Quiz 8 (on Canvas)
Closed book / closed note



CS5670: Computer Vision
Inverse Graphics & Neural Radiance Fields (NeRFs)

NeRF Slides adapted from material courtesy of Pratul Srinivasa



Announcements

* Project 5 released today, due Wednesday, May 3 (8pm)

— To be done in groups of 2

» Sample final exam online — see Ed Stem

 Final exam in-class on May 9



Project 5 Demo



Rendering in computer graphics
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Scene ﬁ

Representation Rendering

Adapted from material from Pratul Sriniva:



Computer vision as inverse rendering

3D
Scene
Representation

Inverse Rendering Rendering

Adapted from material from Pratul Sriniva:



Neural Radiance Fields (NeRF) as an
approach to inverse rendering

Neural

Radiance
Field

Inverse Rendering Rendering

Adapted from material from Pratul Sriniva:



Deep learning for 3D reconstruction

 Previously: we reconstruct geometry by running stereo or
multi-view stereo on a set of images

— "Classical” approach

* How can we leverage powerful tools of deep learning?

— Deep neural networks
— GPU-accelerated stochastic gradient descent



NeRF and related methods - Key ideas

« We need to create a loss function and a scene
representation that we can optimize using gradient
descent to reconstruct the scene

* Differentiable rendering



Side Topic: Stereo Photography




Stereo Photography
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Stereo Photography

Queen Victoria at World Fair, 1851



Stereo Photography
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Issue: Narrow Baseline

~06.5 cm
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Problem Statement
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Challenges

Extrapolation Non-Lambertian Effects

Large disocclusion Reflections, transparencies, etc.
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Neural prediction of scene representations

Input views

QN/

F Neural Net

-

Scene

~

Representation

\_

J

Output views

@,h\

g:




Stereo Magnification: Learning View
Synthesis using Multiplane Images

Tinghut Zhou, Richard Tucker, John Flynn, Graham Fyfte,
Noah Snavely

SIGGRAPH 2013



Multiplane Camera (1937)

——

Image credits: Disney (from 1957)


https://www.youtube.com/watch?v=kN-eCBAOw60

Multiplane Images (MPIs)

Each plane is at a fixed
depth and encoded by
an RGBA image

Reference ™ :-
Viewpoint V



View Synthesis using Multiplane Images
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View Synthesis using Multiplane Images

Synthesized image
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Properties of Multiplane Images

Models disocclusion

Models soft edges and
non-Lambertian effects

Efficient for view synthesis

Ditterentiable rendering




Learning Multiplane Images

Multiplane Image

Input views

Neural net




Learning Multiplane Images

Multiplane Image Rendered views Ground-truth
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Mapping image-shaped inputs to image-
shaped outputs with the UNet architecture
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Image Pair - Multiplane Image

Suppose we want to map a pair of images to a 32-plane
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Training Data

Input views Target view

Need massive set of
triplets with known
camera poses




RealEstate10K

4gkKCuYEgQY4 - 5 tracked sequences

SLAM

id: &QkXCUTEQYE sequence: &4 / 35
time: 143.603 - 147.73s
tracked frames: 100 map points: 6562

frame at 147.69s (147689211ps):
4795 map points
field of view: x«79.89, y=30.45
wnsscothness: 0.01
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Running SLAM / StM on YouTube videos at scale
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https://google.github.io/realestate10k/

Sampling Training Examples
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Sampling Training Examples
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Multi-plane Image (MPI)
Plane O Plane 9

Reference input view







Computer vision as inverse rendering

3D
Scene
Representation

Inverse Rendering Rendering

Adapted from material from Pratul Sriniva:



rnr°

Paradigm 1: “Feedforward” inverse
rendering
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Adapted from material from Pratul Sriniva:
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rnr°

Paradigm 1: “Feedforward” inverse
rendering
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Adapted from material from Pratul Sriniva:
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Paradigm 2: “Render-and-compare”
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Adapted from material from Pratul Sriniva:
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Adapted from material from Pratul Sriniva:



What representation to use?

» Could use triangle meshes, but
hard to differentiate during
rendering

» Multiplane images (MPls) are easy
to differentiate, but only allow for
rendering a small range of views






NeRF == Ditferentiable Rendering with
a Neural Volumetric Representation




Paradigm 2: “Render-and-compare”
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Adapted from material from Pratul Sriniva:



Barron et al 2021, Mip-NeRF 360: Unbounded Anti-Aliased Neural Radiance Fields
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Neural Volumetric Rendering



Ul

Rendering

qguerying the radiance value
along rays through 3D space

.

What color?

Adapted from material from Pratul Sriniva:



Volumetric

continuous, differentiable
rendering model without
concrete ray/surface intersections
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Adapted from material from Pratul Sriniva:



Neural

using a neural network as a
scene representation, rather

than a voxel grid of data
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Adapted from material from Pratul Sriniva:



NeRF: Representing
Scenes as Neural Radiance

Fields for View Synthesis
ECCV 2020

Ben Mildenhall* Pratul Srinivasan®* Matt Tancik* Jon Barron Ravi Ramamoorthi Ren Ng
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Optimize a NeRF
model

Given a set of sparse views of an 3D reconstruction viewable
object with known camera poses from any angle



NeRF Overview

> Volumetric rendering

> Neural networks as representations for spatial data

> Neural Radiance Fields (NeRF)



NeRF Overview

> Volumetric rendering



S.Chandrasekhar

woemve  Traditional volumetric rendering

*

Theory of volume rendering co-opted from physics in
the 1980s: absorption, emission, out-scattering/in-
scatterina

Ray tracing simulated cumulus cloud [Kajiya]

Chandrasekhar 1950, Radiative Transfer
Kajiya 1984, Ray Tracing Volume Densities

Adapted from material from Pratul Sriniva:



Full volumetric rendering formulation

Absorption Scattering Emission
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http://commons.wikimedia.ofg http://coclouds.com http://wikipedia.org
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Slide credit: Novak et al 2018, Monte Carlo methods for physically based volume rendering
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Volumetric formulation for NeRF

Scene is a cloud of colored fog

Max and Chen 2010, Local and Global [llumination in the Volume Rendering Integral



Volumetric formulation for NeRF

Ray r(t) = o + td

Camera Consider a ray traveling through the scene, and a point

at distance t along this ray. We look up its color ¢(t),
and its opacity (alpha value) a(t) from a neural network

Adapted from material from Pratul Sriniva:



Volumetric formulation for NeRF

P|no hits before t| = T(t)

But ¢ may also be blocked by earlier points along the

ray. T (t): probability that the ray didn't hit any particles
earlier.
T(t) is called "transmittance”

Adapted from material from Pratul Sriniva:



Volume rendering estimation: integrating color along a
ray

Rendering model for ray r(t) = o + td:

/ Z lia;c; . /
final rendered \
color along ray weights

colors

How much light is blocked earlier along ray:

i—1 tl/ . 3D volume
p— 1 — J '
FLE 7

Camera

Computing the color for a
set of rays through the
pixels of an image yields
a rendered image

Adapted from material from Pratul Sriniva:




Volume rendering estimation: integrating color along a
ray

3D volume

Slight modification: a is not directly stored in the volume,
but instead is derived from a stored volume density
sigma (o) that I1s multiplied by the distance between

2Pl S P exp(—0;6;)

Camera

Adapted from material from Pratul Sriniva:



Volume rendering estimation: integrating color along a
ray

3D volume
tl/ |
/ How do we store the values of

C, 0 at each point in space?

Camera

Adapted from material from Pratul Sriniva:



NeRF Overview

> Neural networks as representations for spatial data



Toy problem: storing 2D image data

(r,9,b)

Usually we store an image as a
2D grid of RGB color values

Adapted from material from Pratul Sriniva:



Toy problem: storing 2D image data

Fo
(x,7) —»III—» (r, g, b)

What if we train a simple fully-connected
network (MLP) to do this instead?

Adapted from material from Pratul Sriniva:



Recall the TensorFlow playground

'y

DATA

Which dataset do
you want to use?

#

Ratio of training to
test data: 50%
— o

Noise: 0

Batch size: 10
—o

Same concept as before, except we are computing an image, instead of a classifier!

Tinker With a Neural Network Right Here in Your Browser.

Epoch

000,000

FEATURES

Which properties

do you want to

feed in?

X4

X,

il
H

Don't Worry, You Can' Break It. We Promise.

Learning rate Activation Regularization
0.03 v Tanh v None
+ — 2 HIDDEN LAYERS
+ - + -
4 neurons 2 neurons

BEREpEgE

This is the output
from one neuron.
Hover to see it

larnear

_
1

\ The outputs are

mixed with varying
weights, shown
by the thickness of
the lines.

Regularization rate

v Classification

OUTPUT

Problem type

Test loss 0.505
Training loss 0.502

v



Naive approach fails!

Ground truth image Neural network output fit
with gradient descent

Adapted from material from Pratul Sriniva:



Problem:

“Standard” coordinate-based MLPs cannot represent
high frequency functions



Solution:

Pass input coordinates through a
high frequency mapping first



Example mapping: “positional encoding”

. _>III_> y
sin(v), cos(v)
sin(2v), cos(2v)
sin(4v), cos(4v) _>III — Y/

sin(2%7v), cos(25 7 tv

Adapted from material from Pratul Sriniva:



Positional encoding

Raw encoding of a number x "Positional encoding” of a number x

Adapted from material from Pratul Sriniva:



Problem solved!

Ground truth image Neural network output without Neural network output with
high frequency mapping high frequency mapping

Adapted from material from Pratul Sriniva:



Sometimes a better input encoding is all you
need o

Epoch Leaming rate Activation Regularization Regularization rate Problem type

4 N
OOO, 1 31 0.03 Tanh None 0 Classification

DATA FEATURES + — 2 HIDDEN LAYERS OUTPUT

Which dataset do Which properties do Test loss 0.001
vou want to use? vou want to feed in? Trainina loss 0.000
- - + - + - aining foss 8.00€

4 neurons 2 neurons

_t
_t

Ratio of training to

A e
(eS1 dala

Recall “squared” encoding in TensorFlow Playground



NeRF Overview

> Neural Radiance Fields (NeRF)
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NeRF = volume rendering +
coordinate-based network



How do we store the values of ¢, o at each point in space?
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Adapted from material from Pratul Sriniva:



How do we store the values of ¢, o at each point in space?
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Adapted from material from Pratul Sriniva:



How do we store the values of ¢, o at each point in space?
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Adapted from material from Pratul Sriniva:



How do we store the values of ¢, o at each point in space?

enccding

Positional
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Adapted from material from Pratul Sriniva:



How do we store the values of ¢, o at each point in space?

enccding
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Adapted from material from Pratul Sriniva:



How do we store the values of ¢, o at each point in space?

Positional
enccding
o
Q
o8

Adapted from material from Pratul Sriniva:



How do we store the values of ¢, o at each point in space?

enccding

:

Positional

Adapted from material from Pratul Sriniva:



How do we store the values of ¢, o at each point in space?

enccding
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Adapted from material from Pratul Sriniva:



Extension: view-dependent field

MLP

encoding

T
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Include the ray direction In
the input to the MLP -
allows for capturing and

rendering view-dependent

effects (e.g., shiny surfaces)




Putting 1t all together

/ 1. 2

Ray Distance Adapted from material from Pratul Srinivas




Train network using gradient descent
to reproduce all input views of scene

Volume rendering of  Ground truth
MLP colors/densities Image

2

Adapted from material from Pratul Sriniva:



Results






NeRF encodes convincing view-dependent effects using
directional dependence
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Adapted from material from Pratul Sriniva:



NeRF encodes convincing view-dependent effects using
directional dependence

Adapted from material from Pratul Sriniva:



NeRF encodes detailed scene geometry with occlusion effects

Adapted from material from Pratul Srinivas



NeRF encodes detailed scene geometry

Adapted from material from Pratul Sriniva:



Summary

» Represent the scene as volumetric colored “fog”

» Store the fog color and density at each point as an MLP
mapping 3D position (X, y, z) to color ¢ and density o

» Render image by shooting a ray through the fog for each
pixel

* Optimize MLP parameters by rendering to a set of known
viewpoints and comparing to ground truth images



Extension: NeRF in the Wild (NeRF-W)

Brandenburg Gate Sacre Coeur Trevi Fountain

Martin-Brualla*, Radwan*, Sajjadi*, Barron, Dosovitskiy, Duckworth.
NeRF in the Wild. CVPR 2021.

https.//www.youtube.com/watch?v=mRAKVQJj5LRA



https://www.youtube.com/watch?v=mRAKVQj5LRA

Inverse graphics beyond shape and color

Reconstructed models inserted into scene with new lighting

Input images of
an object

Reconstructed shape,

albedo, and materials
Zhang, Luan, Li, Snavely. CVPR



Questions?



