
CS5643 
10 Resolving systems of collisions

Steve Marschner
Cornell University

Spring 2025

Overview
How systems of collisions arise

• resting contact

• deformable vs. rigid

1: resolving systems of collisions with particles
• kinematics of 3DOF per object, friction makes no sense

• establishes problem structure in simpler setting

2: resolving systems of frictionless collisions with rigid bodies
• similar to (1) but with kinematics that has position and orientation

3: resolving systems of collisions with friction (rigid bodies)
• reuses similar machinery to (2) to also solve for frictional forces

Resolving a system of coupled collisions
Sometimes many collisions are coupled together at a single time

• deformable objects insulate contacts from one another

• rigid objects transmit impulses instantly

Common case: resting contact
In the presence of gravity, objects end up piled up

• contacts persist over time

• large systems of coupled contacts are unavoidable

• sequential resolution does not scale

One collision in the context of another
Suppose an object is involved in two simultaneous collisions

• one we are computing the impulse for

• someone has told us the impulse for the other one

Call the objects A and B, the collisions 1 and 2
• pre-collision velocities and ; post-collision and

• collision normals and

• restitution hypothesis: where

• collision impulses are (unknown) and (known)

v−
a v−

b v+
a v+

b

n1 n2

v+
1 = − crv−

1 v1 = n1 ⋅ (va − vb)

γ1n1 γ2n2

• velocities after collision

-

-

-

-

• solving for impulse

-

-

-

- where

v+
a = v−

a + m−1
a γ1n1

v+
b = v−

b − m−1
b γ1n1 + m−1

b γ2n2

v+
1 = n1 ⋅ (v+

a − v+
b)

v+
1 = n1 ⋅ (v−

a − v−
b) + (m−1

a + m−1
b)γ1 − n1 ⋅ m−1

b γ2n2

v+
1 = − crv−

1 = v−
1 + (m−1

a + m−1
b)γ1 − n1 ⋅ m−1

b γ2n2

(m−1
a + m−1

b)γ1 = − (1 + cr)v−
1 + m−1

b γ2(n1 ⋅ n2)
γ1 = meff (−(1 + cr)v−

1 + m−1
b γ2n̂1 ⋅ n̂2)

meff = (m−1
a + m−1

b)−1

One collision in the context of another

One collision in the context of many
The same idea extends to as many other

collisions as required

• where is +1 if object X is the first object in collision
and, –1 if X is the second object in collision , and 0 if
X is not involved in collision .

• for efficiency compute and first

- more on this later

γi = meff (−(1 + cr)v−
i − m−1

a n̂i ⋅ γia + m−1
b n̂i ⋅ γib)

γix = ∑
j≠i

sjxγjn̂j

sjx j
j

j

γa γb

Iterating to resolve simultaneous collisions
Since we don’t know any of the to start, just use our best esimate

• compute object velocities, detect all collisions

• initialize all to zero

• solve for each assuming the other s are correct

- if wants to be negative, set it to zero (collisions can push but not pull!)

• repeat until convergence

• update velocities using impulses, compute new positions from velocities

To resolve redsidual errors, add an overlap-repair impulse
• bias target velocity in normal direction proportional to overlap

• very effective at removing residual overlap

• unstable if turned up too much to repair major overlap problems

γ

γi

γi γ
γi

Some implementation issues
Summing influences of related collisions

• searching all collisions for related ones is O(N^2)

• maintaining some graph data structure adds extra complexity

• there is a nice trick for maintaining these sums efficiently per object

• see lecture notes for details

This works, mostly! (demo…)
• it does converge

• it does not always converge very quickly

• errors can accumulate and lead to persistent overlap between objects

Why does this work?
If we stand back from the process we have been using, it looks like this:

1. Write the new and old normal velocities as a function of the new and old object velocities

2. Write the objects’ new velocities as a function of their old velocities and the collision impulses

3. Use the restitution hypothesis to write an equation that can be solved for the collision impulses

We can formalize this computation in terms of matrices

It will lead to a matrix system with a well defined solution…

1. Normal velocities from object velocities
Normal velocity for collision 1, , is a linear function of object velocities

• same can be done for all collisions, stacked into a matrix

• then where

• this can be used before or after the collision:

v1

J
vn = Jv vn = [v1 ⋯ vk]T

v−
n = Jv−

v+
n = Jv+

v1 = n̂1 ⋅ va − n̂1 ⋅ vb = [⋯ n̂T
1 ⋯ −n̂T

1 ⋯]

⋮
va
⋮
vb
⋮

= J1v

2. Velocity changes from collision impulses
Collision impulse 1 changes the velocities for objects A and B

• package the update to the whole system velocity in a vector

• or for all collisions at once:

v+
a = v−

a + m−1
a γ1n̂1

v+
b = v−

b − m−1
b γ1n̂1

⋮
v+

a
⋮
v+

b
⋮

=

⋮
v−

a
⋮
v−

b
⋮

+

⋮
m−1

a n̂1
⋮

−m−1
b n̂1
⋮

γ1 M =

m1 0 ⋯ 0 0
0 m2 ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮
0 0 ⋯ mN 0
0 0 ⋯ 0 mN

v+ = v− + M−1JT
1γ1

v+ = v− + M−1JT
1γ1 + ⋯ + M−1JT

k γk

= v− + M−1JTγ

3. Global system from restitution hypothesis
Restitution hypothesis as a statement about all collisions:

• (1) and (2) let us write the two velocities

• and substituting we get a linear system

• this is a square, by , matrix system

- one row per collision, one column per collision

v+
n = − crv−

n

v−
n = Jv−

v+
n = Jv+ = Jv− + JM−1JTγ

Jv− + JM−1JTγ = − crJv−

JM−1JTγ = − (1 + cr)Jv−

Aγ = b
k k

Example: independent collisions

γ1 = − (1 + cr) n̂1 ⋅ (v−
a − v−

b)/(m−1
a + m−1

b)
γ2 = − (1 + cr) n̂2 ⋅ (v−

c − v−
d)/(m−1

c + m−1
d)

Example: coupled collisions

Problem: pulling impulses
In some situations we don’t want to solve the equation we wrote

• e.g. single contact with force pulling objects apart

• if objects were stationary, equations ask for zero relative velocity

- so system computes a negative that will bring B with A

- solution here: just clamp at zero

• more complex e.g.: two contacts with impact pushing balls apart

- clamping to zero after solution leaves wrong (e.g. C is heavy…)

γ
γ

γ2 γ1

How to say what we want?
We want , aka.

• but wait, actually, not always — the components of should not be negative

• if would be negative we want to set and let

• what we have here is a pair of complementary constraints for each :

- (and) or (and)

• stated a little too cleverly as a whole system:

- and and

• this kind of problem is known as a linear complementarity problem or LCP

JM−1JTγ = − (1 + cr)Jv− Aγ = b
γ

γi γi = 0 v+
i > − crv−

i

i
γi > 0 Aiγ − bi = 0 Aiγ − bi > 0 γi = 0

Aγ − b ≥ 0 γ ≥ 0 (Aγ − b) ⋅ γ = 0

A little LCP intuition
It’s not really so different from a regular linear system

• linear system is intersecting with

• LCP is intersecting with L-shaped complementary constraint

• this is not an inequality constrained optimization problem despite the appearance of “ ”

r = Ax − b r = 0
r = Ax − b

≥

LCP constraint in the context of collisions

Solving the LCP system
Popular and simple approach: Projected Gauss-Seidel

• use basic iterative solver but enforce constraint at each step by clamping

• Gauss-Seidel algorithm is a suitable choice: solve rows sequentially

- find assuming all for are known

- use latest values for

-
row reads or

-
solve:

- after updating all , start back at the top and repeat whole process until convergnece

γ > 0

xi xj i ≠ j

xj

i
N

∑
j=0

aijxj = bi

i−1

∑
j=0

aijxj + aiixi +
N

∑
j=i+1

aijxj = bi

xi =
1
aii

bi −
i−1

∑
j=0

aijxj −
N

∑
j=i+1

aijxj

xi

PGS iteration applied to contact
Fill in the problem details for the s and s…

•

- …and clamp all at each iteration

• this looks familiar … it’s the same thing we derived intuitively before!

What have we achieved
• we now can inherit a proof of convergence from PGS

• we have a more mechanical and maybe less error-prone way to derive these equations

• we now can read papers about collision and contact without glazing over when the s appear

x b

γi = meff (−(1 − cr)v−
i − m−1

a ∑
k

sakγkn̂k ⋅ n̂i + m−1
b ∑

k

sbkγkn̂k ⋅ n̂i)
γi ≥ 0

J

Rigid bodies
We can now run the same program for rigid bodies… 

it’s similar but with more state variables!
• recall the steps of resolving a rigid body collision:

- write normal velocity in terms of object velocities

- write new velocities in terms of collision impulse

- substitute into restitution hypothesis and solve

vi = n̂i ⋅ vrel = n̂ ⋅ (va − vb + ωa × ra − ωb × rb)

Δva = m−1
a γin̂i Δωa = I−1

a ria × γin̂i

Δvb = − m−1
b γin̂i Δωb = − I−1

b rib × γin̂i

γi = − (1 + cr)meff,iv−
i

meff,i = (m−1
a + m−1

b + I−1
a n̂ ⋅ (ria × n̂i) × ria + I−1

b n̂ ⋅ (rib × n̂i) × rib)−1

• if there are other contacts, their impulses contribute to the velocities

-

-

• when we compute the post-collision relative velocity this produces extra terms

-

• and they also propagate into the normal velocity

-

Δva = m−1
a γin̂i + m−1

a ∑
j≠i

sjaγjn̂j Δωa = I−1
a ria × γin̂i + I−1

a ∑
j≠i

sjarja × γjn̂j

Δvb = − m−1
b γin̂i + m−1

b ∑
j≠i

sjbγjn̂j Δωb = − I−1
b rib × γin̂i + I−1

b ∑
j≠i

sjbrjb × γjn̂j

v+
rel = v−

rel + (Δva + Δωa × ria) − (Δvb + Δωb × rib)
= v−

rel + (m−1
a n̂i + m−1

b n̂i + I−1
a (ria × n̂i) × ria + I−1

b (rib × n̂i) × rib) γi +

Δvother
a − Δvother

b + Δωother
a × ria − Δωother

b × rib

v+
i = n̂i ⋅ v+

rel

= v−
i + m−1

eff,iγi + n̂ ⋅ (Δvother
a − Δvother

b + Δωother
a × ria − Δωother

b × rib)

• finally solving for we get

-

• which we can compare to the result for an isolated collision from 2 slides back

- —if there are no other collisions involving A or B

This leads to an iterative algorithm in exactly the same way as with particles
• compute each collision impulse magnitude assuming the other impulses are correct

• iterate in Gauss-Seidel fashion

- this means the new value of each is used in computing all subsequent s

• project to account for non-pulling constraint

- this means every computed gets clamped at zero

γi

γi = − meff,i [(1 + cr)v−
i + n̂ ⋅ (Δvother

a − Δvother
b + Δωother

a × ria − Δωother
b × rib)]

γi = − (1 + cr)meff,iv−
i

γ γ

γ

Matrix form for rigid bodies

It all goes through exactly the same way
with velocity and angular velocity gathered into ,
more columns of , and longer diagonal for .

u
J M

Friction
So far all impacts and resting contacts have been frictionless

• works OK for dynamic motion

• some pretty serious limitations for slow/resting contact

- stacks can be taken apart by miniscule sideways forces

- objects will not stay put on the slightest incline

- in practice objects will not stay put at all :)

Solution is to include a model for friction
• a force which opposes sliding (tangential) motion

• one model: viscous drag

- opposing force proportional to tangential velocity

• better model: “dry friction”

- can exert a force even with no velocity

Coulomb friction model
A time-honored pretty-good model for complex contact forces

Two rules:
• frictional force opposes tangential velocity

- when the contact is sliding, frictional force opposes the motion

- when the contact is stuck, frictional force resists starting to move

- friction never increases velocity

• magnitude of frictional force is limited to times the normal force

- if it can keep velocity at zero it will

- if not it will push at the maximum force

μ

Modeling friction mathematically
I’ll show a velocity/impulse formulation, in 2D for simplicity

Separate relative velocity and contact impulse into normal and tangential
•

•

Solve for impulses in terms of relations between velocity and impulse
• for normal direction, and or and

• for tangent direction, three cases:

- sliding to the right: and , or

- sliding to the left: and , or

- stuck: and

vrel = vnn̂ + vt ̂t

j = γnvnn̂ + γtvt ̂t

v+
n ≥ − crv−

n γn = 0 v+
n = − crv−

n γn ≥ 0

vt ≥ 0 γt = μγn

vt ≤ 0 γt = − μγn

vt = 0 |γt | ≤ |μγn |

Frictional contact relations in pictures

• Start with relative velocity but keep normal and tangential components

-

-

• Introduce unknown impulses in both directions

-

-

• Solve for impulses

-

-

-

-

vn
i = n̂i ⋅ vrel = n̂i ⋅ (va − vb + ωa × ria − ωb × rib)

vt
i = ̂ti ⋅ vrel = ̂ti ⋅ (va − vb + ωa × ria − ωb × rib)

Δvx = m−1
x ∑

i

six (γn
i n̂i + γt

i
̂ti)

Δωx = I−1
x ∑

i

six (γn
i rix × n̂i + γt

irix × ̂ti)

Δγn
i = − mn

eff,i [(1 + cr)vn−
i + n̂ ⋅ (Δva − Δvb + Δωa × ria − Δωb × rib)]

mn
eff,i = (m−1

a + m−1
b + I−1

a n̂ ⋅ (ria × n̂i) × ria + I−1
b n̂ ⋅ (rib × n̂i) × rib)−1

Δγt
i = − mt

eff,i [vt−
i + ̂t ⋅ (Δva − Δvb + Δωa × ria − Δωb × rib)]

mt
eff,i = (m−1

a + m−1
b + I−1

a ̂t ⋅ (ria × ̂ti) × ria + I−1
b

̂t ⋅ (rib × ̂ti) × rib)
−1

Solving contact with friction
System has the same form as without friction, with two differences

• there are two kinds of s, one with only lower bounds and one with upper and lower bounds

• the bounds for each are dependent on the value of the corresponding

γ

γt γn

Δvn
i = − (1 + cr)vn−

i and γn
i ≥ 0

Δvn
i ≥ − (1 + cr)vn−

i and γn
i = 0

Δvt
i = − vt−

i and − μγn
i ≤ γt

i ≤ μγn
i

Δvt
i ≤ − vt−

i and γt
i = μγn

i

Δvt
i ≥ − vt−

i and − μγn
i = γt

i

vn
1

vt
1

⋮
vn

k

vt
k

= JM−1JT

γn
1

γt
1

⋮
γn

k

γt
k

or

or

linear equations (almost) linear constraints

PGS for friction
Same algorithm with a couple of tweaks

• for each iteration

- for each impulse to be determined (considering normal and tangential separately)

compute an update to

update the bounds and

clamp to the range

γx
i

γx
i

γmin = 0 or − μγn
i γmax = ∞ or μγn

i

γmin ≤ γx
i ≤ γmax

