
Quiz 8 (on Canvas)
Closed book / closed note

Ends at 1:08pm

Inverse Graphics & Neural Radiance Fields (NeRFs)
CS5670: Computer Vision

NeRF Slides adapted from material courtesy of Pratul Srinivasan

Announcements
• Project 5 released today, due Wednesday, May 3 (8pm)
– To be done in groups of 2

• Sample final exam online – see Ed Stem

• Final exam in-class on May 9

Project 5 Demo

Rendering in computer graphics

3D
Scene

Representation Rendering

Adapted from material from Pratul Srinivasan

Computer vision as inverse rendering

3D
Scene

RepresentationInverse Rendering Rendering

Adapted from material from Pratul Srinivasan

Neural Radiance Fields (NeRF) as an
approach to inverse rendering

Neural
Radiance

FieldInverse Rendering Rendering

Adapted from material from Pratul Srinivasan

Deep learning for 3D reconstruction
• Previously: we reconstruct geometry by running stereo or

multi-view stereo on a set of images
– “Classical” approach

• How can we leverage powerful tools of deep learning?
– Deep neural networks
– GPU-accelerated stochastic gradient descent

NeRF and related methods – Key ideas
• We need to create a loss function and a scene

representation that we can optimize using gradient
descent to reconstruct the scene

• Differentiable rendering

Side Topic: Stereo Photography

Stereo Photography

Viewing Devices

Queen Victoria at World Fair, 1851

Stereo Photography

Stereo Photography

Issue: Narrow Baseline

~1.5 cm~6.5 cm

Left

Right

Output

Problem Statement

3D scene
representatio

n

…
Output

…
Output Input

Challenges

……
InputOutput Output

Extrapolation

Large disocclusion

Non-Lambertian Effects

Reflections, transparencies, etc.

Input views

Scene
Representation

Neural prediction of scene representations

Output views

…

Neural Net

Stereo Magnification: Learning View
Synthesis using Multiplane Images
Tinghui Zhou, Richard Tucker, John Flynn, Graham Fyffe,
Noah Snavely

SIGGRAPH 2018

Multiplane Camera (1937)

Image credits: Disney https://www.youtube.com/watch?v=kN-eCBAOw60 (from 1957)

https://www.youtube.com/watch?v=kN-eCBAOw60

Multiplane Images (MPIs)

Reference
Viewpoint

Each plane is at a fixed
depth and encoded by

an RGBA image

View Synthesis using Multiplane Images

Reference
Viewpoint

Homography

Target
Viewpoint

Over

View Synthesis using Multiplane Images

Reference
Viewpoint

Homography

Target
Viewpoint

Over

Synthesized image

• Models disocclusion

• Models soft edges and
non-Lambertian effects

• Efficient for view synthesis

• Differentiable rendering

Properties of Multiplane Images

Learning Multiplane Images

Input views

Multiplane Image

Alpha

RGB

Neural net

Learning Multiplane Images

Input views

Rendered views

…

Ground-truthMultiplane Image

Alpha

RGB

Neural net

Mapping image-shaped inputs to image-
shaped outputs with the UNet architecture

Input RGB Image Output image
(depth map)

Image Pair à Multiplane Image

Input pair

Suppose we want to map a pair of images to a 32-plane
MPI

U-Net CNN

Plane sweep
volume

…

(32 RGB planes)

MPI Planes

…

(32 RGBA images)

Training Data

…

Input views Target view

()

()

()

,

,

,

Need massive set of
triplets with known

camera poses

SLAM

RealEstate10K

Running SLAM / SfM on YouTube videos at scale

10 million frames from 80,000 video clips from 10,000 videos
https://google.github.io/realestate10k/

RealEstate10K dataset

https://google.github.io/realestate10k/

Sampling Training Examples

… …

Input TargetInput
(Extrapolated)

Sampling Training Examples

… …

InputTargetInput
(Interpolated)

Results

Left

Right

Output

Image 1

Image 2

Reference input view

Plane 0

Plane 13

Plane 9

Plane 16

Plane 24 Plane 26

Multi-plane Image (MPI)

Computer vision as inverse rendering

3D
Scene

RepresentationInverse Rendering Rendering

Adapted from material from Pratul Srinivasan

Paradigm 1: “Feedforward” inverse
rendering

4
8

3D
Scene

Representation

𝜃

Inverse Rendering
Network

Rendering

Adapted from material from Pratul Srinivasan

Paradigm 1: “Feedforward” inverse
rendering

4
9

3D
Scene

Representation
Rendering Loss

𝜃

RenderingInverse Rendering
Network

Adapted from material from Pratul Srinivasan

5
0

3D
Scene

Representation

𝜃

Paradigm 2: “Render-and-compare”

Inverse Rendering Rendering

Adapted from material from Pratul Srinivasan

5
1

3D
Scene

Representation

𝜃 Rendering Loss
Inverse Rendering Rendering

Paradigm 2: “Render-and-compare”

Adapted from material from Pratul Srinivasan

What representation to use?
• Could use triangle meshes, but

hard to differentiate during
rendering

• Multiplane images (MPIs) are easy
to differentiate, but only allow for
rendering a small range of views

NeRF == Differentiable Rendering with
a Neural Volumetric Representation

5
4

5
5

3D
Scene

Representation

𝜃

Paradigm 2: “Render-and-compare”

Inverse Rendering Rendering

Adapted from material from Pratul Srinivasan

Barron et al 2021, Mip-NeRF 360: Unbounded Anti-Aliased Neural Radiance Fields

Neural Volumetric Rendering

5
7

Neural Volumetric Rendering

5
8

querying the radiance value
along rays through 3D space

What color?

Adapted from material from Pratul Srinivasan

Neural Volumetric Rendering

5
9

continuous, differentiable
rendering model without

concrete ray/surface intersections

Adapted from material from Pratul Srinivasan

Neural Volumetric Rendering

6
0

using a neural network as a
scene representation, rather

than a voxel grid of data

Scene
properties(𝑥, 𝑦, 𝑧)

Multi-layer
Perceptron (Neural

Network) Adapted from material from Pratul Srinivasan

6
1

NeRF: Representing
Scenes as Neural Radiance
Fields for View Synthesis
ECCV 2020

Ben Mildenhall*

UC Berkeley

Pratul Srinivasan* Matt Tancik* Jon Barron Ravi Ramamoorthi Ren Ng

UC Berkeley UC Berkeley Google Research UC San Diego UC Berkeley

Given a set of sparse views of an
object with known camera poses

3D reconstruction viewable
from any angle

Optimize a NeRF
model

NeRF Overview

‣ Volumetric rendering

‣ Neural networks as representations for spatial data

‣ Neural Radiance Fields (NeRF)

NeRF Overview

‣ Volumetric rendering

‣ Neural networks as representations for spatial data

‣ Neural Radiance Fields (NeRF)

Traditional volumetric rendering

Theory of volume rendering co-opted from physics in
the 1980s: absorption, emission, out-scattering/in-
scattering

‣ Adapted for visualising medical data and linked with
alpha compositing

‣ Modern path tracers use sophisticated Monte Carlo
methods to render volumetric effects

Levoy 1988, Display of Surfaces from Volume Data
Max 1995, Optical Models for Direct Volume Rendering

Kajiya 1984, Ray Tracing Volume Densities
Chandrasekhar 1950, Radiative Transfer

Novak et al 2018, Monte Carlo methods for physically based volume rendering
Porter and Duff 1984, Compositing Digital Images

Ray tracing simulated cumulus cloud [Kajiya]

Adapted from material from Pratul Srinivasan

Full volumetric rendering formulation

6
6

Slide credit: Novak et al 2018, Monte Carlo methods for physically based volume rendering

http://commons.wikimedia.org

Absorption

http://coclouds.com

Scattering

http://wikipedia.org

Emission

Volumetric formulation for NeRF

Scene is a cloud of colored fog

Max and Chen 2010, Local and Global Illumination in the Volume Rendering Integral

Volumetric formulation for NeRF

Consider a ray traveling through the scene, and a point
at distance 𝑡 along this ray. We look up its color 𝐜(𝑡),
and its opacity (alpha value) α(𝑡) from a neural network

Camera

Ray 𝐫(𝑡) = 𝐨 + 𝑡𝐝

𝑡

Adapted from material from Pratul Srinivasan

Volumetric formulation for NeRF

But 𝑡 may also be blocked by earlier points along the
ray. 𝑇(𝑡): probability that the ray didn’t hit any particles
earlier.
𝑇(𝑡) is called “transmittance”

𝑃[no hits before 𝑡] = 𝑇(𝑡)

𝑡

Adapted from material from Pratul Srinivasan

Volume rendering estimation: integrating color along a
ray

Rendering model for ray 𝐫(𝑡) = 𝐨 + 𝑡𝐝:

How much light is blocked earlier along ray:
3D volume

𝑡%

Camera

Ray

colors
weights

𝐜 ≈ ∑
!"#

$
𝑇!𝛼!𝐜!

𝑇! = ∏
%"#

!&#
(1 − 𝛼%)

𝑡!

𝑡" 𝑇#

𝐜! , 𝛼#
𝑡#

final rendered
color along ray

Computing the color for a
set of rays through the
pixels of an image yields
a rendered image

Adapted from material from Pratul Srinivasan

Volume rendering estimation: integrating color along a
ray

Rendering model for ray 𝐫(𝑡) = 𝐨 + 𝑡𝐝:

How much light is blocked earlier along ray:
3D volume

𝑡%

Camera

Ray

colors
weights

𝐜 ≈ ∑
!"#

$
𝑇!𝛼!𝐜!

𝑇! = ∏
%"#

!&#
(1 − 𝛼%)

𝑡!

𝑡" 𝑇#

𝐜! , 𝜎#
𝑡#

final rendered
color along ray

𝛼! = 1 − exp(−𝜎!𝛿!)

Slight modification: 𝛼 is not directly stored in the volume,
but instead is derived from a stored volume density
sigma (σ) that is multiplied by the distance between
samples delta (δ):

𝛿#
Numeri

cal
 es

tim
ate

 of

integ
ral

 of a
ccu

mulat
ed

 co
lor

alo
ng ra

y

Adapted from material from Pratul Srinivasan

Volume rendering estimation: integrating color along a
ray

Rendering model for ray 𝐫(𝑡) = 𝐨 + 𝑡𝐝:

How much light is blocked earlier along ray:
3D volume

𝑡%

Camera

Ray

colors
weights

𝐜 ≈ ∑
!"#

$
𝑇!𝛼!𝐜!

𝑇! = ∏
%"#

!&#
(1 − 𝛼%)

𝑡!

𝑡" 𝑇#

𝐜! , 𝜎#
𝑡#

final rendered
color along ray

Computing the color for a
set of rays through the
pixels of an image yields
a rendered image

How do we store the values of
𝐜, 𝜎 at each point in space?

Adapted from material from Pratul Srinivasan

NeRF Overview

‣ Volumetric rendering

‣ Neural networks as representations for spatial data

‣ Neural Radiance Fields (NeRF)

Toy problem: storing 2D image data

(𝑥, 𝑦) (𝑟, 𝑔, 𝑏)

Usually we store an image as a
2D grid of RGB color values

Adapted from material from Pratul Srinivasan

Toy problem: storing 2D image data

(𝑥, 𝑦) (𝑟, 𝑔, 𝑏)

What if we train a simple fully-connected
network (MLP) to do this instead?

𝐹!

Adapted from material from Pratul Srinivasan

Same concept as before, except we are computing an image, instead of a classifier!

Recall the TensorFlow playground

Naive approach fails!

Ground truth image Neural network output fit
with gradient descent

Adapted from material from Pratul Srinivasan

Problem:
“Standard” coordinate-based MLPs cannot represent

high frequency functions

Solution:
Pass input coordinates through a

high frequency mapping first

Example mapping: “positional encoding”

Adapted from material from Pratul Srinivasan

Positional encoding

Raw encoding of a number x “Positional encoding” of a number x

Adapted from material from Pratul Srinivasan

Problem solved!

Ground truth image Neural network output without
high frequency mapping

Neural network output with
high frequency mapping

Adapted from material from Pratul Srinivasan

Recall “squared” encoding in TensorFlow Playground

Sometimes a better input encoding is all you
need

NeRF Overview

‣ Volumetric rendering

‣ Neural networks as representations for spatial data

‣ Neural Radiance Fields (NeRF)

8
4

NeRF = volume rendering +
coordinate-based network

How do we store the values of 𝐜, 𝜎 at each point in space?

𝑡%

𝐜, 𝜎
MLP

𝑡%
Po

sit
io

na
l

en
co

di
ng

Adapted from material from Pratul Srinivasan

𝑡%𝑡%

𝐜, 𝜎
MLP

Po
sit

io
na

l
en

co
di

ng

How do we store the values of 𝐜, 𝜎 at each point in space?

Adapted from material from Pratul Srinivasan

𝑡,

𝑡%

𝐜&, 𝜎&
MLP

Po
sit

io
na

l
en

co
di

ng

𝑡%

How do we store the values of 𝐜, 𝜎 at each point in space?

Adapted from material from Pratul Srinivasan

𝑡,

𝑡%

𝐜%, 𝜎%
MLP

Po
sit

io
na

l
en

co
di

ng

𝑡%

How do we store the values of 𝐜, 𝜎 at each point in space?

Adapted from material from Pratul Srinivasan

𝑡,

𝑡%

𝐜', 𝜎'
MLP

Po
sit

io
na

l
en

co
di

ng

𝑡%

How do we store the values of 𝐜, 𝜎 at each point in space?

Adapted from material from Pratul Srinivasan

𝑡,

𝑡%

𝐜(, 𝜎(
MLP

Po
sit

io
na

l
en

co
di

ng

𝑡%

How do we store the values of 𝐜, 𝜎 at each point in space?

Adapted from material from Pratul Srinivasan

𝑡,

𝑡%

𝐜), 𝜎)
MLP

Po
sit

io
na

l
en

co
di

ng

𝑡%

How do we store the values of 𝐜, 𝜎 at each point in space?

Adapted from material from Pratul Srinivasan

𝑡,

𝑡%

𝐜*, 𝜎*
MLP

Po
sit

io
na

l
en

co
di

ng

𝑡%

How do we store the values of 𝐜, 𝜎 at each point in space?

Adapted from material from Pratul Srinivasan

𝑡%𝑡%

3D point and direction

𝐜, 𝜎
MLP

Po
sit

io
na

l
en

co
di

ng

Extension: view-dependent field

Include the ray direction in
the input to the MLP à
allows for capturing and

rendering view-dependent
effects (e.g., shiny surfaces)

Putting it all together

Adapted from material from Pratul Srinivasan

∇∥ − ∥!

Train network using gradient descent
to reproduce all input views of scene

Volume rendering of
MLP colors/densities

Ground truth
image

Adapted from material from Pratul Srinivasan

Results

NeRF encodes convincing view-dependent effects using
directional dependence

Adapted from material from Pratul Srinivasan

NeRF encodes convincing view-dependent effects using
directional dependence

Adapted from material from Pratul Srinivasan

NeRF encodes detailed scene geometry with occlusion effects

Adapted from material from Pratul Srinivasan

NeRF encodes detailed scene geometry

Adapted from material from Pratul Srinivasan

Summary
• Represent the scene as volumetric colored “fog”
• Store the fog color and density at each point as an MLP

mapping 3D position (x, y, z) to color c and density σ
• Render image by shooting a ray through the fog for each

pixel
• Optimize MLP parameters by rendering to a set of known

viewpoints and comparing to ground truth images

Extension: NeRF in the Wild (NeRF-W)

Brandenburg Gate Sacre Coeur Trevi Fountain

Martin-Brualla*, Radwan*, Sajjadi*, Barron, Dosovitskiy, Duckworth.
NeRF in the Wild. CVPR 2021.
https://www.youtube.com/watch?v=mRAKVQj5LRA

https://www.youtube.com/watch?v=mRAKVQj5LRA

Inverse graphics beyond shape and color

Reconstructed models inserted into scene with new lightingInput images of
an object

Zhang, Luan, Li, Snavely. CVPR
2022.

Reconstructed shape,
albedo, and materials

Questions?

