CS5670: Computer Vision
Noah Snavely

Image Classification
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Slides from Fei-Fei Li, Justin Johnson, Serena Yeung
http://vision.stanford.edu/teaching/cs231n/



Announcements

* Project 4 to be released shortly

* Vote for Project 3 artifacts!
— Deadline: midnight tonight



Today

Image classification pipeline
Training, validation, testing
Nearest neighbor classification
Linear classification

Score function and loss function

Building up to CNNs for learning
— Next 2-4 lectures on deep learning



Image Classification:
A core task in Computer Vision

* Assume given set of discrete labels, e.g.
{cat, dog, cow, apple, tomato, truck, ... }
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See also:

Image classification demo
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Image Classification

(assume given set of discrete labels)
{dog, cat, truck, plane, ...}

> cat

Slides from Andrej Karpathy and Fei-Fei Li
http://vision.stanford.edu/teaching/cs231n/



Image Classification: Problem
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- What the computer sees

82% cat
15% dog
2% hat
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Recall from last time: Challenges of recognition

Viewpoint [llumination Deformation Occlusion
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An image classifier

def classify_image(image):

return class_label

Unlike e.g. sorting a list of numbers,

no obvious way to hard-code the algorithm for
recognizing a cat, or other classes.

Slide credit: Fei-Fei Li & Justin Johnson & Serena Yeung



Data-driven approach

* Collect a database of images with labels
 Use ML to train an image classifier

* Evaluate the classifier on test images
Example training set

cat dog hat
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Data-driven approach

* Collect a database of images with labels
* Use ML to train an image classifier
* Evaluate the classifier on test images

def train(train_images, train_labels):

def predict (image):

return class label

Slides from Andrej Karpathy and Fei-Fei Li
http://vision.stanford.edu/teaching/cs231n/
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Classifiers

Nearest Neighbor

KNN (“k-Nearest Neighbors”)
Linear Classifier

SVM (Support Vector Machine)



First: Nearest Neighbor (NN) Classifier

* Train

— Remember all training images and their labels

 Predict

— Find the closest (most similar) training image
— Predict its label as the true label



CIFAR-10 and NN results

Example dataset: CIFAR-10

10 labels

50,000 training images, each image is tiny: 32x32
10,000 test images.
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CIFAR-10 and NN results

Example dataset: CIFAR-10
10 labels

50,000 training images
10,000 test images.

For every test image (first column),
examples of nearest neighbors in rows
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Slides from Andrej Karpathy and Fei-Fei Li
http://vision.stanford.edu/teaching/cs231n/



k-nearest neighbor

* Find the k closest points from training data
* Take majority vote from K closest points

the data NN classifier
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What does this look like
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What does this look like?
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How to find the most similar training
image? What is the distance metric?
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Choice of distance metric

Hyperparameter
L1 (Manhattan) distance L2 (Euclidean) distance
(11, I) Z 7 — 17| do(Ib) = |3 (B - 7)?
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Two most commonly used special cases of p-norm
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Slides from Andrej Karpathy and Fei-Fei Li
http://vision.stanford.edu/teaching/cs231n/



K-Nearest Neighbors: Distance Metric

L1 (Manhattan) distance
dy\(I1, 1) Zm‘ IZ|
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L2 (Euclidean) distance
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K-Nearest Neighbors: Distance Metric

L1 (Manhattan) distance L2 (Euclidean) distance
di(I1,I2) = Z [T - 17| dy(Ih, Ip) = \/E (r-B)°
P P

Demo: http://vision.stanford.edu/teaching/cs231n-demos/knn/



http://vision.stanford.edu/teaching/cs231n-demos/knn/

Visualization: L2 distance

sl 4 st Nt B@SAE Sdte L
RS S N Y Y et ] )
ﬂmﬂ*ﬁ&—hi%%&#‘ &~ *F_;[: \4 ”?M'f
F ’ ™ A - 'JR‘ A

A SN
Y% il ' ;#’ii.b.Q A
S 2 mm’*f‘* N B Ao e SO, 9
By ‘% —*1-&
ay: i 8 ‘1’ "*-‘* ""'5‘?“"' i‘l‘&a VNS, m&uﬁ‘e“&
e doon B 6 B e o g v V_‘w),;_;lw A
/Q"“’{\’f.‘ )1\01““4 “M‘gi‘.r; i“ .-“
A S el T = R
=)




Hyperparameters

What is the best distance to use?
What is the best value of k to use?

These are hyperparameters: choices about
the algorithm that we set rather than learn

How do we set them?
— One option: try them all and see what works best



Setting Hyperparameters

Idea #1: Choose hyperparameters

that work best on the data

Your Dataset




Setting Hyperparameters

Idea #1: Choose hyperparameters

that work best on the data

BAD: K = 1 always works
perfectly on training data

Your Dataset




Setting Hyperparameters

Idea #1: Choose hyperparameters
that work best on the data

BAD: K = 1 always works
perfectly on training data

Your Dataset

Idea #2: Split data into train and test, choose
hyperparameters that work best on test data

train

test




Setting Hyperparameters

Idea #1: Choose hyperparameters
that work best on the data

BAD: K = 1 always works
perfectly on training data

Your Dataset

Idea #2: Split data into train and test, choose
hyperparameters that work best on test data

BAD: No idea how algorithm
will perform on new data

train

test




Setting Hyperparameters

Idea #1: Choose hyperparameters
that work best on the data

BAD: K = 1 always works
perfectly on training data

Your Dataset

Idea #2: Split data into train and test, choose
hyperparameters that work best on test data

BAD: No idea how algorithm
will perform on new data

train

test

Idea #3: Split data into train, val, and test; choose Better!

hyperparameters on val and evaluate on test

train

validation test




Setting Hyperparameters

Your Dataset

Idea #4: Cross-Validation: Split data into folds,
try each fold as validation and average the results

fold 1 fold 2 fold 3 fold 4 fold test
fold 1 fold 2 fold 3 fold 4 fold & test
fold 1 fold 2 fold 3 fold 4 fold & test

Useful for small datasets, but not used too frequently in deep learning
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Recap: How to pick hyperparameters?

Methodology
— Train and test
— Train, validate, test

Train for original model
Validate to find hyperparameters
Test to understand generalizability



KNN -- Complexity and Storage

N training images, M test images

Training: O(1)
Testing: O(MN)

Hmm...
— Normally need the opposite
— Slow training (ok), fast testing (necessary)



k-Nearest Neighbor on images never used.

- terrible performance at test time
- distance metrics on level of whole images can be
very unintuitive

original messed up darkened

(all 3 images have same L2 distance to the one on the left)



k-Nearest Neighbors: Summary

In image classification we start with a training
set of images and labels, and must predict labels
on the test set

The K-Nearest Neighbors classifier predicts labels
based on nearest training examples

Distance metric and K are hyperparameters

Choose hyperparameters using the validation
set; only run on the test set once at the very end!



Linear classifiers

Neural Network

Linear
classifiers




Score function

- class scores

Slides from Andrej Karpathy and Fei-Fei Li
http://vision.stanford.edu/teaching/cs231n/



Score function: f

Parametric approach

image parameters

f(x,W) ~ 10 numbers,

iIndicating class
scores

&

[32x32x3]
array of numbers 0...1
(3072 numbers total)



Parametric approach: Linear classifier

f(z, W)

10x1

&

[32x32x3]
array of numbers 0...1

_ E@ 3072x1
10x3072
\ 10 numbers,
indicating class
scores

parameters, or “weights”



Parametric approach: Linear classifier

f(z, W)

10x1

3072x1

&

[32x32x3]
array of numbers 0...1

=Wk (+b)| 10x1
10x3072
\ 10 numbers,
Indicating class
scores

parameters, or “weights”



Linear Classifier

define a score function data (image)

/

f(wzawab) =Wz +b

/ \ \ “bias vector”

“weights”
class scores
“parameters”



Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

stretch pixels into single column

input image

i
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Interpretation: Template matching

plane car bird cat deer dog frog horse ship tryck :

f(xiawab) = Wz;+6



Geometric Interpretation

car classifier

airplane classifier

\

deer classifier f(wZ) W, b) — sz + b



Linear classifiers

e Find linear function (hyperplane) to separate

positive and negative examples
@

® X. positive:  X,-w+b>0
@ A
o X. negative: X, -w+b<0
@
@
® o e o
@ ® N\
@ ® ®
@
Which hyperplane is best?
® We will come back to this

later



Hard cases for a linear classifier

Class 1: Class 1: Class 1:
First and third quadrants 1 <=L2norm <=2 Three modes
Class 2 Class 2: Class 2:

Second and fourth quadrants Everything else Everything else




Linear Classifier: Three Viewpoints

Algebraic Viewpoint Visual Viewpoint Geometric Viewpoint
f(x, W) = Wx One template Hyperplanes
per class cutting up space

4 32 | = | 4378 | Dogscora

dog frog horse chip truck

24 "
-1.2 61.95 | Ship score

2

plane car bird cat deer 4
¥ e\ g
56 2= =
141 -96.8 | Cat score .
231 s > ®
o
sifier| 4% 2 2
S .B




So far: Defined a (linear) score function f

Example class
scores for 3
Images for
some W

How can we tell
whether this W
IS good or bad?

Catirage by Mikila is licensed under CC.BY 2.0
Carimage is CC public domain
Erogimage isin the public domain

airplane =3.45 -0.51
automobile -8.87 6.04
bird 0.09 5. 31
cat 2.9 -4.22
deer 4.48 -4.19
dog 8.02 3.+:58
frog 3.78 4,49
horse 1.06 -4.,37
ship -0, 56 -2.09
truck =1, 12 =293

(X,W)=Wx +Db




f(x, W) =Wx +Db

Coming up:
. (quantifying what it means to
- Loss function have a‘“good” wy

(start with random W and find a

B Optlmlzatlon W that minimizes the loss)
- COHVNGtS' (tweak the functional form of f)



