CS5670: Computer Vision

Convolutional neural networks

Image Maps

Input

Convolutions I Fully Connected

Subsampling

Illustration of LeCun et al. 1998 from CS231n 2017 Lecture 1

Slides from Fei-Fei Li, Justin Johnson, Serena Yeung
http://vision.stanford.edu/teaching/cs231n/

http://vision.stanford.edu/teaching/cs231n/

Announcements

* Project 5 (NeRF): To be assigned Monday, April 25, due
Wednesday, May 4

* In-class final exam planned for the last day of class:
Tuesday, May 10

« Sample final exam to be released soon

Readings

 Neural networks

nttp://cs23°

n.git

Nu

D.10/neura

-hetwor

ks-1/

nttp://cs23°

n.git

Nu

D.10/neura

-hetwor

Ks-2/

nttp://cs23°

n.git

Nu

D.10/neura

-networ

ks-3/

nttp://cs23°

n.git

nu

D.10/neura

-hetwor

Ks-case-study/

 Convolutional neural networks
— http://cs231n.github.io/convolutional-networks/

http://cs231n.github.io/neural-networks-1/
http://cs231n.github.io/neural-networks-2/
http://cs231n.github.io/neural-networks-3/
http://cs231n.github.io/neural-networks-case-study/
http://cs231n.github.io/convolutional-networks/

Image Classification:
a core task in computer vision

» Assume given set of discrete labels, e.g.
{cat, dog, cow, apple, tomato, truck, ... }

- “apple”
= “tomato’

11 44

= COW

Dataset: ETH-80, by B. Leibe Slide credit: L. Lazebnik

Recap: linear classification

« Have score function and loss function

— Score function maps an input data instance (e.g., an image) to
a vector of scores, one for each category

— Last time, our score function is based on linear classifier

f. score function
f(X,W) =Wx+b «x input instance

W, b: parameters of a linear (actually affine) function

* Find W and b to minimize a loss, e.qg. cross-entropy loss

1 ef!h
L=— i
v s ()

J

Linear classifiers separate features space into
half-spaces

w
"‘& car classifier
airplane classiﬂe/ .
"
X

//

deer classifier

Neural networks

(Before) Linear score function: f = Wz

Neural networks

(Before) Linear score function: f = Wzx
(Now) 2-layer Neural Network ~ f = W3 max(0, Wiz)

Neural networks

(Before) Linear score function: f = Wz
(Now) 2-layer Neural Network ~ f = W3 max(0, Wiz)

X| Wy |h| Wy |s

3072 100 10
?
1 h (10 x 100 matrix)

(100 x 3072 matrix)
100D intermediate
vector

Neural networks

(Before) Linear score function: f = Wz
(Now) 2-layer Neural Network ~ f = W3 max(0, Wiz)

X| Wy |h| Wy |s

3072 100 10

 Total number of weights to learn:
3,072 x 100 + 100 x 10 = 308,200

Neural networks

(Before) Linear score function: f = Wz

(Now) 2-layer Neural Network ~ f = W3 max(0, Wiz)
or 3-layer Neural Network

f = W3 max(0, Wy max(0, Wiz))

\

also called "Multi-Layer
Perceptrons” (MLPs)

Neural networks

 Very coarse generalization of neural networks:

— Linear functions chained together and separated by non-
linearities (activation functions), e.g. "“max”

f = W3 maX(O, Wy max(O, Wlx))

— Why separate linear functions with non-linear functions?
— Very roughly inspired by real neurons T

Activation functions

Slgm0|d

Leaky RelLU
_ max(0.1z, x)
o(z) =
— Lo—— 10
tanh Maxout
tanh(x max(wi x + by, wi x + by)

RelLU ELU
max(0, x) {5”(. 20

1—|—e z

x <0

Neural network architecture

» Computation graph for a 2-layer neural
network

output layer
input layer
hidden layer

Neuron or unit

Neural networks: Architectures

put layer

output layer
input layer input layer
hidden layer hidden layer 1 hidden layer 2

“3-layer Neural Net”, or

“2-layer Neural Net”, or “2-hidden-layer Neural Net”

“1-hidden-layer Neural Net” “Fully-connected” layers

* Deep networks typically have many layers and potentially
millions of parameters

Deep neural network
i
i
i
i

* Inception network (Szegedy et al, 2015)

« 22 layers

Fully Connected Layer

32x32x3 image -> stretch to 3072 x 1

input

1 —
3072

Wax

10 x 3072
weights

activation
—> 1 [O
/ 10
1 number:

the result of taking a dot product
between a row of W and the input
(a 3072-dimensional dot product)

* Just like a linear classifer — but in this case, just one

layer of a larger network

Example feed-forward computation of a neural network

O
4.
‘ output layer

hidden layer 1 hidden layer 2

:

i
2
W

X
";6

e O
S
K

input layer

P
®

f = lambda x: 1.0/(1.0 + np.exp(-x)) # activation f

X = np.random.randn(3, 1) # random input vector of three number:
hl = f(np.dot(Wl, x) + bl) # calculate first hidden layer a

h2 = f(np.dot(W2, hl) + b2) # calculate second hidden layer a
out = np.dot(W3, h2) + b3 # output neuron (1xI

Summary

- We arrange neurons into fully-connected layers

- The abstraction of a layer has the nice property that it
allows us to use efficient vectorized code (e.g. matrix
multiplies)

- Neural networks are not really neural

Optimizing parameters with gradient descent

 How do we find the best W and b parameters?

* In general: gradient descent

1. Start with a guess of a good W and b (or randomly initialize them)

2. Compute the loss function for this initial guess and the gradient of
the loss function

3. Step some distance in the negative gradient direction (direction of
steepest descent)

4. Repeat steps 2 & 3

* Note: efficiently performing step 2 for deep networks is
called backpropagation

/ b ‘ original W

negative gradient direction

Gradient descent: walk in the direction opposite gradient
 Q: How far?

* A: Step size: learning rate

* Too big: will miss the minimum

* Too small: slow convergence

2D example of gradient descent

* In reality, in deep learning
we are optimizing a highly
complex loss function
with millions of variables
(or more)

« More on this later...

5”“‘? Surface plot
|

----- epochs: 0 15 Wo

https://laptrinhx.com/gradient-descent-animation-2-multiple-linear-regression-3070246823/

https://laptrinhx.com/gradient-descent-animation-2-multiple-linear-regression-3070246823/

2D example: TensorFlow Playground

Tinker With a Neural Network Right Here in Your Browser.

Don't Worry, You Can't Break It. We Promise.

O Epoch Learning rate Activation Regularization Regularization rate Problem type
>
000,000 0.03 Tanh None 0 Classification
DATA FEATURES + — 2 HIDDEN LAYERS OUTPUT
Which dataset do Which properties Test loss 0.505
you want to use? do you want to Training loss 0.502
feed in? + - + -
A 4 neurons 2 neurons
»
X1
XZ

Ratio of training to
test data: 50%
E— The outputs are

mixed with varying

weights, shown

Noise: 0 by the thickness of
[] the lines.
F
Batch size: 10 This is the output
—e from one neuron

Hover to see it

larnar

https://playground.tensorflow.org

https://playground.tensorflow.org/

Questions?

Convolutional neural networks

Image Maps
Input

Fully Connected

Convolutions
Subsampllng

A bit of history...

The Mark | Perceptron machine was the first
implementation of the perceptron algorithm.

The machine was connected to a camera that used
20x%20 cadmium sulfide photocells to produce a 400-pixel
image.

flx) =

recognized 0 otherwise

letters of the alphabet

{1 42 LBS0

MAIN
SEQUENCE

update rule:
wi(t + 1) = wi(t) + al(d; — y;(t))zj:

STEP BUTTONS

Frank Rosenblatt, ~1957. Perceptron

This image by Rocky Acosta is licensed under CC-BY 3.0

A bit of history... T 5

| 0 o
Wi o
[Hinton and Salakhutdinov 2006] ‘
i 500] i y
g | Ws o
Reinvigorated research in 5 ' Ii' !
Deep Learning = S an i R . L T
R A — oW r
E E iEncoder -‘4
Pretraining I:{-I;I;/I-l-n-lt-lglﬂ;(;& ;LEQBESQQF Fine-tuning with backprop

Illustration of Hinton and Salakhutdinov 2006 by Lane
Mclntosh, copyright CS231n 2017

Hinton and Salakhutdinov. Reducing the Dimensionality of Data with Neural Networks. Science, 2016.

A bit of history:

Gradient-based learning applied to
document recognition

[LeCun, Bottou, Bengio, Haffner 1998]

Image Maps

Convolutions Fu ||yC
Subsa mpl

LeNet-5

First strong results e

Acoustic Modeling using Deep Belief Networks
Abdel-rahman Mohamed, George Dahl, Geoffrey Hinton, 2010
Context-Dependent Pre-trained Deep Neural Networks

for Large Vocabulary Speech Recognition

George Dahl, Dong Yu, Li Deng, Alex Acero, 2012

pre-training
Y _ i

Deep Neural
Network

r t 1t 1
. . . . Spectrogram
Imagenet classification with deep convolutional ' |
neural netWOI‘kS lllustration of Dahl et aégg;fnb;lol_‘la;e Meclntosh, copyright
Alex Krizhevsky, llya Sutskever, Geoffrey E Hinton, 2012
L ;&T"‘"a » 8 :\].:t"f"::a I
i i ﬁ‘i —
o) ‘ i

Figures copyright Alex Krizhevsky, llya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

A bit of history:

ImageNet Classification with Deep
Convolutional Neural Networks

[Krizhevsky, Sutskever, Hinton, 2012]

Figure copyright Alex Krizhevsky, llya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

“AlexNet”

Fast-forward to today: ConvNets are everywhere

Classification Retrieval

Figures copyright Alex Krizhevsky, llya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

Fast-forward to today: ConvNets are everywhere

Segmentation

.....

Figures copyright Shaoging Ren, Kaiming He, Ross Girschick, Jian Sun, 2015. Reproduced with Figurescopyright Clement Fabet, 2012.
permission. .) Reproduced with permission. [Far abet et a/, 5 20 1 2]
[Faster R-CNN: Ren, He, Girshick, Sun 2015]

Fast-forward to today: ConvNets are
everywhere

e e AP
.. 2 4
' "“ 8] ,.:‘—,-.—-l"‘-. -~
,'L:O R:0 F..2 ON:0
A& AP:0.4 10
USL AL MPH St 1
merge; 1.0 "W 161.7 R

& y

+0.0001 ‘RAINING
+0.0000 TIRE_SPRAY
+0.0013 WET_ROAD

0.1539 CONTROLLED_ACCESS

s
8.3
i
: 3
g £ -
i i
i
g 3T
e
gi
b | -
-
l‘:
3 3
Lo s

Self-driving cars (video courtesy Tesla) Cloud TPU v3 Pod
https://www.tesla.com/Al

100+ petaflops
https://cloud.google.com/tpu/

https://www.tesla.com/AI
https://cloud.google.com/tpu/

Fast-forward to today: ConvNets are everywhere

NN

INIS
2828

[Toshev, Szegedy 2014]

Images are examples of pose estimation, not actually from Toshev & Szegedy 2014. Copyright Lane Mcintosh

1929,

S

frame: t-3 t-2

IlSmearine,’ . .

[Guo et al. 2014]

t-1 t

Figures copyright Xiaoxiao Guo, Satinder Singh, Honglak Lee, Richard Lewis,

and Xiaoshi Wang, 2014. Reproduced with permission.

Fast-forward to today ConvNets are everywhere

Mlg ant Malignant

[Levy et al. 2016] Figure copyright Levy et al. 2016.

de dwhpm

Photos by Lane Mcint

[Sermanet et al. 2011] conancezmar
o [Ciresan et al.]

From left to right: public domain by NASA, usa

[Die/eman et a/ 20 14] ESA/Hubble, public doma-in by NASA, and public dom

No errors

Image
Captioning
[Vinyals et al., 2015]

[Karpathy and Fei-Fei,
2015]

A white teddy bear sitting in A man in a baseball A woman is holding a
the grass uniform throwing a ball cat in her hand

r

All images are CCO Public domain:

hitps://pixabay.com/en/lugaage-antique-cat-1643010/

hitps.//pixaba en/teddv-plush-bears-cute-teddv-bear-16

https://pixabay.com/en/surf-wave-summer-sport-litoral-1668716/

hitps://pixabay.com/en/woman-female-model-portrait-adult-983967/
o g i hitps://pixabay.com/en/handstand-lake-meditation-496008/

A man riding a wave on A cat sitting on a A woman standing on a Bites.//oixabay comven/baseball plaver-shortstop-infield: 1045263/

top of a surfboard suitcase on the floor beach holding a surfboard Captions generated by Justin Johnson using Neuraltalk?

TEXT PROMPT
anillustration of a baby daikon radish in a tutu walking a dog

AI-GENERATED IMAGES

Caption-to-image . W =

B - -
fm - = |

Edit prompt or view more images v

TEXT PROMPT
an armchair in the shape of an avocado [...]

AI-GENERATED IMAGES

AR K

Edit prompt or view more images v

DALL-E: Creatl_ng Images from Text, OpenAI a store front that has the word ‘openai’ written on it [...]
https://openai.com/blog/dall-e/

AI-GENERATED IMAGES

https://openai.com/blog/dall-e/

Caption-to-image
An astronaut

riding a horse

as a pencil
drawing

https://openai.com/dall-e-2/

https://openai.com/dall-e-2/

Qriginal image is CCO public domain

Starry Night and Tree Roots by Van Gogh are in the public domain
Bokeh image is in the public domain Gatys et al, “Image Style Transfer using Convolutional Neural Networks”, CVPR 2016

Figures copyright Justin Johnson, 2015. Reproduced with permission. Generated using the Inceptionism approach
8 RYIE R Pe D Pt PP Gatys et al, “Controlling Perceptual Factors in Neural Style Transfer”, CVPR 2017

from a blog post by Google Research. Stylized images copyright Justin Johnson, 2017;
reproduced with permission

Convolutional neural networks

 Version of deep neural networks designed for signals
— 1D signals (e.g., speech waveforms)

1l , »W%
[f | I I 1 ‘
p ee ch
T T

i 'n i ‘ng a 'y ear olf s
T —T T T T T T T T T — T T
0.4 0.5 0.6 0.7 0.8 0.9 1

Motivation - Feature Learning

Life Before Deep Learning

7
—'VW“WW—’ ||-|||'MWWM|-”” — | SYM |— Ans
s |

Input Extract Concatenate into Linear
Pixels Hand-Crafted a vector X Classifier
Features

Figure: Karpathy 2016

e it R o [B
automobile EEH‘
o Eimall WS ¥ I
= EEOHNEEEsP
cer GRS Y EITRES
S A6 [1o | G/AP
rog I I N I) O N
ose ST 53 9 1 R T
e e A
o] T e I 2 1 S

Why use features? Why not pixels?

flzi, W,b) = Wa; +b

Q: What would be a
very hard set of classes
for a linear classifier to
distinguish?

(assuming x = pixels)

Slide from Karpathy 2016

Linearly separable classes

car classifier

airplane classifier

\
L
£
£

deer classifier

Aside: Image Features

» (Class
scores

plane car bird cat deer
- ‘ i : .

Aside: Image Features

f(x) = Wx
e —_— Class

_ scores
Feature Representation

Image Features: Motivation

Cannot separate red
and blue points with
linear classifier

Image Features: Motivation

Cannot separate red
and blue points with
linear classifier

8

After applying feature
transform, points can
be separated by linear

classifier

Example: Color Histogram

Example: Histogram of Oriented Gradients (HoG)

Divide image into 8x8 pixel regions Example: 320x240 image gets divided
Within each region quantize edge into 40x30 bins; in each bin there are
direction into 9 bins 9 numbers so feature vector has

30*40*9 = 10,800 numbers

Lowe, "Object recognition from local scale-invariant features”, ICCV 1998
Dalal and Triggs, "Histograms of ariented gradients for human detection," CVPR 2005

Image features vs ConvNets

f

Feature Extraction > LSRG

I] ” |]|] |] ” scores for classes
h

training

[\ .| % l', LN 3 ! ot 1 | A o B | Krizhevsky, Sutskever, and Hirmton, “Imagenet classification
»j' % \ %Ay A " A 41 4N with deep hitional neural rks”, NIPS 2012,
f \l P % . | \ /LN /L jense FUUFe copyright Krizhevsky, Sutskever, and Hintan, 2012.
\ e T e A% i 2 G Reproduced with permission.
\ 3 \ 1- i | N 5 3 Y v
| o g | 1 [
! e AN I el bl |

\[\ 3| U=

i o ™%

\! - 55 \ 3

i Ty | L]
—d 7550
pooling pool

>

10 numbers giving
scores for classes

training

Last layer of most CNNs is a linear classifier

This piece Is just a linear classifi’e-r)

4 1

A
A 4 MM s pHH
> oanjaadiyiy ﬂwﬁw Erﬁ gg H i — Ans
i H a}fa |1 bt o
58
(GoogLeNet)

Input Perform everything with a big neural
Pixels network, trained end-to-end

Key: perform enough processing so that by the time you get
to the end of the network, the classes are linearly separable

Visualizing AlexNet in 2D with t-SNE

3\ .
:/ 3 s 3
‘ 3
192 102 2048 2048 \dense
13 \ 13
3% . 3 .
224 5 1T) —:,»:—:'" 3' N 3\ -4 3 I "
. e — 13 ’ dense’| |dense
27 0 3| \ =
3 o b=
192 192 128 Max N
Max 128 Max pooling 2048 ef4s
pooling pooling

¢ structure, construction
covering
commodity, trade good, good
conveyance, transport

* invertebrate

e bird

e hunting dog

(c) DeCAF, (d) DeCAFs

(2D visualization using t-SNE) [Donahue, “DeCAF: DeCAF: A Deep Convolutional ...”, arXiv 2013]

Convolutional neural networks

* Layer types:
— Fully-connected layer
— Convolutional layer
— Pooling layer

Fully Connected Layer

32x32x3 image -> stretch to 3072 x 1

input activation

Wax

1 —> —> 4 [O

3072 10 x 3072

weights 10

Fully Connected Layer

32x32x3 image -> stretch to 3072 x 1

input

1 —
3072

Wax

10 x 3072
weights

activation
— 1 [O
/ 10
1 number:

the result of taking a dot product
between a row of W and the input
(a 3072-dimensional dot product)

Same as a linear classifer!

Convolution Layer

32x32x3 image -> preserve spatial structure

32 height

3 depth

Convolution Layer

32x32x3 image

ox5x3 filter
32 74
I| Convolve the filter with the image
i.e. “slide over the image spatially,

computing dot products”

32

ConVO|UtIO n Laye r Filters always extend the full
. depth of the input volume

32x32x3 image /
oxox3 filter
32 74
I| Convolve the filter with the image
i.e. “slide over the image spatially,

computing dot products”

32

Convolution Layer

32x32x3 image

ox5x3 filter
32 74
I| Convolve the filter with the image
i.e. “slide over the image spatially,

computing dot products”

32

Number of weights: 5x5x3 + 1 =76
(vs. 3072 for a fully-connected layer)
(+1 for bias)

Convolution Layer

___— 32x32x3 image

ox5x3 filter w
=
the result of taking a dot product between the

filter and a small 5x5x3 chunk of the image

32 (i.e. 5*5*3 = 75-dimensional dot product + bias)

3 wiz+b

™~~~ 1 number:

Convolution Layer

activation map

___— 32x32x3 image

5x5x3 filter /
=
@>O .

convolve (slide) over all

spatial locations
32 28

Convolution Layer

&1

I

—

V
——0

32

consider a second, green filter

32x32x3 Image
5x5x3 filter

convolve (slide) over all
spatial locations

activation maps

4

L

28

For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

activation maps

Y

Convolution Layer

32 A

3 6

28

We stack these up to get a “new image” of size 28x28x6!

(total number of parameters: 6 x (75 + 1) = 456)

Preview: ConvNet is a sequence of Convolution Layers, interspersed with
activation functions

32 28

CONYV,
RelLU
e.g. 6
ox5x3
filters

32 28

Preview: ConvNet is a sequence of Convolution Layers, interspersed with
activation functions

32

32

CONYV,
RelLU
e.g. 6
ox5x3
filters

28

28

CONYV,
RelLU
e.g. 10
5x5x6
filters

10

24

CONV,
RelLU

24

Preview

[Zeiler and Fergus 2013]

Low-level
features

Mid-level
features

Visualization of VGG-16 by Lane MclIntosh. VGG-16
architecture from [Simonyan and Zisserman 2014].

VGG-16 Convi_1

High-level
features

Linearly

»| separable >
classifier

preview:

RELU RELU

=
=
L
1
Gl
aal
L
14

RELU RELU

CONVlCONV
:

— RSB BN VO IO Y VA I)

CONV

colwvl

(1Y % O Eﬁ I AIHY

A closer look at spatial dimensions:

activation map

___— 32x32x3 image
5x5x3 filter

V
= .

convolve (slide) over all
spatial locations

32 28

A closer look at spatial dimensions:

7

/X7 input (spatially)
assume 3x3 filter

A closer look at spatial dimensions:

7

/X7 input (spatially)
assume 3x3 filter

A closer look at spatial dimensions:

7

/X7 input (spatially)
assume 3x3 filter

A closer look at spatial dimensions:

7

/X7 input (spatially)
assume 3x3 filter

A closer look at spatial dimensions:

7

/X7 input (spatially)
assume 3x3 filter

=> 5x5 output

A closer look at spatial dimensions:

7

/X7 input (spatially)
assume 3x3 filter
applied with stride 2

A closer look at spatial dimensions:

7

/X7 input (spatially)
assume 3x3 filter
applied with stride 2

A closer look at spatial dimensions:

2

/X7 input (spatially)
assume 3x3 filter
applied with stride 2
=> 3x3 output!

A closer look at spatial dimensions:

7

/X7 input (spatially)
assume 3x3 filter
applied with stride 3?

A closer look at spatial dimensions:

7

/X7 input (spatially)
assume 3x3 filter
applied with stride 3?

doesn’t fit!
cannot apply 3x3 filter on
7x7 input with stride 3.

Output size:
(N - F) / stride + 1

eg.N=7F=3:
stride1=>(7-3)1+1=5
stride2=>(7-3)/2+1=3
stride 3=>(7-3)/3+1=233:\

n practice: Common to zero pad the border

0O(0|0|0O(0O]O

e.g. input 7x7
0 3x3 filter, applied with stride 1
0 pad with 1 pixel border => what is the output?

(recall:)
(N - F) /stride + 1

n practice: Common to zero pad the border

0O(0|0|0O(0O]O

e.g. input 7x7
0 3x3 filter, applied with stride 1
0 pad with 1 pixel border => what is the output?

7x7 output!

n practice: Common to zero pad the border

0O(0|0|0O(0O]O

e.g. input 7x7
0 3x3 filter, applied with stride 1
0 pad with 1 pixel border => what is the output?
° 7x7 output!

in general, common to see CONYV layers with

stride 1, filters of size FxF, and zero-padding with

(F-1)/2. (will preserve size spatially)

e.g. F = 3 => zero pad with 1

F =5 =>zero pad with 2
F =7 =>zero pad with 3

Remember back to...

E.g. 32x32 input convolved repeatedly with 5x5 filters shrinks volumes spatially!
(32 -> 28 -> 24 ..)). Shrinking too fast is not good, doesn’t work well.

32

32

CONYV,
RelLU
e.g.6
5x5x3
filters

28

28

CONV,
RelLU
e.g. 10
5x5x6
filters

10

24

CONYV,
RelLU

24

Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Output volume size: ?

N

Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Output volume size:
(32+2*2-5)/1+1 = 32 spatially, so
32x32x10

N

Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Number of parameters in this layer?

N

Examples time: / /

Input volume: 32x32x
10 5x5 filters with stride 1, pad 2 L

<
A\

Number of parameters in this layer?
each filter has 5*5*2 + 1 = 76 params (+1 for bias)
=> /6*10 =760

(btw, 1x1 convolution layers make perfect sense)

64

56

56

1x1 CONV
with 32 filters

(each filter has size
1x1x64, and performs a
64-dimensional dot
product)

32

56

56

Convolutional layer—properties

* Small number of parameters to learn compared to a fully
connected layer

 Preserves spatial structure—output of a convolutional
layer is shaped like an image

» Translation equivariant: passing a translated image
through a convolutional layer is (almost) equivalent to
translating the convolution output (but be careful of
Image boundaries)

Pooling layer

- makes the representations smaller and more manageable
- operates over each activation map independently:

224x224x64

pool

e

112x112x64

224

224

—a 112
downsampling

112

Single depth slice

MAX POOLING

111112 | 4
5|6 | 7|8
312|110
112]3| 4

max pool with 2x2 filters

and stride 2

Fully Connected Layer (FC layer)

- Contains neurons that connect to the entire input volume, as in ordinary Neural

Networks

RELU RELU

CONV | CONV
.

RELU RELU

CONV

h| —

2
=
=
B
al
=
=
>
-

CONV

l coiwl

A EETER VR R

CONV

Y

RELU RELU

|

car
truck
aifrplane
ship

horse

[ConvNetdS demo: training on CIFAR-10]

ConvNetJS CIFAR-10 demo

Description

Network Visualization

This demo trains a Convolutional Neural Network on the CIFAR-10 dataset in your browser, with nothing but
Javascript. The state of the art on this dataset is about 90% accuracy and human performance is at about 94%
(not perfect as the dataset can be a bit ambiguous). | used this python script to parse the original files (python
version) into batches of images that can be easily loaded into page DOM with img tags.

This dataset is more difficult and it takes longer to train a network. Data augmentation includes random flipping
and random image shifts by up to 2px horizontally and verically.

By default, in this demo we're using Adadelta which is one of per-parameter adaptive step size methods, so we
don't have to worry about changing learning rates or momentum over time. However, | still included the text fields
for changing these if you'd like to play around with SGD+Momentum trainer.

Report questions/bugs/suggestions to @karpathy.

input (32x32x3)
max activation: 0.34313, min: -0.49608
max gradient: 0.04754, min: -0.0368

conv (32x32x16)

filter size 5x5x3, stride 1

max activation: 1.42613, min: -1.28123
max gradient: 0.03521, min: -0.03962
parameters: 16x5x5x3+16 = 1216

Activations:

Activations:

EENN - o
-HOoeE =
L

Activation Gradients:

Weights:
PRENGENANFEONNEEE
Weight Gradients:
LTl [l SETLES

https://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html

https://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html

AlexNet (2012)

6M parameters in total

Input CONV1
CONV2
CONV3 CONV4 CONV5 FC6 FC7 FC8
55
27 Dense Dense
o 13 13 13 Dense
s 5 | B i I~
bl > \ > 3. | o ‘ WRE t 13 . - -
11 V| s\ 27 U \
384 384 256
25 556 1000
M?X 4096 4096
Max pooling
96
224 pooling r
Input : (';":j’; Output: 1,000-D vector
image ’ poCiing (probabilities over
(RGB) St?ie 1,000 ImageNet
© categories)
I | | | | |
Image input 5 Convolution layers 3 Fully-connected

layers

Elgendy, Deep Learning for Vision Systems, https://livebook.manning.com/book/grokking-deep-learning-for-computer-vision/chapter-5/v-3/

https://livebook.manning.com/book/grokking-deep-learning-for-computer-vision/chapter-5/v-3/

“AlexNet”

61

XeW gzt
8

[Krizhevsky et al. NIPS 2012]

“GoogLeNet”

Bflea]ee

==X B 3 =
Ry
-] |—
L]
e

B e
==l

= B 6 R
E =N = = e
-] |}
B [==]
el L1
= 1]

[Szegedy et al. CVPR 2015]

“VGG Net”

maxpool

~ conv-128
conv-128
~maxpool

conv-256
conv-256
~maxpool

~ conv-512
conv-512
maxpool

conv-512

conv-512
maxpool

__FC-4096
FC-4096
FC-1000
softmax

[Simonyan & Zisserman,
ICLR 2015]

“ResNet”

[He et al. CVPR 2016]

Big picture

A convolutional neural network can be thought of as a
function from images to class scores
— With millions of adjustable weights...

— ... leading to a very non-linear mapping from images to features
/ class scores.

— We will set these weights based on classification accuracy on
training data...

— ... and hopefully our network will generalize to new images at
test time

Data is key—enter ImageNet

* ImageNet (and the ImageNet Large-Scale Visual Recognition
Challege, aka ILSVRC) has been key to training deep learning

methods
— J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li and L. Fei-Fei, ImageNet: A Large-Scale
Hierarchical Image Database. CVPR, 2009.

« ILSVRC: 1,000 object categories, each with ~700-1300 training
Images. Test set has 100 images per categories (100,000 total).

 Standard ILSVRC error metric: top-5 error

— if the correct answer for a given test image is in the top 5 categories,
your answer is judged to be correct

Performance improvements on ILSVRC

ImageNet competition results

* ImageNet Large-Scale

Visual Recognition Pre-deep
Challenge learning era "\
e Held from 2011-2017 |, #Deeplearning era

» 1000 categories, 1000 © g —

training images per .
category n e

:
8
:
 Test performance on held- / N
out test set of images Ao Net

30+

[]
h
L]

(]
=

ImageNet Top-5 Error

=
=
[l

—
th
T

28.2

25.8

2010

2011

2012 2013 2014 2014

2015 2016 2017

Image credit: Zaid Alyafeai, Lahouari Ghouti

Questions?

