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Announcements

• Midterm due at the beginning of class today

• Project 3 will be assigned soon

– Groups will default to same as Project 2

– Tentative due date: 3/30



Reading

• Reading: Szeliski, Ch. 7.2



Fundamental matrix song

https://www.youtube.com/watch?v=DgGV3l82NTk

https://www.youtube.com/watch?v=DgGV3l82NTk


Back to stereo

• Where do epipolar lines come from?



Two-view geometry

• Where do epipolar lines come from?

epipolar plane

epipolar line
epipolar line

0

3D point lies somewhere 
along r

(projection of r)

Image 1 Image 2



Fundamental matrix

• This epipolar geometry of two views is described by a Very 
Special 3x3 matrix      , called the fundamental matrix

• maps (homogeneous) points in image 1 to lines in image 2!

• The epipolar line (in image 2) of point p is:

• Epipolar constraint on corresponding points:

epipolar plane

epipolar line
epipolar line

0

(projection of ray)

Image 1 Image 2



Fundamental matrix

• Two Special points: e1 and e2 (the epipoles): projection of one 
camera into the other

epipolar plane

epipolar line
epipolar line

0

(projection of ray)



Fundamental matrix

• Two Special points: e1 and e2 (the epipoles): projection of one 
camera into the other

• All of the epipolar lines in an image pass through the epipole

0



Epipoles



Fundamental matrix

• Why does F exist?

• Let’s derive it…

0



Fundamental matrix – calibrated case

0

: intrinsics of camera 1 : intrinsics of camera 2

: rotation of image 2 w.r.t. camera 1

: ray through p in camera 1’s (and world) coordinate system

: ray through q in camera 2’s coordinate system



Fundamental matrix – calibrated case

• ,         , and     are coplanar

• epipolar plane can be represented as 

0



Fundamental matrix – calibrated case

0



Fundamental matrix – calibrated case

• One more substitution:

– Cross product with t can be represented as a 3x3 matrix

0



Fundamental matrix – calibrated case

0



Fundamental matrix – calibrated case

0

: ray through p in camera 1’s (and world) coordinate system

: ray through q in camera 2’s coordinate system

{

the Essential matrix



Cross-product as linear operator

Useful fact: Cross product with a vector t can be represented 
as multiplication with a (skew-symmetric) 3x3 matrix



Fundamental matrix – uncalibrated case

0

the Fundamental matrix

: intrinsics of camera 1 : intrinsics of camera 2

: rotation of image 2 w.r.t. camera 1



Properties of the Fundamental Matrix

• is the epipolar line associated with

• is the epipolar line associated with 

• and 

• is rank 2

• How many parameters does F have?
20

T



Rectified case



Stereo image rectification

• reproject image planes onto a common
• plane parallel to the line between optical centers
• pixel motion is horizontal after this transformation
• two homographies (3x3 transform), one for each input 

image reprojection
➢ C. Loop and Z. Zhang. Computing Rectifying Homographies for Stereo 

Vision. IEEE Conf. Computer Vision and Pattern Recognition, 1999.

http://research.microsoft.com/~zhang/Papers/TR99-21.pdf


Original stereo pair

After rectification



Relationship with homography?

Images taken from the same center of projection?  Use a homography!



Questions?



Estimating F

• If we don’t know K1, K2, R, or t, can we 
estimate F for two images?

• Yes, given enough correspondences



Estimating F – 8-point algorithm

• The fundamental matrix F is defined by

0Fxx'
for any pair of matches x and x’ in two images.

• Let x=(u,v,1)T and x’=(u’,v’,1)T,
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8-point algorithm
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• Like with homographies, instead of solving            , 
we seek f to minimize         , least eigenvector 
of          .

0Af
Af

AA




8-point algorithm – Problem?

• F should have rank 2

• To enforce that F is of rank 2, F is replaced by F’ that 
minimizes              subject to the rank constraint. 'FF 

• This is achieved by SVD. Let                , where 

, let 

then                    is the solution. 
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8-point algorithm

% Build the constraint matrix

A = [x2(1,:)'.*x1(1,:)'  x2(1,:)'.*x1(2,:)'  x2(1,:)' ...

x2(2,:)'.*x1(1,:)'  x2(2,:)'.*x1(2,:)'  x2(2,:)' ...

x1(1,:)'            x1(2,:)'          ones(npts,1) ];       

[U,D,V] = svd(A);

% Extract fundamental matrix from the column of V 

% corresponding to the smallest singular value.

F = reshape(V(:,9),3,3)';

% Enforce rank2 constraint 

[U,D,V] = svd(F);

F = U*diag([D(1,1) D(2,2) 0])*V';



8-point algorithm

• Pros: it is linear, easy to implement and fast

• Cons: susceptible to noise
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Problem with 8-point algorithm

~10000 ~10000 ~10000 ~10000~100 ~100 1~100 ~100

!

Orders of magnitude difference

between column of data matrix

 least-squares yields poor results



Normalized 8-point algorithm
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Transform image to ~[-1,1]x[-1,1]



Normalized 8-point algorithm

1. Transform input by                ,

2. Call 8-point on           to obtain

3.

ii Txx ˆ '
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TFTF ˆΤ'

F̂

0Fxx'

0ˆ'ˆ 1  xFTTx'

F̂



Normalized 8-point algorithm

A = [x2(1,:)'.*x1(1,:)'   x2(1,:)'.*x1(2,:)'  x2(1,:)' ...

x2(2,:)'.*x1(1,:)'   x2(2,:)'.*x1(2,:)'  x2(2,:)' ...

x1(1,:)'             x1(2,:)'          ones(npts,1) ];       

[U,D,V] = svd(A);

F = reshape(V(:,9),3,3)';

[U,D,V] = svd(F);

F = U*diag([D(1,1) D(2,2) 0])*V';

% Denormalise

F = T2'*F*T1;

[x1, T1] = normalise2dpts(x1);

[x2, T2] = normalise2dpts(x2);



Results (ground truth)



Results (8-point algorithm)



Results (normalized 8-point algorithm)



What about more than two views?

• The geometry of three views is described by a 
3 x 3 x 3 tensor called the trifocal tensor

• The geometry of four views is described by a     
3 x 3 x 3 x 3 tensor called the quadrifocal
tensor

• After this it starts to get complicated…



Large-scale structure from motion

Dubrovnik, Croatia.  4,619 images (out of an initial  57,845).
Total reconstruction time: 23 hours
Number of cores: 352


