CS5670: Computer Vision

Training Deep Networks

Image credit: https://blog.imarticus.org/what-are-some-tips-and-tricks-for-

training-deep-neural-networks/

Some content adapted from material from
Andrej Karpathy, Sean Bell, Kavita Bala, and

https://blog.imarticus.org/what-are-some-tips-and-tricks-for-training-deep-neural-networks/
https://blog.imarticus.org/what-are-some-tips-and-tricks-for-training-deep-neural-networks/

Announcements

* Project 5 (Neural Radiance Fields) due Weds, May 3 by
8pm

* In class final on May 9
— Open book, open note

» Course evaluations are open starting Monday, May 1
— We would love your feedback!

— Small amount of extra credit for filling out

» What you write is still anonymous, instructors only see whether
students filled it out

— Link coming soon

Readings

 Convolutional neural networks
— Szeliski (2nd Edition) Chapter 5.4

* Neural Rendering
— Szeliski (2nd Edition) Chapter 14.6

 Best practices for training CNNs
— http://cs231n.github.io/neural-networks-2/
— http://cs231n.github.io/neural-networks-3/

http://cs231n.github.io/neural-networks-2/
http://cs231n.github.io/neural-networks-3/

NeRF Recap

NeRF: Summary

* Represent the scene as volumetric colored “fog”

» Store the fog color and density at each point as an MLP
mapping 3D position (x, y, z) to color ¢ and density o

» Render image by shooting a ray through the fog for each
pixel and accumulating a color

* Optimize MLP parameters by rendering to a set of known
viewpoints and comparing to ground truth images

 Can think of this as a learning problem where we train to
reproduce the known images, and generalize to new
views

NeRF Results

Extension: view-dependent neural
field

MLP

(o)
=
o

O

O
c
Q

©
c
o
b=
(%]
O
a

3D point
Include the ray direction in
‘ the input to the MLP
allows for capturing and
rendering view-dependent

effects (e.g., shiny surfaces)

NeRF encodes convincing view-dependent

effects using directional dependence

v ; - 7. o - : »__‘) 7‘ 7=

A Y o\ Y

- A
L)

- \ /s 4 q N /
————cTE— TR ’ ——————————— - £L ¢
e ————————— 5 -~ —

=N = : i

—
ey

Adapted from material from Pratul Sriniva

NeRF encodes convincing view-dependent
effects using directional dependence

Adapted from material from Pratul Sriniva

NeRF encodes detailed scene geometry
with occlusion effects

- - . T

Adapted from material from Pratul Sriniva

NeRF encodes detailed scene geometry

Adapted from material from Pratul Sriniva

Extension: Mip-NeRF 360

Mip-NeRF 360: Unbounded Anti-Aliased Neural Radiance Fields
Jonathan T. Barron, Ben Mildenhall, Dor Verbin, Pratul P. Srinivasan, and Peter Hedman,
CVPR 2022

https://jonbarron.info/mipnerf360/

Extension: NeRF in the Wild (NeRF-W)

Brandenburg Sacre Coeur Trevi Fountain

Gate
Martin-Brualla*, Radwan*, Sajjadi*, Barron, Dosovitskiy, Duckworth.

NeRF (n the Wild. CVPR 2021.
https:.//www.youtube.com/watch?v=mRAKVQJ5LRA

https://www.youtube.com/watch?v=mRAKVQj5LRA

Inverse graphics beyond shape and color

Reconstructed models inserted into scene with new lighting

Input images of
an object

Reconstructed shape,

albedo, and materials
Zhang, Luan, Li, Snavely. CVPR

Questions?

Deep networks can be used for...

Image classification View synthesis

f(E) = “apple”
f(Rl) = “tomato”

f(B&) = “cow"

And much more!

A Recent Example: Segment Anything

Segment Anything

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura
Gustafson, Tete Xiao, Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr
Dollar, Ross Girshick

https://segment-anything.com/

Back to convolutional neural networks

Inp

Layer types: \

224

» Convolutional layer ;

» Pooling layer

* Fully-connected layer | *\|

ut

CONV1

55

)

55~ |

55

96

Max
pooling

CONV2

256

SRy
27 3 ¥

Max
pooling

FC6 FC7 FC8

Dense Dense

CONV3 CONV4 CONV5
13 13 13
3 A 3 R
C |13 . 13 . C |13
3 3
384 384 256
Max
pooling

|:| |:| Dense
1000

4096 4096

| | |

Input
image
(RGB) Stride
of 4
I
Image input

5 Convolution layers

3 Fully-connected
layers

Training a network

* Given a network architecture (CNN, MLP etc) and some
training data, how do we actually set the weights of the
network?

Gradient descent: iteratively follow the
slope

20 Surface plot

4
40 "_W
e

----- epochs: 0

https://laptrinhx.com/gradient-descent-animation-2-multiple-linear-regression-3070246823/

https://laptrinhx.com/gradient-descent-animation-2-multiple-linear-regression-3070246823/

Stochastic gradient descent (SGD)

« Computing the exact gradient over the training set is
expensive

 Train on batches of data (e.g., 32 images or 32 rays) at a time

* A full pass through the dataset (i.e., using batches that cover
the training data) is called an epoch

 Usually need to train for multiple epochs, i.e., multiple full
passes through the dataset to converge

 Stochastic gradient descent only approximates the true
gradient, but works remarkably well in practice

» Use backpropagation to automatically compute gradients on
each batch

How do you actually train these things?

Roughly speaking:

Gather Find a ConvNet Minimize
labeled data architecture the loss
AR L e P ST E e Ef—;ﬁ
F e o AE e w1 S5
PEEENETDe s SR E o Fo- B
~mIJeaEEc=Al FemEt b -
-'.-‘ﬁ(,g---- fcnaoon;m Vﬂ c.m?;@’ E;EE
e] LT i E—
BloiEmncme (k<R wdm 3
—- | Dickeybird vl B EA R
s T T I R Egggé
B e Iy - Y %P4 : = BN -
mis o s T o z
A/ RSTS ORI 1S & = prT+
fEEraE « 8. 9m | WS v e "2z
=
=]
=
=

But lots of details to get right!

Training a convolutional neural network

 Split and preprocess your data

» Choose your network architecture

* Initialize your network weights

* Find a learning rate and reqularization weight
* Minimize the loss and monitor progress
 Fiddle with knobs...

Why so complicated?

* Training deep networks can be finicky — lots of parameters
to learn, complex, non-linear optimization function

What makes training deep networks hard?

* It's easy to get high training
accuracy:

 Use a huge, fully connected
network with tons of layers

* Let it memorize your training data

QOOOOO
QOOOOO
QOOOOO

This would be an

* It's harder to get high test
example of overfitting

accuracy

— QOO0 ()
— OOOC0O00

Related Question: Why Convolutional Layers?

* A fully connected layer can
generally represent the same
functions as a convolutional one

 Think of the convolutional layer as
a version of the FC layer with
constraints on parameters

* What is the advantage of CNNs?

Q. QO ())
OOO0O00

Convolutional Layer Fully Connected Layer

Overfitting: More Parameters, More Problems

* Non-Deep Example: consider the function %+
* Let's take some noisy samples of the function...

Ground Truth

120 A

100 A

80 A

60 -

40 A

20 A

-15 -10 -5

Noisy Samples

120 -
100 -
80 A
60 ¢
40 4

20 A L

10

15

Overfitting: More Parameters, More Problems

N
» Now lets fit a polynomial to our samples of the form Py(z) =) 2"p,
k=0

Poly Fit Degree 1 Poly Fit Degree 2 Poly Fit Degree 3 Poly Fit Degree 5
120 120 120
100 A 100 A 100 4
80 1 80 ~ 80 ~
. °
60 ° 60 - 60 -
40 1 40 40 +
20 A 20 A 20 A
01 0 1 0 1
-15 -10 -5 0 5 10 15 -15 15 -15 -10 -5 0 5 10 15 -15 -10 -5 0 5 10
Poly Fit Degree 7 Poly Fit Degree 9 Poly Fit Degree 11 Poly Fit Degree 13
120 A 120 A 20 120 A
100 100 + 30 1 100
80 1 80 - 30 4 80 1
[
60 60 50 1 60 ¢ It
40 A 40 A 10 4 40
)
20 1 20 A 20 4 20 1
0 A 0 A 0 0
-15 -10 -5 0 5 10 15 -15 15 -15 -10 10 15 -15 -10 -5 0 5 10

Overfitting: More Parameters, More Problems

* A model with more parameters can
represent more functions

N
+ Eg.:if Py(z) =) a"p; Rhen P
k=0

* More parameters will often reduce training
error but increase testing error. This is
overfitting.

* When overfitting happens, models do not
generalize well

120 A

100 A

80

60 -

40 A

20 A

O_

Degree 2 Fit

-15

120 A

100 A

80 A

60

40 A

20 1

15

Degree 15 Fit

-15

-10

10

15

Deep Learning: More Parameters, More Problems?

* More parameters let us represent a
larger space of functions

* The larger that space is, the harder
our optimization becomes

 This means we need:

« More data
« More compute resources

Q. QO ())
OOO0O00

* Etc. Convolutional Layer Fully Connected Layer

Deep Learning: More Parameters, More Problems?

A convolutional layer
looks for components

of a function that are \

S patla l |Y‘ Invariant Convolutional Layer Fully Connected Layer

Q. QO ())
OOO0O00

Overfitting in view synthesis

* What happens if you directly optimize an MPI to reconstruct a small
set of input views?

Overfitting in view synthesis

» Answer: you can exactly reconstruct the input views, but produce
garbage for new views

Overfitting in view synthesis

« Reminiscent of shadow sculptures

Anamorphic Star Wars Shadow Art by Red Hong Yi, via

TKSCT

https://thekidshouldseethis.com/post/anamorphic-star-wars-shadow-art-by-red-hong-yi

Overfitting in view synthesis

SHADOW ART
Niloy J. Mitra, Mark Pauly
ACM SIGGRAPH Asia 2009

https://graphics.stanford.edu/~niloy/research/shadowArt/shadowArt_sigA_09.html

Overfitting in view sythesis

* MPI with 64 layers, each storing a 1024 x 768 RGBA image - ~200M
parameters

* If we have 32 input RGB images of 1024x768 resolution - ~75M
Inputs

 Many more parameters than measurements - risk of overfitting

* Compare to NeRF: ~500K - TM parameters

How to Avoid Overfitting: Regularization

* In general:
* More parameters means higher risk of overfitting
* More constraints/conditions on parameters can help

* If a model is overfitting, we can
* Collect more data to train on

. i‘?egu{arize: add some additional information or assumptions to better constrain
earning

 Regularization can be done through:
the design of architecture

the choice of loss function

the preparation of data

Regularization: Architecture Choice

» "Bigger” architectures (typically,
those with more parameters) tend
to be more at risk of overfitting.

Convolutional
Layer

Q. QO ())
OOO0O00

Fully Connected Layer

Regularization reduces overfitting

I
L= Lyt Le, Ly, = ﬂ—HWHi

data

A =0.001 A =0.01

[Andrej Karpathy http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html]

(1) Data proprocessing

Preprocess the data so that learning is better conditioned:

original data zero-centered data normalized data
. A
. - 0
! :
B s 19 5% -5 0 5 19 155 -5 0 5 10
X -= np.mean(axis=0, keepdims=True)

X /= np.std(axis=0, keepdims=True)

Figure: Andrej Karpathy

(1) Data proprocessing

1
: L
-

An input image (256x256) Minus sign The mean input image

In practice, often perform a single mean RGB value, and divide by a
per-channel standard deviation (recall MOPS, Normalized 8-Point
Algorithm)

(1) Data proprocessing

Data loading code
if args.dummy:

print("=> Dummy data is used!")

train_dataset = datasets.FakeData(1281167, (3, 224, 224), 1000, transforms.ToTensor())

val dataset = datasets.FakeData(50000, (3, 224, 224), 1000, transforms.ToTensor())
else:

traindir = os.path.join(args.data, 'train')

valdir = os.path.join(args.data, 'val')

normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],

std=[0.229, ©0.224, 0.225])

train_dataset = datasets.ImageFolder(
traindir,
transforms.Compose([

transforms.RandomResizedCrop(224),

Batch normalization

 Side note — can also perform normalization after each
layer of the network to stabilize network training (“batch
normalization”)

(1) Data preprocessing

Augment the data — extract random crops from the
input, with slightly jittered offsets. Without this, typical
ConvNets (e.qg. [Krizhevsky 2012]) overfit the data.

E.g. 224x224 patches
extracted from 256x256 images

Randomly retlect horizontally

Perform the augmentation live
during training

Figure: Alex Krizhevsky

Choose your architecture

@ A Neural Network Playgr % Neglh
< C' @ Secure https://playground.tensorflow.org/#activation=tanh&batchSize=10&dataset=circle®Dataset=reg-plane&learningRate=0... v¢r [& ?g
O Epoch Learning rate Activation Regularization Regularization rate Problem type
4
000,000 0.03 Tanh None 0 Classification
DATA FEATURES + — 2 HIDDEN LAYERS OUTPUT
Which dataset do Which properties Test loss 0.507
you want to use? do you want to Training loss 0.504
feed in? A= A —
4 neurons 2 neurons
X4
X,
Ratio of training to
ol L]

test data: 50%
—e The outputs are

mixed with varying
weights, shown

Noise: 0 by the thickness of
. the lines.
#

Batch size: 10 This is the output

—o from one neuron
Hover to see it 0
larger.

REGENERATE o

Colors shows -

data, neuron and ! !
" weight values. '

https://playground.tensorflow.org/

https://playground.tensorflow.org/

Very common modern choice

(2) Choose your architecture for classification problems

/

“AlexNet” “GoogLeNet” “VGG Net”

B e 2 = —
. ¥ jJ,u;L LJ 2 conv-64

TEERY “7 &
g / _ = maxpoct
PP P 2 C E;fl i conv-128

e ==
UJ l J e ot h conv-128
. . &J‘/V L o z maxpool
i 4%—7 g oo = Z A conv-256
. V'l EEEE conv-256
i@v 1L ? = E = maxpool
Ee—g Py - g g 2 i conv-512
J . . conv-512
Lol | L] = E: = maxpool
= 1 EE i bw
-y E o S e e conv-512
5 a ;’ conv-512
3 L et maxpool
(]
B FC-4096
= e:_.;a = FC-4096
FC-1000
: softmax
[Krizhevsky et al. NIPS 2012] [Szegedy et al. CVPR 2015] [Simonyan & Zisserman,

ICLR 2015]

(3) Initialize your weights

Set the weights to small random numbers:

W = np.random.randn(D, H) * 0.001

(matrix of small random numbers drawn from a Gaussian distribution)

Set the bias to zero (or small nonzero):

b = np.zeros(H)

(if you use RelU activations, folks tend to initialize bias to small positive number)
Slide: Andrej Karpathy

(4) Overfit a small portion of the data

model = init two layer model(32*32*%3, 50, 10) # input si

trainer = ClassifierTrainer()

X tiny = X train[:20] # take 20 example h

y tiny = y train[:20]

best model, stats = trainer.train(X tiny, y tiny, X tiny, y tiny,
model, two layer net,
num epochs=200, reg=0.0,
update='sqgd', learning rate decay=1,
sample batches = False,
learning rate=le-3, verbose=True)

The above code:
- take the first 20 examples from
CIFAR-10
- turn off regularization (reg = 0.0)
- use simple vanilla ‘sgd’

(4) Overfit a small portion of the data

model = init two layer model(32%32*3, 50, 10) # input
trainer = ClassifierTrainer()

X tiny = X train[:20] # take 20 example _

y tiny = y train[:20]

best model, stats = trainer.train(X tiny, y tiny, X tiny, y tiny,
model, two layer net,
num epochs=200, reg=0.0,
update='sqgd', learning rate decay=1,
sample batches = False,
learning rate=le-3, verbose=True)

Details:

'sgd’: vanilla gradient descent (no momentum etc)
learning_rate_decay = 1: constant learning rate
sample_batches = False (full gradient descent, no batches)

epochs = 200: number of passes through the data
Slide: Andrej Karpathy

(4) Overfit a small portion of the data

100% accuracy on the training set (good)

Finished epoch 1 / 200: cost 2.302603, train: ©0.400000, val 0.400000, lr 1.000000e-03

Finished epoch 2 / 200: cost 2.302258, train: 0.450000, val 0.450000, lr 1.000000e-03

Finished epoch 3 / 200: cost 2.301849, train: 0.600000, val 0.600000, lr 1.000000e-03

Finished epoch 4 / 200: cost 2.301196, train: 0.650000, val 0.650000, lr 1.000000e-03

Finished epoch 5 / 200: cost 2.300044, train: 0.650000, val ©0.650000, lr 1.000000e-03

Finished epoch 6 / 200: cost 2.297864, train: 0.550000, val 0.550000, lr 1.000000e-03

Finished epoch 7 / 200: cost 2.293595, train: 0.600000, val 0.600000, lr 1.000000e-03

Finished epoch 8 / 200: cost 2.285096, train: 0.550000, val 0.550000, lr 1.000000e-03

Finished epoch 9 / 200: cost 2.268094, train: 0.550000, val 0.550000, lr 1.000000e-03

Finished epoch 10 / 200: cost 2.234787, train: 0.500000, val ©.500000, lr 1.000000e-03

Finished epoch 11 / 200: cost 2.173187, train: 0.500000, val 0.500000, lr 1.000000e-03

Finished epoch 12 / 200: cost 2.076862, train: 0.500000, val ©0.500000, lr 1.000000e-03

Finished epoch 13 / 200: cost 1.974090, train: 0.400000, val 0.400000, lr 1.000000e-03

Finished epoch 14 / 200: cost 1.895885, train: 0.400000, val ©.400000, lr 1.000000e-03

Finished epoch 15 / 200: cost 1.820876, train: 0.450000, val 0.450000, lr 1.000000e-03

Finished epoch 16 / 200: cost 1.737430, train: 0.450000, val 0.450000, lr 1.000000e-03

Finished epoch 17 / 200: cost 1.642356, train: 0.500000, val ©0.500000, lr 1.000000e-03

Finished epoch 18 / 200: cost 1.535239, train: 0.600000, val ©.600000, lr 1.000000e-03

Finished epoch 19 / 200: cost 1.421527, train: 0.600000, val ©0.600000, lr 1.000000e-03 .
Finished epoch 195 / 200: cost ©0.002694, train:]1.000000j§ val 1.000000, lr 1.000000e-03
Finished epoch 196 / 200: cost 0.002674, train:]1.000000] val 1.000000, 1lr 1.000000e-03
Finished epoch 197 / 200: cost 0.002655, train:]1.000000] val 1.000000, 1lr 1.000000e-03
Finished epoch 198 / 200: cost ©.002635, train:|1.000000) val 1.000000, lr 1.000000e-03
Finished epoch 199 / 200: cost 0.002617, train:]1.000000] val 1.000000, 1lr 1.000000e-03
Finished epoch 200 / 200: cost 0.002597, train:]1.000000j§ val 1.000000, lr 1.000000e-03
finished optimization. best validation accuracy: I. DU

Slide: Andrej Karpathy

(4) Find a learning rate

low learning rate
r Q: Which one of these
high learning rate . .
learning rates is best to use?

good learning rate

Learning rate schedule

How do we change the learning rate over time?
Various choices:

e Step down by a factor of 0.1 every 50,000
mini-batches (used by SuperVision [Krizhevsky 2012])

* Decrease by a factor of 0.97 every epoch
(used by GooglLeNet [Szegedy 2014])

e Scale by sqgrt(1-t/max_t)
(used by BVLC to re-implement GooglLeNet)

 Scale by 1/
e Scale by exp(-t)

Summary of things to fiddle with

 Network architecture
e Learning rate, decay schedule, update type (+batch size)

« Regularization (L2, L1, maxnorm, dropouit, ...)

e |oss function (softmax, SVM, ...)

« Weight initialization

Neural network
parameters

Questions?

Transfer learning

“You need a lot of data if you want
to train/use CNNs for a new
classification task”

Slide credit: Fei-Fei Li, Justin Johnson, and Serena Yeur

Transfer learning

“You need a lo If you want
to train/u s for a new
1@t

claQuif on task”

Slide credit: Fei-Fei Li, Justin Johnson, and Serena Yeur

Transfer learning with CNNs

Step 1: Take a model trained on ImageNet

" Fc-1000
FC-4096
" Fc4o096

MaxPool
onv-512
onv-512

axPool
onv-512
onv-512

C
C
M
C

C

MaxPool
Conv-256
Conv-256
MaxPool
Conv-128
C

M
C
C

onv-128

axPool
onv-64
onv-64

Slide credit: Fei-Fei Li, Justin Johnson, and Serena Yeur

Transfer learning with CNNs

Step 2a: If you have a small amount of new data, adjust a
small number of network weights

| FCc-4000 | . FCC |

FC-4096 TW'\ e e e
L_Fc4006 | L_FCE® T\ “Reinitialize
| FC4096 | " FC-4096 |) .
E— E— this and train
MaxPool MaxP ool

Conv-512 Conv-512

Conv-512 Conv-512

MaxPool MaxP ool

Conv-512 Conv-512

Conv-512 Conv-512

MaxPool MaxP ool Freeze these
Conv-256 Conv-256

Conv-256 Conv-256

MaxPool MaxP ool

Conv-128 Conv-128

Conv-128 Conv-128

MaxPool MaxP ool

Conv-64 Conv-64

Conv-64 C

onv-64 j

Slide credit: Fei-Fei Li, Justin Johnson, and Serena Yeur

Transfer learning with CNNs

Step 2b: If you have a larger amount of new data, adjust a
larger number of network weights

FC-1000 FCC

TPET \™ Rainitialize +— Train these
. .
this and train

MaxPool MaxP ool MaxP ool
Conv-512 Conv-512 Conv-512 Wlth b|gger
Conv-512 Conv-512 Conveen2 dataset, train
MaxPool MaxP ool MaxP ool more Ia’yers
Conv-512 Conv-512 Conv-512
Conv-512 Conv-512 Conv-512
MaxPool MaxP ool > Freeze these MaxP ool
Conv-256 Conv-256 Conv-256 Freeze these
Conv-256 Conv-256 Conv-256
MaxPool MaxP ool MaxP ool .
Conv-128 Conv-128 Conv-128 Lower learning rate
Conv-128 Conv-128 Conv-128 when finetuning;
MaxPool MaxP ool MaxP ool 1/10 of original LR
Conv64 Conv-64 Comves is good starting
Conv-64 Conv-64 j Conv-64 J point

Slide credit: Fei-Fei Li, Justin Johnson, and Serena Yeur

very similar very different

dataset dataset
MaxPool

Conv-612
Conv-612

very little data | ? ?

MaxPool
Conv-612
Conv-612

More specific

MaxPool
Conv-256

Conv.266 More generic

MaxPool

Conv-128
Cony=125 quite a lot of ? ?

MaxPool d ata

Conv-64
Conv-64

Image

Slide credit: Fei-Fei Li, Justin Johnson, and Serena Yeur

very similar very different

dataset dataset

MaxPool
Conv-612
Conv-612

— - very little data | Use Linear ?
o a1z More specific Classifier on

Conv-612 tOp |ayer

MaxPool
Conv-256

Conv.266 More generic

MaxPool

Conv-128
Conv-izs / quite a lot of Finetune a ?

s data few layers

Conv-64
Conv-64

Image

Slide credit: Fei-Fei Li, Justin Johnson, and Serena Yeur

very similar very different
dataset dataset
MaxPool
Conv-612
;°"VP51T 3 very little data | Use Linear You'rein
Conv 512 More specific Classifier on trouble... Try
Com £12 top layer linear classifier
MaxPool .
Conv-256 from different
Conv 256 More generic stages
MaxPool
Conv-128
Cony-128 quite a lot of Finetune a Finetune a
Sones data few layers larger number
Conv-64 Of |ayerS

Slide credit: Fei-Fei Li, Justin Johnson, and Serena Yeur

Transfer learning with CNNs is pervasive

* |t's the norm, not the exception

Object Detection
(Fast R-CNN) T
— & 29
Propasal - Linear + ounding box
ot |ty | [Tour] S . - ‘Straw”

y 4 ; ; Rol pocling

| Image Captioning: CNN + RNN

“hat” END

External propusal ——— ol i v/

algorithm 4 /4

e.g. selective search v g
/’I i

ConvNet
(applied to entirz
image}

START “StFaW" Mhat"

Karpathy and Fei-F ei, "Deep Visual-Semantic Alignments for
Girshick, "Fast R-CNN", ICCV 2015 Generating Image Descriptions”, CYPR 2015
Figure copyright Ross Girshick, 2015. Reproduced with permission. Figure copyright IEEE, 2015. Reproduced for educational purposes.

Slide credit: Fei-Fei Li, Justin Johnson, and Serena Yeur

Transfer learning with CNNs is pervasive

* |t's the norm, not the exception

Object Detection -
(Fast R-CNN) — ICNN pretrained

¢+ onlmageNet
o s | [Ta] et b

Image Captioning: CNN + RNN

“straw” “hat” END

Yt

External propusal ————/
algorithm -
e.g. selective search

ConvNet
(applied to entirz
image}

START “StFaW" “hat"

Karpathy and Fei-F ei, "Deep Yisual-Semantic Alignments for
Girshick, "Fast R-CNN", ICCY 2015 Generating Image Descriptions”, CYPR 2015

Figure copyright Ross Girshick, 2015. Reproduced with permission. Figure copyright IEEE, 2015. Reproduced for educational purposes.

Slide credit; Fei-Fei Li, Justin Johnson, and Serena Yeur

Other pre-trained models are starting to
become standard

» Swin-transformer pre-trained on ImageNet-21K
« DINO features
 Foundation models (Stable Diffusion, etc)

Takeaway for your projects and beyond

Have some dataset of interest, but it
has << ~1M images?

Common modern approach:

1. Find a large dataset with similar start with a ResNet
data (e.g., ImageNet), train a large architecture pre-trained on
CNN ImageNet, and fine-tune on

2. Apply transfer learning to fine-tune |your (smaller) dataset
on your data

For step 1, many existing models exist
in “Model Zoos”

Slide credit: Fei-Fei Li, Justin Johnson, and Serena Yeur

Questions?

