
Image Classification
CS5670: Computer Vision

Some Slides from Fei-Fei Li, Justin Johnson, Serena Yeung
http://vision.stanford.edu/teaching/cs231n/

http://vision.stanford.edu/teaching/cs231n/


Announcements

• One more project to go – Project 5: Neural Radiance Fields
• Tentative release date: Thursday, April 20
• Tentative due date: Wednesday, May 3

• In-class Final Exam during the last lecture: Tuesday, May 9



Third Place



Jinzhao Kang and Xianglin Chen



Second Place



Wenqi Xiao and Zhuoyi Li



First Place



Shreyash Gupta and 
Srimoyee Mukhopadhyay



Last time: intro to recognition + 
classification
• Different problems: image classification, object detection

• Initial classification idea: k Nearest Neighbors



• Input: an image
• Output: the class label for that image

• Label is generally one or more of the 
discrete labels used in training
• e.g. {cat, dog, cow, toaster, apple, 

tomato, truck, … }

Image Classifiers in a Nutshell
def classifier(image):

//Do some stuff
return class_label;

“Toaster”

“Cat”

“Dog”



Image classification demo

https://cloud.google.com/vision/docs/drag-and-drop
See also: 
https://aws.amazon.com/rekognition/
https://www.clarifai.com/
https://azure.microsoft.com/en-us/services/cognitive-services/computer-vision/

…

https://cloud.google.com/vision/docs/drag-and-drop
https://aws.amazon.com/rekognition/
https://www.clarifai.com/
https://azure.microsoft.com/en-us/services/cognitive-services/computer-vision/
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The Semantic Gap

What we see What the computer sees



• The same class of 
object can appear very
differently in different 
images

Variation Makes Recognition Hard

Viewpoint Variation Lighting Variation Deformation

Background Clutter Occlusion



• Distinct realities can produce the same 
image…
• We generally can’t compute the “right” 

answer, but we can compute the most 
likely one…
• We need some kind of prior to 

condition on. We can learn this prior 
from data:

The Problem is Under-constrained

I think there may be 
a spy among us…

f(x) = argmax
`x

P (`x|data)
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• An image is just a bunch of 
numbers
• Let’s stack them up into a vector
• Our training data is just a bunch of 

high-dimensional points now

Images As High-Dimensional Vectors

The Space of
All Images



Toasters

Cats

• An image is just a bunch of 
numbers
• Let’s stack them up into a vector
• Our training data is just a bunch of 

high-dimensional points now

• Divide space into different regions 
for different classes

Images As High-Dimensional Vectors

The Space of
All Images



Toasters

Cats

• An image is just a bunch of 
numbers
• Let’s stack them up into a vector
• Our training data is just a bunch of 

high-dimensional points now

• Divide space into different regions 
for different classes

Images As High-Dimensional Vectors

The Space of
All Images



• Define a distribution over 
space for each class

or

• An image is just a bunch of 
numbers
• Let’s stack them up into a vector
• Our training data is just a bunch of 

high-dimensional points now

• Divide space into different regions 
for different classes

Images As High-Dimensional Vectors

The Space of
All Images

Toasters

Cats



• How high-dimensional is an image?
• Let’s consider an iPhone X photo:

• 4032 x 3024 pixels
• Every pixel has 3 colors
• 36,578,304 pixels (36.5 Mega pixels)

• In practice, images sit on a lower-
dimensional manifold
• Think of image features and 

dimensionality reduction as ways to 
represent images by their location 
on such manifolds

Image Features and Dimensionality Reduction

The Space of
All Images



Side Note:
This also lets us deal with images 

of different sizes, crops, etc.

Image Features and Dimensionality Reduction

• How high-dimensional is an image?
• Let’s consider an iPhone X photo:

• 4032 x 3024 pixels
• Every pixel has 3 colors
• 36,578,304 pixels (36.5 Mega pixels)

• In practice, images sit on a lower-
dimensional manifold
• Think of image features and 

dimensionality reduction as ways to 
represent images by their location 
on such manifolds



• Collect a database of images with labels
• Use ML to train an image classifier
• Evaluate the classifier on test images

Training & Testing a Classifier

Slide from Andrej Karpathy and Fei-Fei Li   http://vision.stanford.edu/teaching/cs231n/



Training & Testing a Classifier



Training & Testing a Classifier



• Nearest Neighbor
• kNN (“k-Nearest Neighbors”)
• Linear Classifier
• Neural Network
• Deep Neural Network
• …

Classifiers



First idea: Nearest Neighbor (NN) Classifier

• Train
• Remember all training 

images and their labels

• Predict
• Find the closest (most 

similar) training image
• Predict its label as the true 

label



CIFAR-10 and NN results

Slides from Andrej Karpathy and Fei-Fei Li
http://vision.stanford.edu/teaching/cs231n/



CIFAR-10 and NN results

Slides from Andrej Karpathy and Fei-Fei Li
http://vision.stanford.edu/teaching/cs231n/



k-nearest neighbor

• Find the k closest points from training data
• Take majority vote from K closest points









How to Define Distance Between Images

Slides from Andrej Karpathy and Fei-Fei Li http://vision.stanford.edu/teaching/cs231n/



• Hyperparameter

Choice of distance metric

Slide composited from Andrej Karpathy and Fei-Fei Li http://vision.stanford.edu/teaching/cs231n/



Demo: http://vision.stanford.edu/teaching/cs231n-demos/knn/

http://vision.stanford.edu/teaching/cs231n-demos/knn/


Hyperparameters

• What is the best distance to use?
• What is the best value of k to use?

• These are hyperparameters: choices about the algorithm that we set 
rather than learn

• How do we set them?
• One option: try them all and see what works best



Slide composited from Andrej Karpathy and Fei-Fei Li http://vision.stanford.edu/teaching/cs231n/



Slide composited from Andrej Karpathy and Fei-Fei Li http://vision.stanford.edu/teaching/cs231n/



Slide composited from Andrej Karpathy and Fei-Fei Li http://vision.stanford.edu/teaching/cs231n/



Slide composited from Andrej Karpathy and Fei-Fei Li http://vision.stanford.edu/teaching/cs231n/



Slide composited from Andrej Karpathy and Fei-Fei Li http://vision.stanford.edu/teaching/cs231n/



Slide composited from Andrej Karpathy and Fei-Fei Li http://vision.stanford.edu/teaching/cs231n/



Hyperparameter Tuning



Recap: How to pick hyperparameters?

• Methodology
• Train and test
• Train, validate, test

• Train an initial model
• Validate to find hyperparameters
• Test to understand generalizability



• N training images, M test images

• Training: O(1)
• Testing: O(MN)

• We often need the opposite:
• Slow training is ok
• Fast testing is necessary

kNN – Complexity and Storage



k-Nearest Neighbors: Summary

• In image classification we start with a training set of images and 
labels, and must predict labels on the test set

• The K-Nearest Neighbors classifier predicts labels based on nearest 
training examples

• Distance metric and K are hyperparameters

• Choose hyperparameters using the validation set; only run on the 
test set once at the very end!



Problems with KNN: Distance Metrics



• As the number of dimensions 
increases, the same amount of data 
becomes more sparse.
• Amount of data we need ends up 

being exponential in the number of 
dimensions

Problems with KNN: The Curse of Dimensionality

Animation from https://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote02_kNN.html

https://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote02_kNN.html


Linear Classifiers



• Nearest Neighbors
• Store every image
• Find nearest neighbors at test 

time, and assign same class

Linear Classification vs. Nearest Neighbors



• Nearest Neighbors
• Store every image
• Find nearest neighbors at test 

time, and assign same class

• Linear Classifier
• Store hyperplanes that best 

separate different classes
• We can compute continuous 

class score by calculating 
(signed) distance from 
hyperplane

Linear Classification vs. Nearest Neighbors

We can interpret this as a linear 
"score function” for each class.



Score functions

Slide adapted from Andrej Karpathy and Fei-Fei Li http://vision.stanford.edu/teaching/cs231n/



Parametric Approach

Slide adapted from Andrej Karpathy and Fei-Fei Li http://vision.stanford.edu/teaching/cs231n/



Parametric Approach: Linear Classifier

Slide adapted from Andrej Karpathy and Fei-Fei Li http://vision.stanford.edu/teaching/cs231n/



Parametric Approach: Linear Classifier

Slide adapted from Andrej Karpathy and Fei-Fei Li http://vision.stanford.edu/teaching/cs231n/



Linear Classifier

Slide adapted from Andrej Karpathy and Fei-Fei Li http://vision.stanford.edu/teaching/cs231n/



Interpretation: Algebraic

Slide adapted from Andrej Karpathy and Fei-Fei Li http://vision.stanford.edu/teaching/cs231n/



• Parameters define a hyperplane 
for each class:

• We can think of each class score 
as defining a distribution that is 
proportional to distance from 
the corresponding hyperplane

Interpretation: Geometric

f(xi,W, b) = Wxi + b

<latexit sha1_base64="Fyp5bDMhtZDA0Ksosbmyu6Y617s="></latexit>

The Space of
All Images



• We can think of the rows in         as templates for each class

Interpretation: Template matching

f(xi,W, b) = Wxi + b

<latexit sha1_base64="Fyp5bDMhtZDA0Ksosbmyu6Y617s="></latexit>

Rows of W in 



Hard Cases for a Linear Classifier







• Learning methods
• k-Nearest Neighbors
• Linear classification

• Classifier outputs a score function giving a score to each class
• How do we define how good a classifier is based on the training data? 

(Spoiler: define a loss function)

Recap



Linear classification

Output scores



Loss functions



• Given ground truth labels (yi), scores f(xi, W)
• how unhappy are we with the scores?

• Loss function or objective/cost function measures unhappiness

• During training, want to find the parameters W that minimize 
the loss function

Loss function, cost/objective function



• Two classes (e.g., “cat” and “not cat”)
• AKA “positive” and “negative” classes

Simpler example: binary classification

cat not cat



0:negative
0:positive

<+×
³+×
b
b

ii

ii

wxx
wxx

Linear classifiers

Which hyperplane is best? We 
need a loss function to decide 

• Find linear function (hyperplane) to 
separate positive and negative 
examples



• One possibility: Number of misclassified examples
• Problems: discrete, can’t break ties
• We want the loss to lead to good generalization
• We want the loss to work for more than 2 classes

What is a good loss function?

Loss: 2 Loss: 0 Loss: 0



• Interpret Scores as 
unnormalized log 
probabilities of classes

Softmax classifier

Squashes values into probabilities 
ranging from 0 to 1

(score function)

Example with three classes:



Softmax classifier

0.06

0.82

0.12

Softmax
“probabilities”



Cross-entropy loss

(score function)

We call Li cross-
entropy loss



Cross-entropy loss

(score function)

We call Li cross-
entropy loss

fyi : score of correct class



Cross-entropy loss

(score function)

We call Li cross-
entropy loss



• Cross-entropy loss is just one possible loss function
• One nice property is that it reinterprets scores as probabilities, which have a 

natural meaning

• SVM (max-margin) loss functions also used to be popular
• But currently, cross-entropy is the most common classification loss

Losses



• Have score function and loss function
• Currently, score function is based on linear classifier
• Next, will generalize to convolutional neural networks

• Find W and b to minimize loss

Summary

Average of cross-entropy loss 
over all training examples{ Regularization term

(will talk about this later)



Questions?


