### **CS5670: Computer Vision** Local features & Harris corner detection



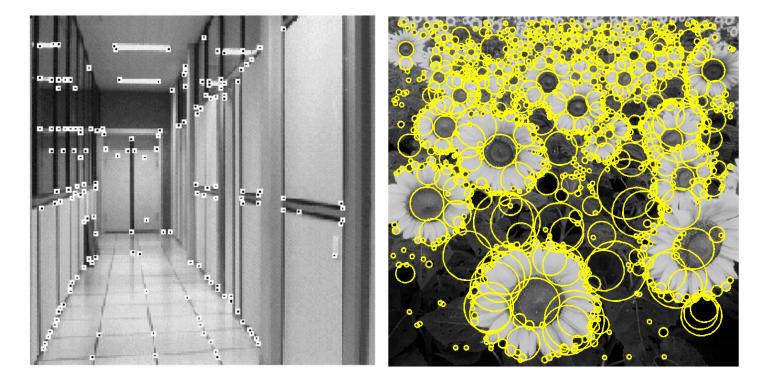
### Announcements

- Project 1 code due this Friday, February 9 at 8pm
   Turnin via Github Classroom
- Project 1 artifact due Monday, 2/12 at 8pm
- Quiz this Thursday via Canvas
- Project 2 will be released next Tuesday

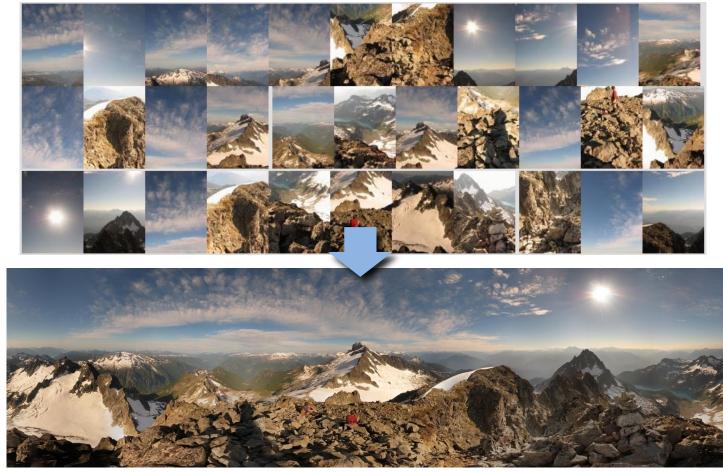
# Reading

• Szeliski: 7.1

# **Today: Feature extraction—Corners and blobs**



# **Motivation: Automatic panoramas**



Credit: Matt Brown

### **Panorama stitching**



#### Panorama captured by Perseverence Rover, Feb. 20, 2021

https://www.space.com/nasa-perseverance-rover-first-panorama-mars

### **Motivation: Automatic panoramas**



GigaPan: <u>http://gigapan.com/</u>

Also see Google Zoom Views:

https://www.google.com/culturalinstitute/beta/project/gigapixels

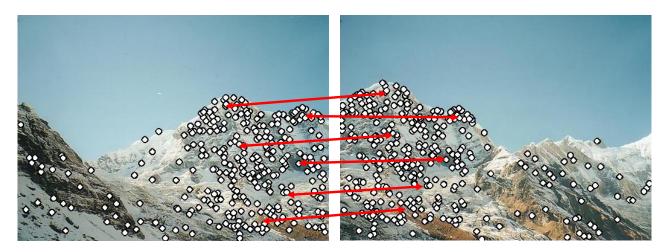
# Why extract features?

- Motivation: panorama stitching
  - We have two images how do we combine them?



# Why extract features?

- Motivation: panorama stitching
  - We have two images how do we combine them?



Step 1: extract features Step 2: match features

# Why extract features?

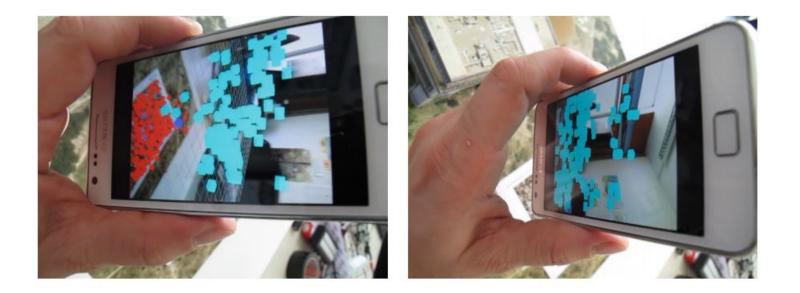
- Motivation: panorama stitching
  - We have two images how do we combine them?



Step 1: extract features Step 2: match features Step 3: align images

# **Application: Visual SLAM**

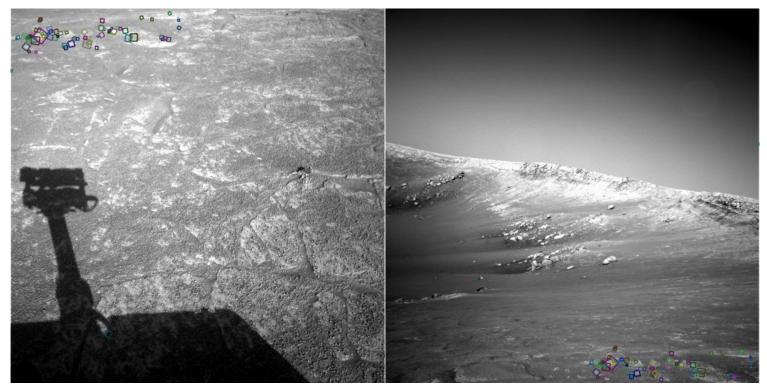
• (aka Simultaneous Localization and Mapping)



### **Do these images overlap?**

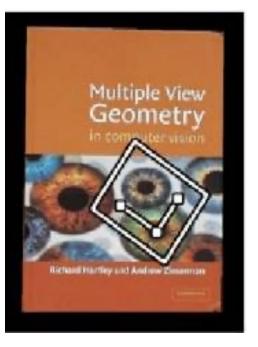


# **Answer below** (look for tiny colored squares...)



NASA Mars Rover images with SIFT feature matches

### Feature matching for object search





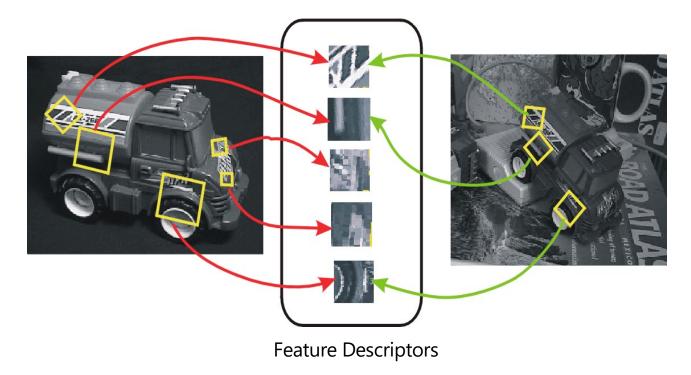
### **Feature matching**



# **Invariant local features**

Find features that are invariant to transformations

- geometric invariance: translation, rotation, scale
- photometric invariance: brightness, exposure, ...



# **Advantages of local features**

Locality

- features are local, so robust to occlusion and clutter

Quantity

hundreds or thousands in a single image

Distinctiveness:

- can differentiate a large database of objects

Efficiency

real-time performance achievable

# More motivation...

#### Feature points are used for:

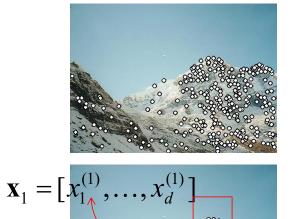
- Image alignment (e.g., mosaics)
- 3D reconstruction
- Motion tracking (e.g. for AR)
- Object recognition
- Image retrieval
- Robot/car navigation
- ... other

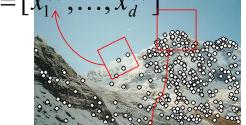


### Local features: main components

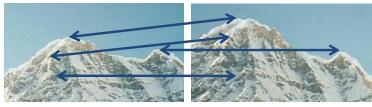
**1) Detection**: Identify the interest points

- 2) **Description**: Extract vector feature descriptor surrounding each interest point
- 3) Matching: Determine correspondence between descriptors in two views





$$\mathbf{x}_{2}^{\mathbf{\vee}} = [x_{1}^{(2)}, \dots, x_{d}^{(2)}]$$



Credit: Kristen Grauman



# Want uniqueness

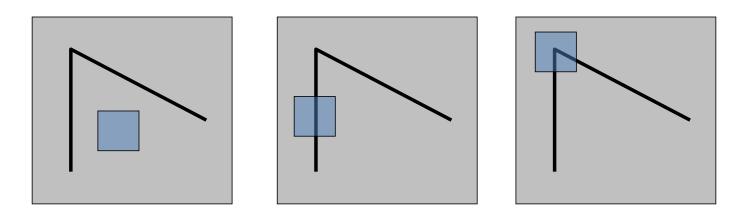
Look for image regions that are unusual – Lead to unambiguous matches in other images

How to define "unusual"?

# Local measures of uniqueness

Suppose we only consider a small window of pixels

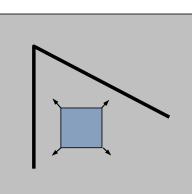
- What defines whether a feature is a good or bad candidate?



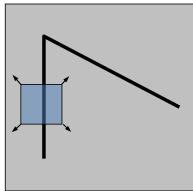
Credit: S. Seitz, D. Frolova, D. Simakov

# Local measures of uniqueness

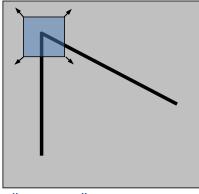
- How does the window change when you shift it?
- Shifting the window in any direction causes a big change



"flat" region: no change in all directions



"edge": no change along the edge direction



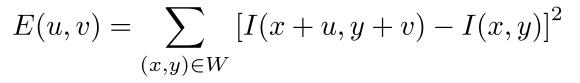
"corner": significant change in all directions

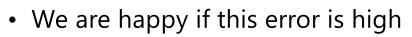
Credit: S. Seitz, D. Frolova, D. Simakov

# Harris corner detection: the math

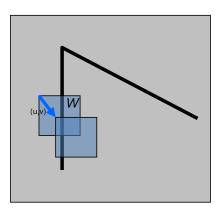
Consider shifting the window W by (u,v)

- how do the pixels in W change?
- compare each pixel before and after by summing up the squared differences (SSD)
- this defines an SSD "error" *E*(*u*,*v*):





- We are very happy if this error is high *for all offsets* (*u*,*v*)
- Slow to compute exactly for each pixel and each offset (*u*,*v*)



Chris Harris and Mike Stephens (1988). "A Combine Corner and Edge Detector". *Alvey Vision Conference* 

### **Small motion assumption**

Taylor Series expansion of *I*:

$$I(x+u, y+v) = I(x, y) + \frac{\partial I}{\partial x}u + \frac{\partial I}{\partial y}v + \text{higher order terms}$$

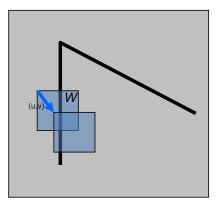
If the motion (u, v) is small, then first order approximation is good

$$I(x + u, y + v) \approx I(x, y) + \frac{\partial I}{\partial x}u + \frac{\partial I}{\partial y}v$$
$$\approx I(x, y) + [I_x \ I_y] \begin{bmatrix} u\\v \end{bmatrix}$$
shorthand:  $I_x = \frac{\partial I}{\partial x}$ 

Plugging this into the formula on the previous slide...

Consider shifting the window W by (u, v)

• define an SSD "error" *E(u,v)*:



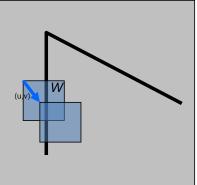
$$E(u, v) = \sum_{\substack{(x,y) \in W \\ (x,y) \in W}} [I(x+u, y+v) - I(x,y)]^2$$
  
$$\approx \sum_{\substack{(x,y) \in W \\ (x,y) \in W}} [I(x,y) + I_x u + I_y v - I(x,y)]^2$$

Consider shifting the window W by (u,v)

• define an SSD "error" *E(u,v)*:

$$E(u,v) \approx \sum_{\substack{(x,y) \in W}} [I_x u + I_y v]^2$$
$$\approx Au^2 + 2Buv + Cv^2$$
$$A = \sum_{\substack{(x,y) \in W}} I_x^2 \quad B = \sum_{\substack{(x,y) \in W}} I_x I_y \quad C = \sum_{\substack{(x,y) \in W}} [I_x I_y - C] = \sum_{\substack{(x,y) \in W}} [I_x I_y - C]$$

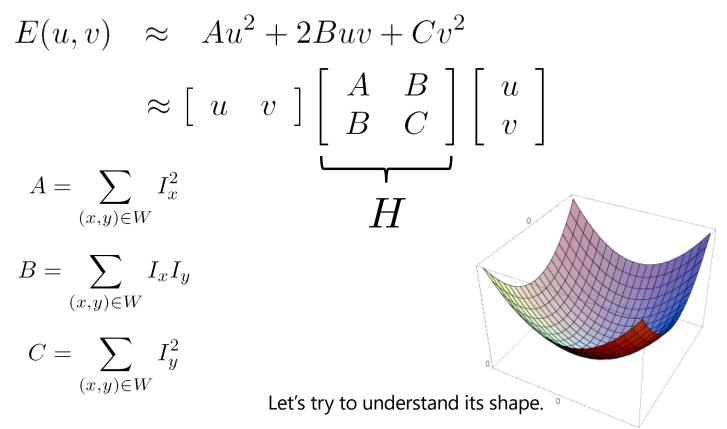
• Thus, E(u,v) is locally approximated as a quadratic error function

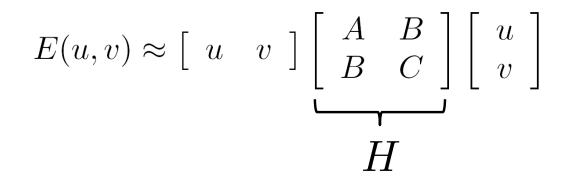


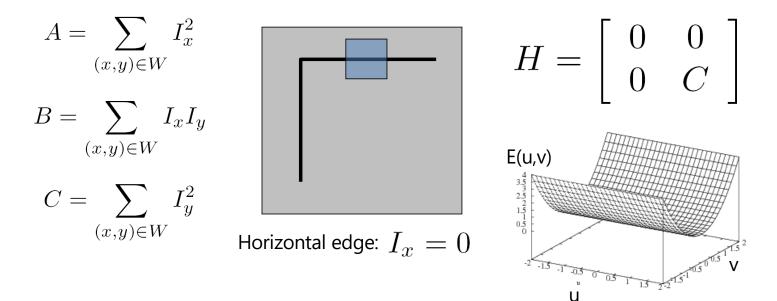
 $I_y^2$ 

### The second moment matrix

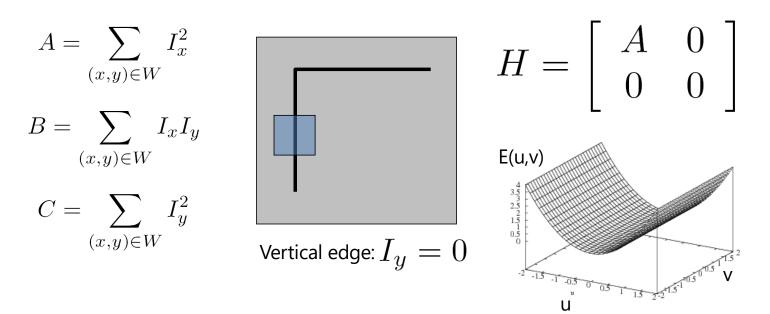
The surface E(u,v) is locally approximated by a quadratic form.





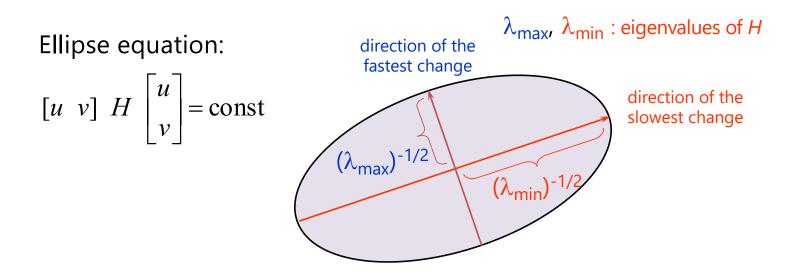


$$E(u,v) \approx \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} A & B \\ B & C \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}$$
$$H$$



### **General case**

We can visualize *H* as an ellipse with axis lengths determined by the *eigenvalues* of *H* and orientation determined by the *eigenvectors* of *H* 



# **Quick eigenvalue/eigenvector review**

The **eigenvectors** of a matrix **A** are the vectors **x** that satisfy:

$$Ax = \lambda x$$

The scalar  $\lambda$  is the **eigenvalue** corresponding to **x** 

- The eigenvalues are found by solving:

$$det(A - \lambda I) = 0$$

- In our case,  $\mathbf{A} = \mathbf{H}$  is a 2x2 matrix, so we have

$$det \left[ \begin{array}{cc} h_{11} - \lambda & h_{12} \\ h_{21} & h_{22} - \lambda \end{array} \right] = 0$$

- The solution:

$$\lambda_{\pm} = \frac{1}{2} \left[ (h_{11} + h_{22}) \pm \sqrt{4h_{12}h_{21} + (h_{11} - h_{22})^2} \right]$$

Once you know  $\lambda$ , you find **x** by solving

$$\begin{bmatrix} h_{11} - \lambda & h_{12} \\ h_{21} & h_{22} - \lambda \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = 0$$

$$E(u, v) \approx \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} A & B \\ B & C \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}$$

$$Hx_{\max} = \lambda_{\max}x_{\max}$$

$$Hx_{\min} = \lambda_{\min}x_{\min}$$

Eigenvalues and eigenvectors of H

- Define shift directions with the smallest and largest change in error
- x<sub>max</sub> = direction of largest increase in *E*
- $\lambda_{max}$  = amount of increase in direction  $x_{max}$
- x<sub>min</sub> = direction of smallest increase in *E*
- $\lambda_{min}$  = amount of increase in direction  $x_{min}$

How are  $\lambda_{max}$ ,  $x_{max}$ ,  $\lambda_{min}$ , and  $x_{min}$  relevant for feature detection?

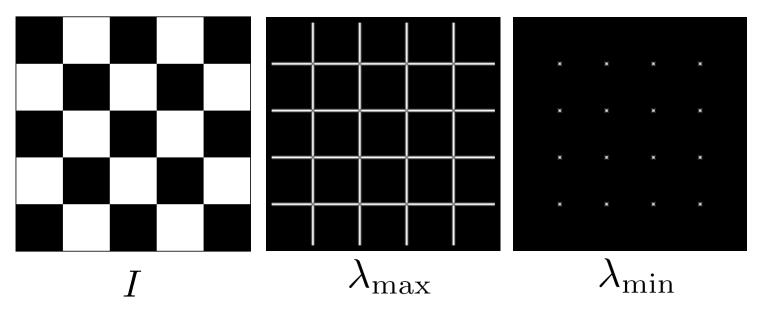
• What's our feature scoring function?

How are  $\lambda_{\text{max}}$   $x_{\text{max}}$  ,  $\lambda_{\text{min}}$  and  $x_{\text{min}}$  relevant for feature detection?

• What's our feature scoring function?

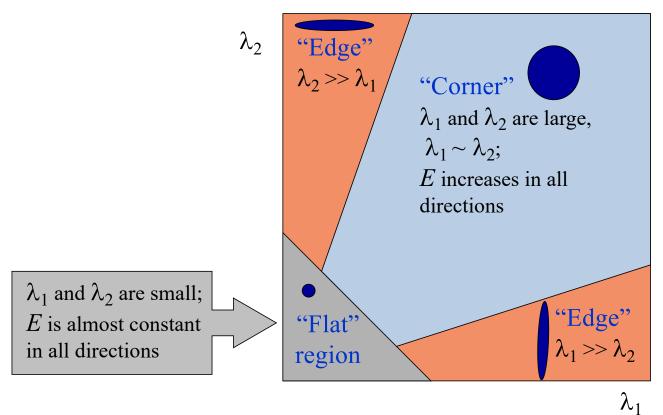
Want E(u,v) to be large for small shifts in all directions

- the minimum of E(u,v) should be large, over all unit vectors [u v]
- this minimum is given by the smaller eigenvalue ( $\lambda_{min}$ ) of H



# **Interpreting the eigenvalues**

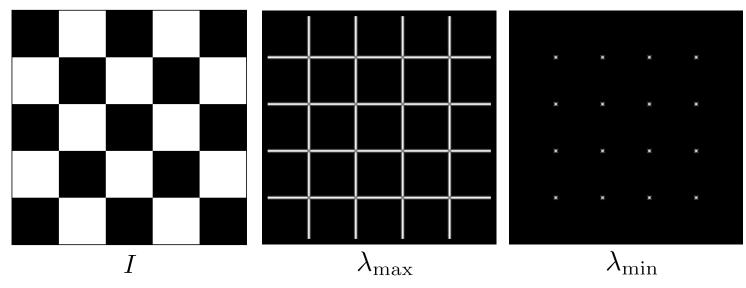
Classification of image points using eigenvalues of M:



# **Corner detection summary**

#### Here's what you do:

- Compute the gradient at each point in the image
- For each pixel:
  - Create the *H* matrix from nearby gradient values
  - Compute the eigenvalues.
  - Find points with large response ( $\lambda_{min}$  > threshold)
- Choose those points where  $\lambda_{\text{min}}$  is a local maximum as features

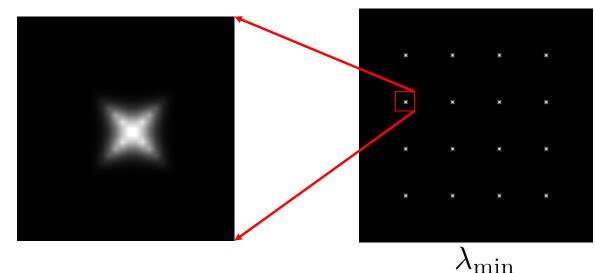


 $H = \sum_{(x,y)\in W} \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$ 

# **Corner detection summary**

#### Here's what you do:

- Compute the gradient at each point in the image
- For each pixel:
  - Create the *H* matrix from nearby gradient values
  - Compute the eigenvalues.
  - Find points with large response ( $\lambda_{min}$  > threshold)
- Choose those points where  $\lambda_{min}$  is a local maximum as features



#### **The Harris operator**

 $\lambda_{\text{min}}$  is a variant of the "Harris operator" for feature detection

$$f = \frac{\lambda_1 \lambda_2}{\lambda_1 + \lambda_2}$$
$$= \frac{determinant(H)}{trace(H)}$$

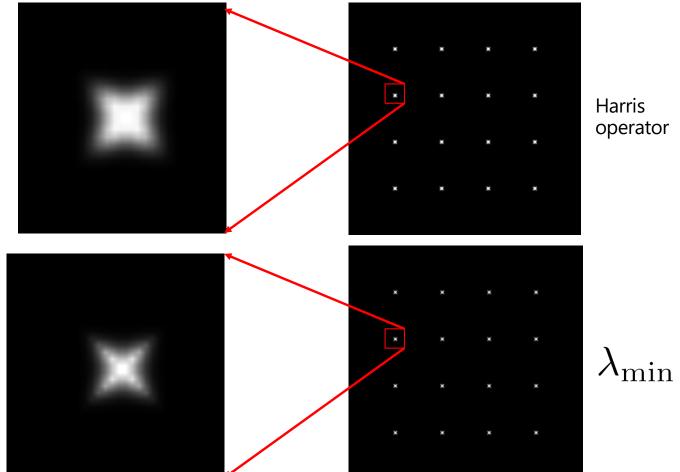
- The *trace* is the sum of the diagonals, i.e.,  $trace(H) = h_{11} + h_{22}$
- Very similar to  $\lambda_{min}$  but less expensive (no square root)
- Called the Harris Corner Detector or Harris Operator
- Lots of other detectors, this is one of the most popular

### **Alternate Harris operator**

• For Project 2, you will use an alternate definition of the Harris operator:

$$R=\lambda_1\lambda_2-k\cdot(\lambda_1+\lambda_2)^2=\det(M)-k\cdot\mathrm{tr}(M)^2$$

## The Harris operator

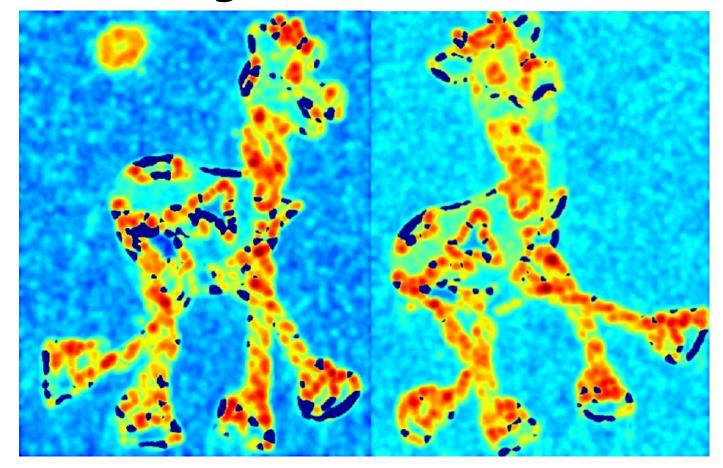


Harris operator

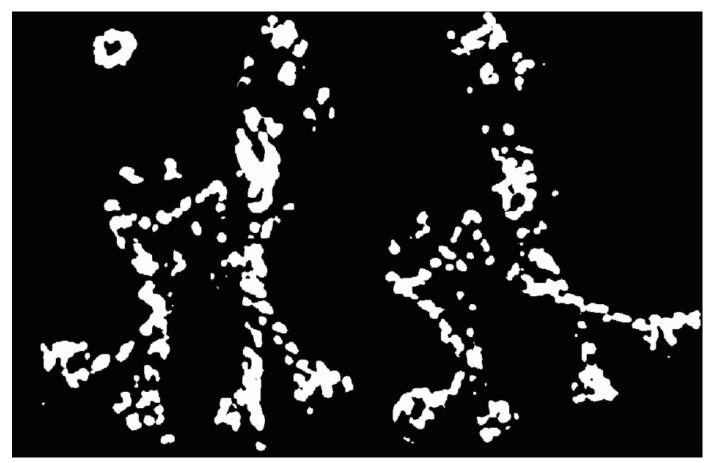
### Harris detector example



## f value (red high, blue low)



## Threshold (f > value)



### Find local maxima of f (non-max suppression)

- \* .

. .

### Harris features (in red)



## Weighting the derivatives

• In practice, using a simple window W doesn't work too well $H = \sum_{(x,y)\in W} \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$ 

• Instead, we'll weight each derivative value based on its distance  $H = \sum_{(x,y)\in W} w_{x,y} \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$ 

 $w_{x,y}$ 

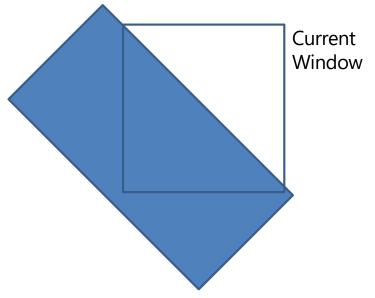
## Harris Detector – Recap [Harris88]

#### 0. Input image Second moment matrix $\mu(\sigma_I, \sigma_D) = g(\sigma_I) * \begin{bmatrix} I_x^2(\sigma_D) & I_x I_y(\sigma_D) \\ I_x I_y(\sigma_D) & I_y^2(\sigma_D) \end{bmatrix}$ 1. Image derivatives 2. Square of derivatives $\det M = \lambda_1 \lambda_2$ trace $M = \lambda_1 + \lambda_2$ 3. Gaussian filter $g(s_l)$ 4. Cornerness function – both eigenvalues are strong 5. Non-maxima suppression har

48

# Harris Corners – Why so complicated?

- Can't we just check for regions with lots of gradients in the x and y directions?
  - No! A diagonal line would satisfy that criteria



### **Questions?**