
Feature descriptors and feature matching
CS5670: Computer Vision



Reading

• Szeliski (2nd edition) 7.1



Announcements

• Project 2 released today
– Code due Friday, February 23, 8pm
– Report due Monday, February 26, 8pm
– To be done in groups of 2
– If you need help finding a partner, try Ed Discussions or let us 

know



Project 2 Demo



Local features: main components
1) Detection: Identify the 

interest points

2) Description: Extract 
vector feature descriptor 
surrounding each interest 
point.

3) Matching: Determine 
correspondence between 
descriptors in two views
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Feature descriptors
We know how to detect good points
Next question: How to match them?

Answer: Come up with a descriptor for each point, 
find similar descriptors between the two images

?



We know how to detect good points
Next question: How to match them?

Lots of possibilities
– Simple option:  match square windows around the point
– State of the art approach:  SIFT

• David Lowe, UBC  http://www.cs.ubc.ca/~lowe/keypoints/

?

Feature descriptors

http://www.cs.ubc.ca/~lowe/keypoints/


Invariance vs. discriminability

• Invariance:
– Descriptor shouldn’t change even if image is transformed

• Discriminability:
– Descriptor should be highly unique for each point



Image transformations revisited
• Geometric

Rotation

Scale

• Photometric
Intensity change



Invariant descriptors

• We looked at invariant / equivariant detectors

• Most feature descriptors are also designed to be 
invariant to: 
– Translation, 2D rotation, scale

• They can usually also handle
– Limited 3D rotations (SIFT works up to about 60 degrees)
– Limited affine transforms (some are fully affine invariant)
– Limited illumination/contrast changes



How to achieve invariance
Need both of the following:
1. Make sure your detector is invariant
2.  Design an invariant feature descriptor

– Simplest descriptor: a single 0
• What’s this invariant to?

– Next simplest descriptor:  a square, axis-aligned 5x5 window of pixels 
• What’s this invariant to?

– Let’s look at some better approaches…



• Find dominant orientation of the image patch
– E.g., given by xmax, the eigenvector of H corresponding to lmax (the 
larger eigenvalue)

– Or (better) simply the orientation of the (smoothed) gradient
– Rotate the patch according to this angle

Rotation invariance for feature descriptors

Figure by Matthew Brown



Take 40x40 square window around 
detected feature
– Scale to 1/5 size (using 

prefiltering)
– Rotate to horizontal
– Sample 8x8 square window 

centered at feature
– Intensity normalize the window 

by subtracting the mean, 
dividing by the standard 
deviation in the window (why?) CSE 576: Computer Vision

Multiscale Oriented PatcheS descriptor

8 pixels40 pixels

Adapted from slide by Matthew Brown



Detections at multiple scales



Basic idea:
• Take 16x16 square window around detected feature
• Compute edge orientation (angle of the gradient - 90°) for each pixel
• Throw out weak edges (threshold gradient magnitude)
• Create histogram of surviving edge orientations
• Shift the bins so that the biggest one is first

Scale Invariant Feature Transform

Adapted from slide by David Lowe

0 2p
angle histogram



SIFT descriptor
Full version

• Divide the 16x16 window into a 4x4 grid of cells (2x2 case shown below)
• Compute an orientation histogram for each cell
• 16 cells * 8 orientations = 128 dimensional descriptor

Adapted from slide by David Lowe



Properties of SIFT
Extraordinarily robust matching technique

– Can handle changes in viewpoint (up to about 60 degree out of plane rotation)
– Can handle significant changes in illumination (sometimes even day vs. night 

(below))
– Pretty fast—hard to make real-time, but can run in <1s for moderate image 

sizes
– Lots of code available



SIFT Example

sift

868 SIFT features



Other descriptors
• HOG: Histogram of Gradients (HOG)
– Dalal/Triggs
– Sliding window, pedestrian detection

• FREAK: Fast Retina Keypoint
– Perceptually motivated
– Can run in real-time; used in Visual SLAM on-device

• LIFT: Learned Invariant Feature Transform
– Learned via deep learning – along with many other recent 

features
https://arxiv.org/abs/1603.09114

https://arxiv.org/abs/1603.09114


Questions?



Summary
• Keypoint detection: repeatable and 

distinctive
– Corners, blobs
– Harris, DoG

• Descriptors: robust and selective
– spatial histograms of orientation
– SIFT and variants are typically good for 

stitching and recognition
– But, need not stick to one



Which features match?



Feature matching
Given a feature in I1, how to find the best match in 
I2?
1. Define distance function that compares two 

descriptors
2. Test all the features in I2, find the one with min 

distance
(can be accelerated with a nearest neighbors search 

data structure, like a kd-tree)



Feature distance
How to define the difference between two features f1, f2?

– Simple approach: L2 distance, || f1 - f2 || 
– can give small distances for ambiguous (incorrect) matches 

I1 I2

f1 f2



f1 f2f2'

Feature distance
How to define the difference between two features f1, f2?

• Better approach:  ratio distance = || f1 - f2 || / || f1 - f2’ || 
• f2 is the best SSD match to f1 in I2
• f2’ is the 2nd best SSD match to f1 in I2
• gives large values for ambiguous matches

I1 I2



• Does the SSD vs “ratio distance” change the best match to 
a given feature in image 1?

• No, but it changes the distance, and it can change the 
ordering of matches from good to bad

• After we compute a set of matches, we threshold by 
distance (that is, throw out matches with distance > 
threshold)

Feature distance



Feature matching example

58 matches (thresholded by ratio score)



Feature matching example

51 matches (thresholded by ratio score)

We’ll deal with 
outliers later



Evaluating the results
How can we measure the performance of a feature 

matcher?
50
75

200

feature distance



True/false positives

The distance threshold affects performance
– True positives = # of detected matches that survive the threshold that are correct
– False positives = # of detected matches that survive the threshold that are incorrect

50
75

200
false match

true match

feature distance

How can we measure the performance of a feature matcher?



True/false positives

Suppose we want to maximize true positives. How do we set the 
threshold? (Note: we keep all matches with distance below the 
threshold.)

50
75

200
false match

true match

feature distance

How can we measure the performance of a feature matcher?



True/false positives

Suppose we want to minimize false positives. How do we set the 
threshold? (Note: we keep all matches with distance below the 
threshold.)

50
75

200
false match

true match

feature distance

How can we measure the performance of a feature matcher?



Example

• Suppose our matcher computes 1,000 matches between 
two images
– 800 are correct matches, 200 are incorrect (according to an 

oracle that gives us ground truth matches)
– A given threshold (e.g., ratio distance = 0.6) gives us 600 correct 

matches and 100 incorrect matches that survive the threshold
– True positive rate = 600 / 800 = ¾
– False positive rate = 100 / 200 = ½



0.7

Evaluating the results

0 1

1

false positive rate

true
positive

rate

0.1

How can we measure the performance of a feature 
matcher?

recall

1 - specificity

# true positives surviving threshold
# total correct matches (positives)

# false positives surviving threshold
# total incorrect matches (negatives)
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0 1

1

false positive rate

true
positive

rate
# true positives surviving threshold
# total correct matches (positives)

0.1
# false positives surviving threshold
# total incorrect matches (negatives)

ROC curve  (“Receiver Operator Characteristic”)

How can we measure the performance of a feature 
matcher?

recall

1 - specificity

Single number: Area 
Under the Curve (AUC)

E.g. AUC = 0.87
1 is the best

Evaluating the results



ROC curves – summary

• By thresholding the match distances at different 
thresholds, we can generate sets of matches with different 
true/false positive rates

• ROC curve is generated by computing rates at a set of 
threshold values swept through the full range of possible 
thresholds

• Area under the ROC curve (AUC) summarizes the 
performance of a feature pipeline (higher AUC is better)



More on feature detection/description
http://www.robots.ox.ac.uk/~vgg/research/affine/
http://www.cs.ubc.ca/~lowe/keypoints/ 
http://www.vision.ee.ethz.ch/~surf/  

http://www.robots.ox.ac.uk/~vgg/research/affine/
http://www.cs.ubc.ca/~lowe/keypoints/
http://www.vision.ee.ethz.ch/~surf/


Lots of applications
Features are used for:

– Image alignment (e.g., mosaics)
– 3D reconstruction
– Motion tracking
– Object recognition
– Indexing and database retrieval
– Robot navigation
– … other



Object recognition (David Lowe)



3D Reconstruction

Internet Photos (“Colosseum”) Reconstructed 3D cameras and 
points



Augmented Reality



Questions?


