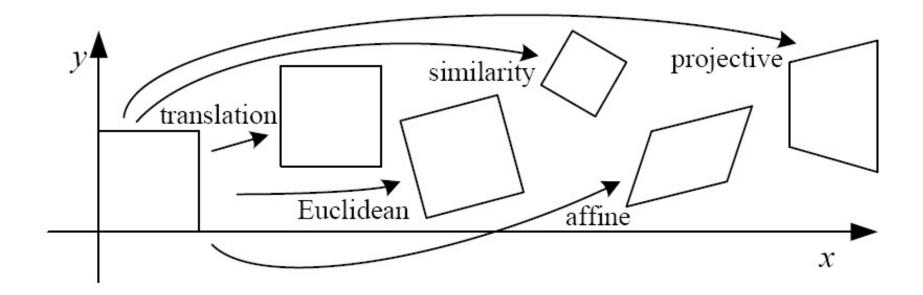
Quiz 3 (on Canvas) Closed book / closed note

Ends at 1:33pm

CS5670: Computer Vision

Image transformations and image warping



Reading

• Szeliski: Chapter 3.6

Announcements

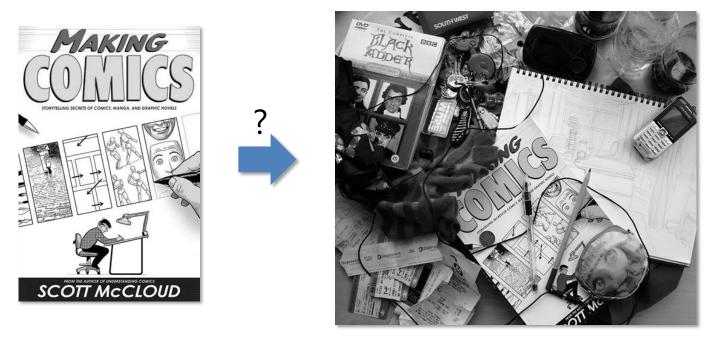
- Project 2 out, due Friday, February 23 by 8pm
 - Do be done in groups of 2 if you need help finding a partner, try Ed Discussions or let us know

Image alignment

Image alignment

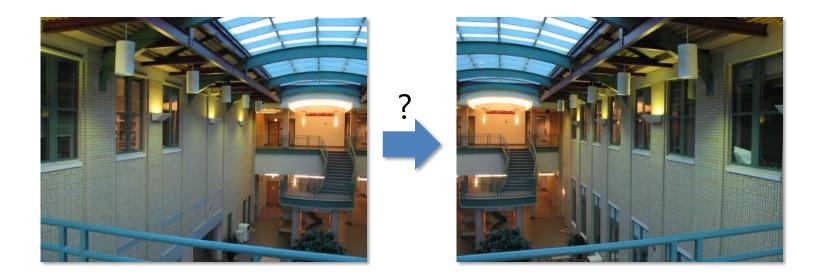
Why don't these image line up exactly?

What is the geometric relationship between these two images?

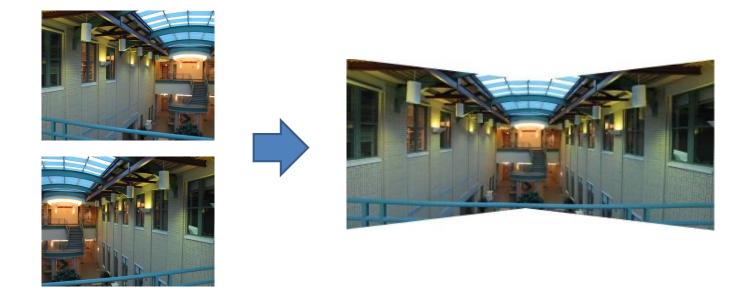


Answer: Similarity transformation (translation, rotation, uniform scale)

What is the geometric relationship between these two images?



What is the geometric relationship between these two images?

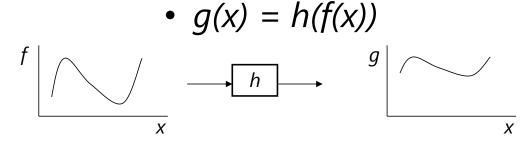


Very important for creating mosaics!

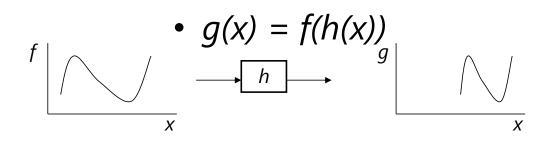
First, we need to know what this transformation is. Second, we need to figure out how to compute it using feature matches.

Image Warping

• image filtering: change *range* of image



• image warping: change domain of image

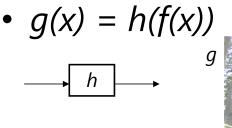


Richard Szeliski

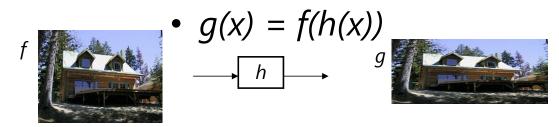
Image Stitching

Image Warping

• image filtering: change range of image



• image warping: change *domain* of image



Richard Szeliski

Image Stitching

Parametric (global) warping

• Examples of parametric warps:

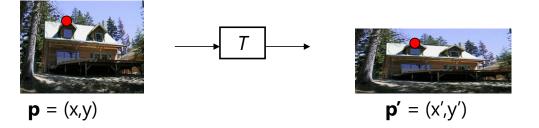
translation

rotation

aspect

Richard Szeliski

Parametric (global) warping



• Transformation T is a coordinate-changing machine:

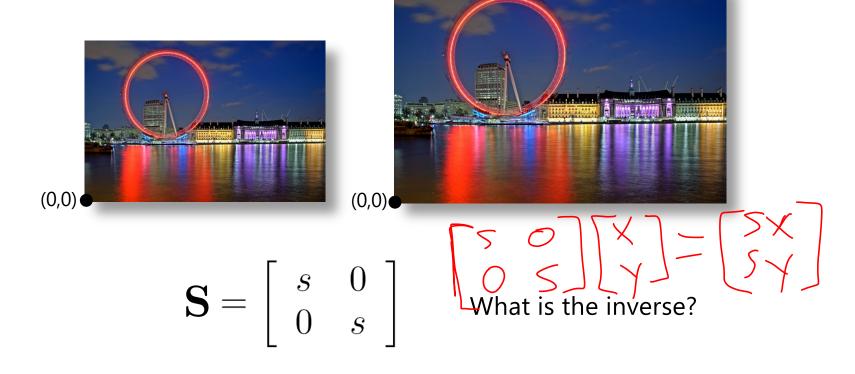
$$\mathbf{p}' = T(\mathbf{p})$$

- What does it mean that *T* is global?
 - Is the same for any point **p**
 - can be described by just a few numbers (parameters)
- Let's consider *linear* xforms (can be represented by a 2x2 matrix):

$$\mathbf{p}' = \mathbf{T}\mathbf{p} \qquad \left[egin{array}{c} x' \\ y' \end{array}
ight] = \mathbf{T} \left[egin{array}{c} x \\ y \end{array}
ight]$$

Common linear transformations

• Uniform scaling by s:



Common linear transformations

• Rotation by angle θ (about the origin) θ (0,0)(0,0) $\mathbf{R} = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$ What is the inverse? For rotations: $\mathbf{R}^{-1} = \mathbf{R}^T$

• What types of transformations can be represented with a 2x2 matrix?

2D mirror across Y axis?

$$\begin{array}{rcl} x' &=& -x \\ y' &=& y \end{array}$$

2D mirror across line y = x?

$$\begin{array}{rcl} x' &=& y\\ y' &=& x \end{array}$$

• What types of transformations can be represented with a 2x2 matrix?

2D mirror across Y axis?

2D mirror across line y = x?

• What types of transformations can be represented with a 2x2 matrix?

2D Translation? $x' = x + t_x$ $y' = y + t_y$

• What types of transformations can be represented with a 2x2 matrix?

2D Translation?

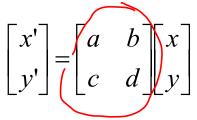
$$\begin{array}{rcl} x' &=& x+t_x & \ y' &=& y+t_y \end{array}$$

Translation is not a linear operation on 2D coordinates

All 2D Linear Transformations

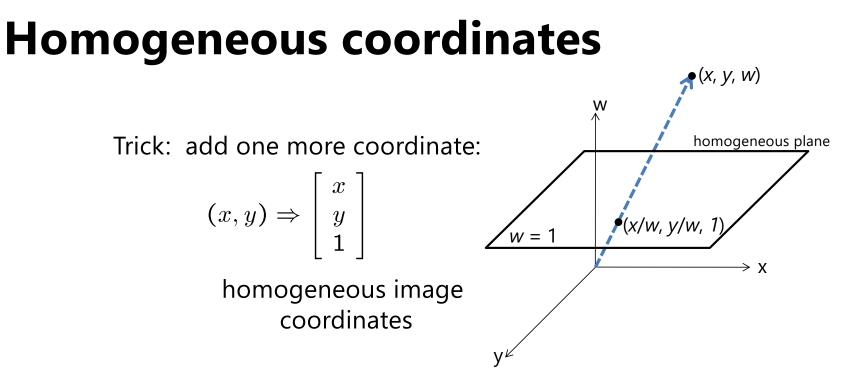
near transformations are combinations of ...

- Scale,
- Rotation,
- Shear, and
- Mirror



- Properties of linear transformations:
 - Origin maps to origin
 - Lines map to lines
 - Parallel lines remain parallel
 - Ratios are preserved
 - Closed under composition

$$\begin{bmatrix} x'\\y'\end{bmatrix} = \begin{bmatrix} a & b\\c & d\end{bmatrix} \begin{bmatrix} e & f\\g & h\end{bmatrix} \begin{bmatrix} i & j\\k & l\end{bmatrix} \begin{bmatrix} x\\y\end{bmatrix}$$



Converting from homogeneous coordinates

$$\left[\begin{array}{c} x\\ y\\ w \end{array}\right] \Rightarrow (x/w, y/w)$$

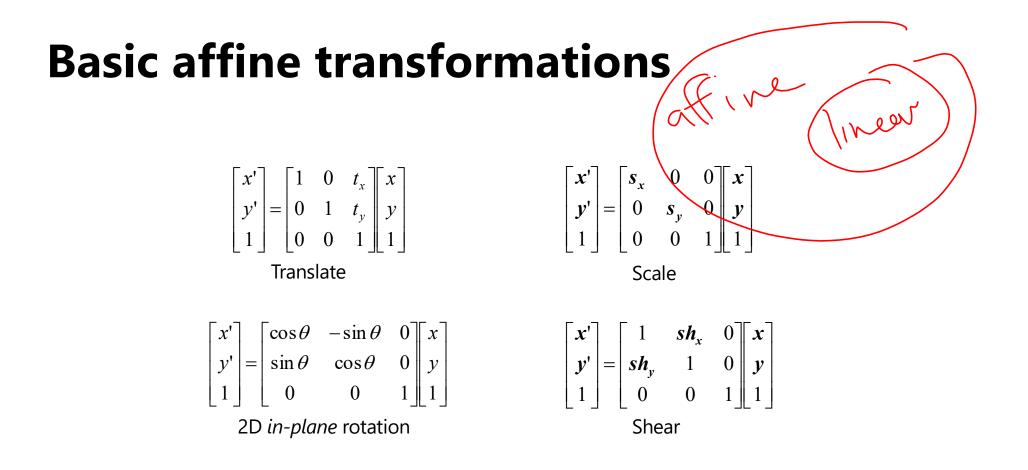
Translation

• Solution: homogeneous coordinates to the rescue

$$\mathbf{T} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} x + t_x \\ y + t_y \\ 1 \end{bmatrix}$$

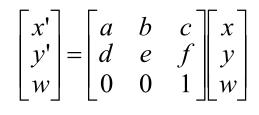
Affine transformations

$$\mathbf{T} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \bigstar \qquad \text{any transformation} \\ \text{represented by a 3x3} \\ \text{matrix with last row [0 0 1]} \\ \text{I we call an affine} \\ \begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ y \\ y \end{bmatrix}$$



Affine transformations

- Affine transformations are combinations of ...
 - Linear transformations, and
 - Translations



- Properties of affine transformations:
 - Origin does not necessarily map to origin
 - Lines map to lines
 - Parallel lines remain parallel
 - Ratios are preserved
 - Closed under composition

Is this an affine transformation?

Where do we go from here?

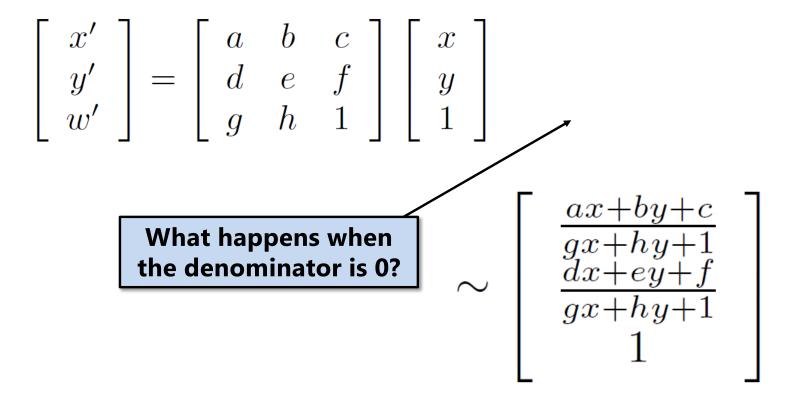
$$\begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \longleftarrow$$
 what happens when we mess with this row? affine transformation

Projective Transformations *aka* **Homographies** *aka* **Planar Perspective Maps**

$$\mathbf{H} = \left[egin{array}{ccc} a & b & c \ d & e & f \ g & h & 1 \end{array}
ight]$$

Called a *homography* (or *planar perspective map*)

Homographies



Points at infinity

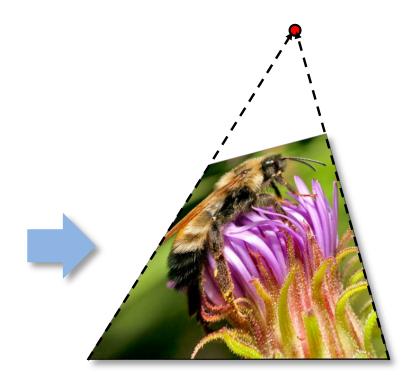
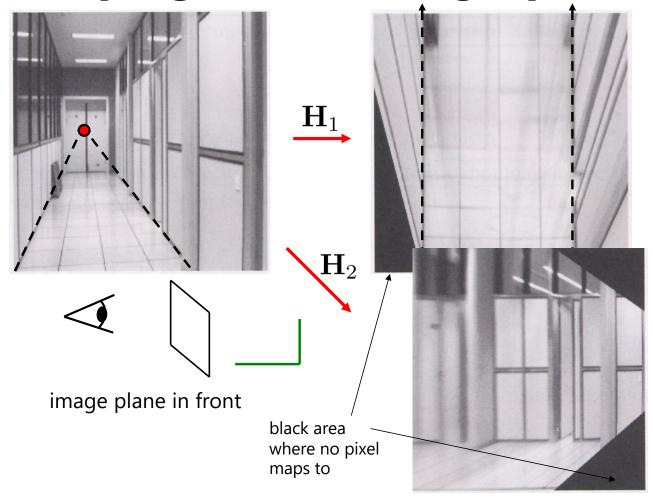


Image warping with homographies



Homographies

Homographies

- Homographies ...
 - Affine transformations, and
 - Projective warps

$$\left[\begin{array}{c} x'\\y'\\w'\end{array}\right] = \left[\begin{array}{cc}a&b&c\\d&e&f\\g&h&1\end{array}\right] \left[\begin{array}{c}x\\y\\w\end{array}\right]$$

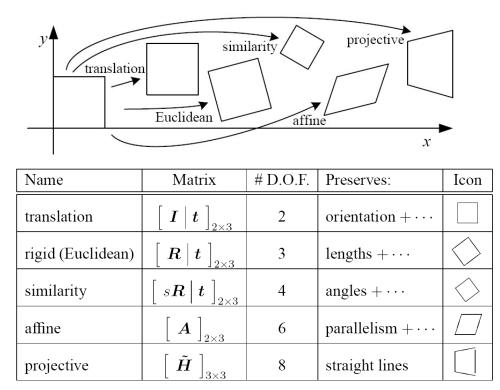
- Properties of projective transformations:
 - Origin does not necessarily map to origin
 - Lines map to lines
 - Parallel lines do not necessarily remain parallel
 - Ratios are not preserved
 - Closed under composition
- Key fact: homographies are only defined up to a scale factor (e.g., *H* and 2*H* are equivalent homographies)

Alternate formulation for homographies

$$\begin{bmatrix} x'_i \\ y'_i \\ 1 \end{bmatrix} \cong \begin{bmatrix} h_{00} & h_{01} & h_{02} \\ h_{10} & h_{11} & h_{12} \\ h_{20} & h_{21} & h_{22} \end{bmatrix} \begin{bmatrix} x_i \\ y_i \\ 1 \end{bmatrix}$$

where the length of the vector $[h_{00} h_{01} \dots h_{22}]$ is 1

2D image transformations

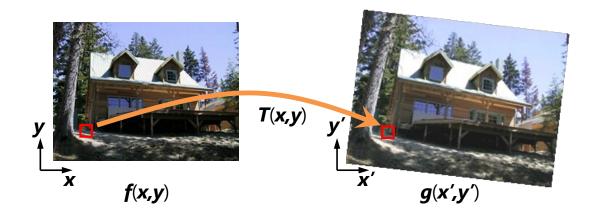


These transformations are a nested set of groups

• Closed under composition and inverse is a member

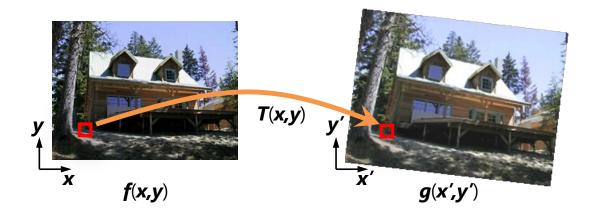
Implementing image warping

Given a coordinate xform (x',y') = T(x,y) and a source image f(x,y), how do we compute a transformed image g(x',y') = f(T(x,y))?



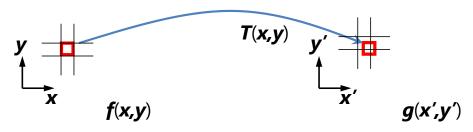
Forward Warping

- Send each pixel (x,y) to its corresponding location (x',y')
 = T(x,y) in g(x',y')
 - What if pixel lands "between" two pixels?



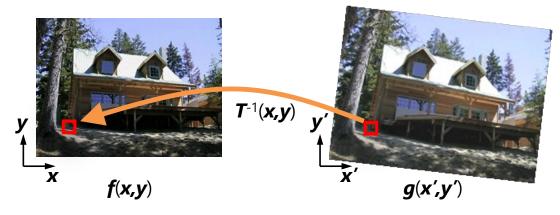
Forward Warping

- Send each pixel (x,y) to its corresponding location (x',y')
 = T(x,y) in g(x',y')
 - What if pixel lands "between" two pixels?
 - Answer: add "contribution" to several pixels, normalize later (*splatting*)
 - Can still result in holes



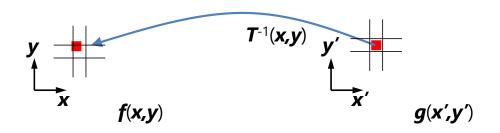
Inverse Warping

- Get each pixel g(x',y') from its corresponding location $(x,y) = T^{-1}(x,y)$ in f(x,y)
 - Requires taking the inverse of the transform
 - What if pixel comes from "between" two pixels?



Inverse Warping

- Get each pixel g(x',y') from its corresponding location
 (x,y) = T⁻¹(x',y') in f(x,y)
 - What if pixel comes from "between" two pixels?
 - Answer: *resample* color value from *interpolated* (*prefiltered*) source image



Interpolation

- Possible interpolation filters:
 - nearest neighbor
 - bilinear
 - bicubic
 - sinc
- Needed to prevent "jaggies" and "texture crawl"

(with prefiltering)

Questions?