
Training Deep Networks
CS5670: Computer Vision

Some content adapted from material from
Andrej Karpathy, Sean Bell, Kavita Bala, and
Abe Davis

Image credit: https://blog.imarticus.org/what-are-some-tips-and-tricks-for-
training-deep-neural-networks/

https://blog.imarticus.org/what-are-some-tips-and-tricks-for-training-deep-neural-networks/
https://blog.imarticus.org/what-are-some-tips-and-tricks-for-training-deep-neural-networks/

Announcements

• Project 5 (Neural Radiance Fields) due Weds, May 3 by
8pm

• In class final on May 9
– Open book, open note

• Course evaluations are open starting Monday, May 1
–We would love your feedback!
– Small amount of extra credit for filling out
• What you write is still anonymous, instructors only see whether

students filled it out
– Link coming soon

Readings

• Convolutional neural networks
– Szeliski (2nd Edition) Chapter 5.4

• Neural Rendering
– Szeliski (2nd Edition) Chapter 14.6

• Best practices for training CNNs
– http://cs231n.github.io/neural-networks-2/
– http://cs231n.github.io/neural-networks-3/

http://cs231n.github.io/neural-networks-2/
http://cs231n.github.io/neural-networks-3/

NeRF Recap

NeRF: Summary
• Represent the scene as volumetric colored “fog”
• Store the fog color and density at each point as an MLP

mapping 3D position (x, y, z) to color c and density σ
• Render image by shooting a ray through the fog for each

pixel and accumulating a color
• Optimize MLP parameters by rendering to a set of known

viewpoints and comparing to ground truth images
• Can think of this as a learning problem where we train to

reproduce the known images, and generalize to new
views

NeRF Results

(x, y, z, θ, ф)

𝑡!𝑡!

3D point and direction

𝐜, 𝜎
MLP

Po
sit

io
na

l
en

co
di

ng

Extension: view-dependent neural
field

Include the ray direction in
the input to the MLP
allows for capturing and
rendering view-dependent
effects (e.g., shiny surfaces)

NeRF encodes convincing view-dependent
effects using directional dependence

Adapted from material from Pratul Srinivasan

Adapted from material from Pratul Srinivasan

NeRF encodes convincing view-dependent
effects using directional dependence

NeRF encodes detailed scene geometry
with occlusion effects

Adapted from material from Pratul Srinivasan

NeRF encodes detailed scene geometry

Adapted from material from Pratul Srinivasan

Extension: Mip-NeRF 360

Mip-NeRF 360: Unbounded Anti-Aliased Neural Radiance Fields
Jonathan T. Barron, Ben Mildenhall, Dor Verbin, Pratul P. Srinivasan, and Peter Hedman,
CVPR 2022

https://jonbarron.info/mipnerf360/

Extension: NeRF in the Wild (NeRF-W)

Brandenburg
Gate

Sacre Coeur Trevi Fountain

Martin-Brualla*, Radwan*, Sajjadi*, Barron, Dosovitskiy, Duckworth.
NeRF in the Wild. CVPR 2021.
https://www.youtube.com/watch?v=mRAKVQj5LRA

https://www.youtube.com/watch?v=mRAKVQj5LRA

Inverse graphics beyond shape and color

Reconstructed models inserted into scene with new lightingInput images of
an object

Zhang, Luan, Li, Snavely. CVPR
2022.

Reconstructed shape,
albedo, and materials

Questions?

Deep networks can be used for…

Image classification View synthesis

And much more!

A Recent Example: Segment Anything

Segment Anything
Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura
Gustafson, Tete Xiao, Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr
Dollár, Ross Girshick

https://segment-anything.com/

Back to convolutional neural networks

Layer types:
• Convolutional layer
• Pooling layer
• Fully-connected layer

Training a network

• Given a network architecture (CNN, MLP, etc) and some
training data, how do we actually set the weights of the
network?

Gradient descent: iteratively follow the
slope

https://laptrinhx.com/gradient-descent-animation-2-multiple-linear-regression-3070246823/

https://laptrinhx.com/gradient-descent-animation-2-multiple-linear-regression-3070246823/

Stochastic gradient descent (SGD)
• Computing the exact gradient over the training set is

expensive
• Train on batches of data (e.g., 32 images or 32 rays) at a time
• A full pass through the dataset (i.e., using batches that cover

the training data) is called an epoch
• Usually need to train for multiple epochs, i.e., multiple full

passes through the dataset to converge
• Stochastic gradient descent only approximates the true

gradient, but works remarkably well in practice
• Use backpropagation to automatically compute gradients on

each batch

How do you actually train these things?

But lots of details to get right!

Training a convolutional neural network

• Split and preprocess your data
• Choose your network architecture
• Initialize your network weights
• Find a learning rate and regularization weight
• Minimize the loss and monitor progress
• Fiddle with knobs…

Why so complicated?

• Training deep networks can be finicky – lots of parameters
to learn, complex, non-linear optimization function

• It’s easy to get high training
accuracy:
• Use a huge, fully connected

network with tons of layers
• Let it memorize your training data

• It’s harder to get high test
accuracy

What makes training deep networks hard?

… …

This would be an
example of overfitting

• A fully connected layer can
generally represent the same
functions as a convolutional one
• Think of the convolutional layer as

a version of the FC layer with
constraints on parameters

• What is the advantage of CNNs?

Related Question: Why Convolutional Layers?

Convolutional Layer Fully Connected Layer

Overfitting: More Parameters, More Problems

• Non-Deep Example: consider the function
• Let’s take some noisy samples of the function…

Overfitting: More Parameters, More Problems

• Now lets fit a polynomial to our samples of the form

• A model with more parameters can
represent more functions

• E.g.,: if then

• More parameters will often reduce training
error but increase testing error. This is
overfitting.

• When overfitting happens, models do not
generalize well

Overfitting: More Parameters, More Problems

P2 2 P15

<latexit sha1_base64="6BBEXEAhguQ3G68yFwsayvpJ/XE=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKix6LXjxGsB/QhrDZbtqlm026uymU0N/hxYMiXv0x3vw3btsctPXBwOO9GWbmBQlnStv2t1XY2t7Z3Svulw4Oj45PyqdnbRWnktAWiXksuwFWlDNBW5ppTruJpDgKOO0E4/uF35lSqVgsnvQsoV6Eh4KFjGBtJM/1a30mkOtnTmPulyt21V4CbRInJxXI4frlr/4gJmlEhSYcK9Vz7ER7GZaaEU7npX6qaILJGA9pz1CBI6q8bHn0HF0ZZYDCWJoSGi3V3xMZjpSaRYHpjLAeqXVvIf7n9VId3noZE0mqqSCrRWHKkY7RIgE0YJISzWeGYCKZuRWREZaYaJNTyYTgrL+8Sdq1qlOvNh7rleZdHkcRLuASrsGBG2jCA7jQAgITeIZXeLOm1ov1bn2sWgtWPnMOf2B9/gB6RJFF</latexit>

Degree 2 Fit

Degree 15 Fit

• More parameters let us represent a
larger space of functions

• The larger that space is, the harder
our optimization becomes

• This means we need:
• More data
• More compute resources
• Etc.

Deep Learning: More Parameters, More Problems?

Convolutional Layer Fully Connected Layer

Deep Learning: More Parameters, More Problems?

Convolutional Layer Fully Connected Layer

A convolutional layer
looks for components
of a function that are

spatially-invariant

Overfitting in view synthesis

• What happens if you directly optimize an MPI to reconstruct a small
set of input views?

Overfitting in view synthesis

• Answer: you can exactly reconstruct the input views, but produce
garbage for new views

• Reminiscent of shadow sculptures

Overfitting in view synthesis

Anamorphic Star Wars Shadow Art by Red Hong Yi, via
TKSST

https://thekidshouldseethis.com/post/anamorphic-star-wars-shadow-art-by-red-hong-yi

Overfitting in view synthesis

SHADOW ART
Niloy J. Mitra, Mark Pauly
ACM SIGGRAPH Asia 2009

https://graphics.stanford.edu/~niloy/research/shadowArt/shadowArt_sigA_09.html

• MPI with 64 layers, each storing a 1024 x 768 RGBA image à ~200M
parameters
• If we have 32 input RGB images of 1024x768 resolution à ~75M

inputs
• Many more parameters than measurements à risk of overfitting

• Compare to NeRF: ~500K - 1M parameters

Overfitting in view sythesis

• In general:
• More parameters means higher risk of overfitting
• More constraints/conditions on parameters can help

• If a model is overfitting, we can
• Collect more data to train on
• Regularize: add some additional information or assumptions to better constrain

learning

• Regularization can be done through:
• the design of architecture
• the choice of loss function
• the preparation of data
• …

How to Avoid Overfitting: Regularization

• “Bigger” architectures (typically,
those with more parameters) tend
to be more at risk of overfitting.

Regularization: Architecture Choice

Convolutional
Layer

Fully Connected Layer

Regularization reduces overfitting

(1) Data proprocessing

(1) Data proprocessing

In practice, often perform a single mean RGB value, and divide by a
per-channel standard deviation (recall MOPS, Normalized 8-Point
Algorithm)

(1) Data proprocessing

Batch normalization

• Side note – can also perform normalization after each
layer of the network to stabilize network training (“batch
normalization”)

(1) Data preprocessing

(2) Choose your architecture

https://playground.tensorflow.org/

https://playground.tensorflow.org/

(2) Choose your architecture
Very common modern choice

for classification problems

(3) Initialize your weights

(if you use ReLU activations, folks tend to initialize bias to small positive number)

(4) Overfit a small portion of the data

(4) Overfit a small portion of the data

(4) Overfit a small portion of the data

(4) Find a learning rate

Learning rate schedule

Summary of things to fiddle with

(+batch size)

Questions?

Transfer learning

“You need a lot of data if you want
to train/use CNNs for a new

classification task”

Slide credit: Fei-Fei Li, Justin Johnson, and Serena Yeung

“You need a lot of data if you want
to train/use CNNs for a new

classification task”

Transfer learning

BU
ST
ED

Slide credit: Fei-Fei Li, Justin Johnson, and Serena Yeung

Transfer learning with CNNs

Step 1: Take a model trained on ImageNet

Slide credit: Fei-Fei Li, Justin Johnson, and Serena Yeung

Transfer learning with CNNs

Step 2a: If you have a small amount of new data, adjust a
small number of network weights

Slide credit: Fei-Fei Li, Justin Johnson, and Serena Yeung

Transfer learning with CNNs

Step 2b: If you have a larger amount of new data, adjust a
larger number of network weights

Slide credit: Fei-Fei Li, Justin Johnson, and Serena Yeung

Slide credit: Fei-Fei Li, Justin Johnson, and Serena Yeung

Slide credit: Fei-Fei Li, Justin Johnson, and Serena Yeung

Slide credit: Fei-Fei Li, Justin Johnson, and Serena Yeung

Transfer learning with CNNs is pervasive

• It’s the norm, not the exception

Slide credit: Fei-Fei Li, Justin Johnson, and Serena Yeung

Transfer learning with CNNs is pervasive

• It’s the norm, not the exception

Slide credit: Fei-Fei Li, Justin Johnson, and Serena Yeung

Other pre-trained models are starting to
become standard
• Swin-transformer pre-trained on ImageNet-21K
• DINO features
• Foundation models (Stable Diffusion, etc)

Takeaway for your projects and beyond
Have some dataset of interest, but it
has << ~1M images?

1. Find a large dataset with similar
data (e.g., ImageNet), train a large
CNN

2. Apply transfer learning to fine-tune
on your data

For step 1, many existing models exist
in “Model Zoos”

Common modern approach:
start with a ResNet
architecture pre-trained on
ImageNet, and fine-tune on
your (smaller) dataset

Slide credit: Fei-Fei Li, Justin Johnson, and Serena Yeung

Questions?

