CS5670: Computer Vision

Noah Snavely

Image Classification

Slides from Fei-Fei Li, Justin Johnson, Serena Yeung http://vision.stanford.edu/teaching/cs231n/

Announcements

Project 4 to be released shortly

- Vote for Project 3 artifacts!
 - Deadline: midnight tonight

Today

- Image classification pipeline
- Training, validation, testing
- Nearest neighbor classification
- Linear classification
- Score function and loss function

- Building up to CNNs for learning
 - Next 2-4 lectures on deep learning

Image Classification: A core task in Computer Vision

 Assume given set of discrete labels, e.g. {cat, dog, cow, apple, tomato, truck, ... }

Image classification demo

https://cloud.google.com/vision/

See also:

https://aws.amazon.com/rekognition/

https://www.clarifai.com/

https://azure.microsoft.com/en-us/services/cognitive-services/computer-vision/

• • •

Image Classification

(assume given set of discrete labels) {dog, cat, truck, plane, ...}

cat

Image Classification: Problem

Recall from last time: Challenges of recognition

Viewpoint Occlusion

Illumination

This image is CC0 1.0 public domain

Deformation

This image by Umberto Salvagnin is licensed under CC-BY 2.0

This image by jonsson is licensed under CC-BY 2.0

Clutter

This image is CC0 1.0 public domain

Intraclass Variation

This image is CC0 1.0 public domain

An image classifier

```
def classify_image(image):
    # Some magic here?
    return class_label
```

Unlike e.g. sorting a list of numbers,

no obvious way to hard-code the algorithm for recognizing a cat, or other classes.

Data-driven approach

- Collect a database of images with labels
- Use ML to train an image classifier
- Evaluate the classifier on test images
 Example training set

Data-driven approach

- Collect a database of images with labels
- Use ML to train an image classifier
- Evaluate the classifier on test images

```
def train(train_images, train_labels):
    # build a model of images -> labels

def predict(image):
    # evaluate the model on the image
    return class_label
```


Dataset: ETH-80, by B. Leibe Slide credit: D. Hoiem, L. Lazebnik

Classifiers

- Nearest Neighbor
- kNN ("k-Nearest Neighbors")
- Linear Classifier
- SVM (Support Vector Machine)
- •

First: Nearest Neighbor (NN) Classifier

- Train
 - Remember all training images and their labels

- Predict
 - Find the closest (most similar) training image
 - Predict its label as the true label

CIFAR-10 and NN results

Example dataset: CIFAR-10

10 labels

50,000 training images, each image is tiny: 32x32

10,000 test images.

CIFAR-10 and NN results

Example dataset: CIFAR-10

10 labels 50,000 training images 10,000 test images.

For every test image (first column), examples of nearest neighbors in rows

k-nearest neighbor

- Find the k closest points from training data
- Take majority vote from K closest points

What does this look like?

What does this look like?

How to find the most similar training image? What is the distance metric?

L1 distance:

$$d_1(I_1,I_2) = \sum_p |I_1^p - I_2^p|$$

Where I_1 denotes image 1, and p denotes each pixel

1001	· In	200	
100			-
test		IUU	•

56	32	10	18
90	23	128	133
24	26	178	200
2	0	255	220

training image

10	20	24	17
8	10	89	100
12	16	178	170
4	32	233	112

pixel-wise absolute value differences

Choice of distance metric

Hyperparameter

L1 (Manhattan) distance

L2 (Euclidean) distance

$$d_1(I_1,I_2) = \sum_p |I_1^p - I_2^p|$$

$$d_2(I_1,I_2)=\sqrt{\sum_pig(I_1^p-I_2^pig)^2}$$

- Two most commonly used special cases of p-norm

$$\left|\left|x
ight|\right|_p = \left(\left|x_1
ight|^p + \dots + \left|x_n
ight|^p
ight)^{rac{1}{p}} \hspace{5mm} p \geq 1, x \in \mathbb{R}^n$$

K-Nearest Neighbors: Distance Metric

L1 (Manhattan) distance

$$d_1(I_1,I_2) = \sum_p |I_1^p - I_2^p|$$

L2 (Euclidean) distance

$$d_2(I_1,I_2)=\sqrt{\sum_pig(I_1^p-I_2^pig)^2}$$

K-Nearest Neighbors: Distance Metric

L1 (Manhattan) distance

$$d_1(I_1,I_2) = \sum_p |I_1^p - I_2^p|$$

L2 (Euclidean) distance

$$d_2(I_1,I_2)=\sqrt{\sum_pig(I_1^p-I_2^pig)^2}$$

K = 1

Demo: http://vision.stanford.edu/teaching/cs231n-demos/knn/

Visualization: L2 distance

Hyperparameters

- What is the **best distance** to use?
- What is the best value of k to use?

 These are hyperparameters: choices about the algorithm that we set rather than learn

- How do we set them?
 - One option: try them all and see what works best

Idea #1: Choose hyperparameters that work best on the data

Your Dataset

Idea #1: Choose hyperparameters that work best on the data

BAD: K = 1 always works perfectly on training data

Your Dataset

Idea #1: Choose hyperparameters that work best on the data

BAD: K = 1 always works perfectly on training data

Your Dataset

Idea #2: Split data into train and test, choose hyperparameters that work best on test data

train test

Idea #1: Choose hyperparameters that work best on the data

BAD: K = 1 always works perfectly on training data

that work boot on the data	porroomy	on danning da	
Your Dataset			
Idea #2: Split data into train and test, choose hyperparameters that work best on test data		idea how algo m on new dat	
train		test	

Idea #1: Choose hyperparameters that work best on the data

BAD: K = 1 always works perfectly on training data

Your Dataset Idea #2: Split data into train and test, choose **BAD**: No idea how algorithm hyperparameters that work best on test data will perform on new data train test **Idea #3**: Split data into **train**, **val**, and **test**; choose

hyperparameters on val and evaluate on test

Better!

train	validation	test
-------	------------	------

Your Dataset

Idea #4: Cross-Validation: Split data into folds, try each fold as validation and average the results

fold 1	fold 2	fold 3	fold 4	fold 5	test
fold 1	fold 2	fold 3	fold 4	fold 5	test
fold 1	fold 2	fold 3	fold 4	fold 5	test

Useful for small datasets, but not used too frequently in deep learning

Example of 5-fold cross-validation for the value of **k**.

Each point: single outcome.

The line goes through the mean, bars indicated standard deviation

(Seems that $k \sim = 7$ works best for this data)

Recap: How to pick hyperparameters?

- Methodology
 - Train and test
 - Train, validate, test

- Train for original model
- Validate to find hyperparameters
- Test to understand generalizability

kNN -- Complexity and Storage

N training images, M test images

- Training: O(1)
- Testing: O(MN)

- Hmm...
 - Normally need the opposite
 - Slow training (ok), fast testing (necessary)

k-Nearest Neighbor on images never used.

- terrible performance at test time
- distance metrics on level of whole images can be very unintuitive

(all 3 images have same L2 distance to the one on the left)

k-Nearest Neighbors: Summary

- In image classification we start with a training set of images and labels, and must predict labels on the test set
- The K-Nearest Neighbors classifier predicts labels based on nearest training examples
- Distance metric and K are hyperparameters
- Choose hyperparameters using the validation
 set; only run on the test set once at the very end!

Linear classifiers

Neural Network

This image is CC0 1.0 public domain

Score function

class scores

Score function: f

Parametric approach

image parameters f(x, W)

10 numbers, indicating class scores

[32x32x3] array of numbers 0...1 (3072 numbers total)

Parametric approach: Linear classifier

Parametric approach: Linear classifier

Linear Classifier

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Interpretation: Template matching

$$f(x_i, W, b) = Wx_i + b$$

Geometric Interpretation

Linear classifiers

• Find linear function (*hyperplane*) to separate positive and negative examples

Hard cases for a linear classifier

Class 1

First and third quadrants

Class 2

Second and fourth quadrants

Class 1:

1 <= L2 norm <= 2

Class 2

Everything else

Class 1

Three modes

Class 2

Everything else

Linear Classifier: Three Viewpoints

Algebraic Viewpoint

$$f(x,W) = Wx$$

Visual Viewpoint

One template per class

Geometric Viewpoint

Hyperplanes cutting up space

So far: Defined a (linear) score function f(x,W) = Wx + b

Example class scores for 3 images for some W:

How can we tell whether this W is good or bad?

Cat image by Nikita is licensed under CC-BY 2.0 Car image is CC01.0 public domain Frog image is in the public domain

- 3.45	-0.51	3.42
-8.87	6.04	4.64
0.09	5.31	2.65
2.9	-4.22	5.1
4.48	-4.19	2.64
8.02	3.58	5.55
3.78	4.49	-4.34
1.06	-4.37	-1.5
-0.36	-2.09	-4.79
-0.72	-2.93	6.14
	-8.87 0.09 2.9 4.48 8.02 3.78 1.06 -0.36	-8.87 6.04 0.09 5.31 2.9 -4.22 4.48 -4.19 8.02 3.58 3.78 4.49 1.06 -4.37 -0.36 -2.09

$$f(x,W) = Wx + b$$

Coming up:

- Loss function
- Optimization
- ConvNets!

(quantifying what it means to have a "good" W)

(start with random W and find a W that minimizes the loss)

(tweak the functional form of f)