CS5643

07 Collision detection

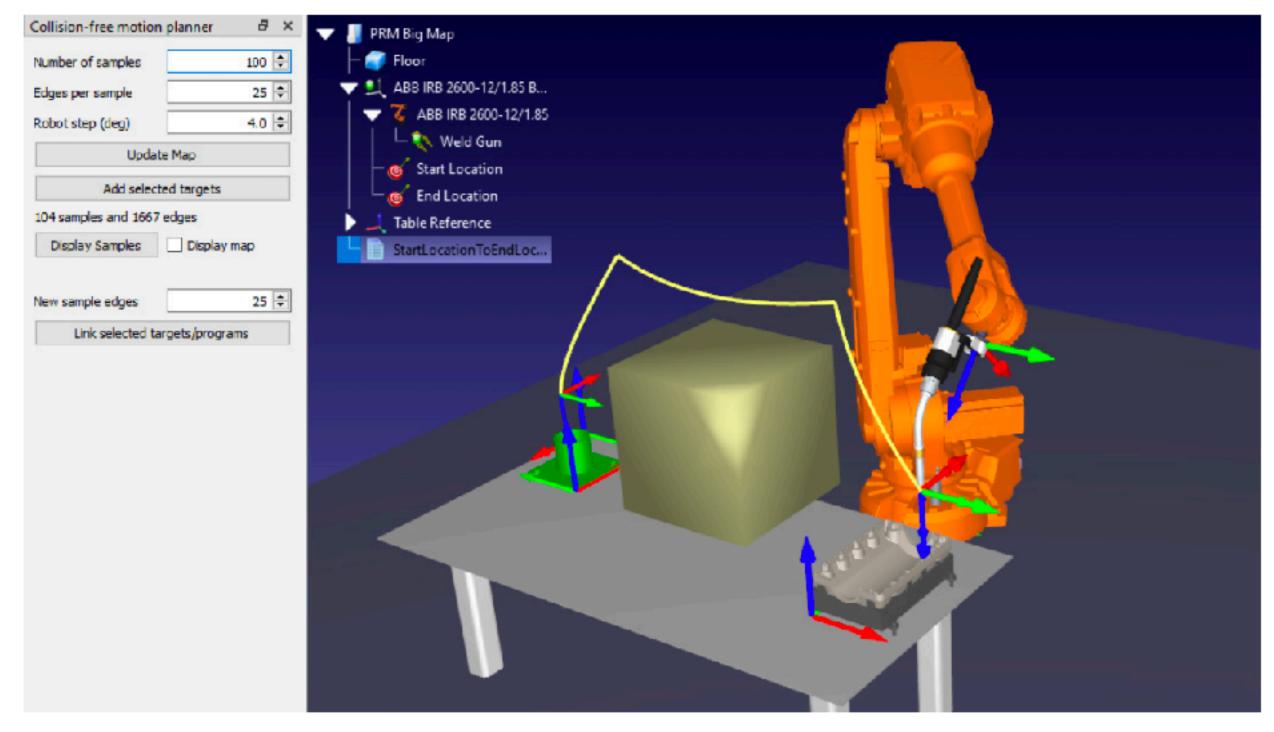
Steve Marschner Cornell University Spring 2025

(many images borrowed from Doug James's Stanford CS 248b slides)

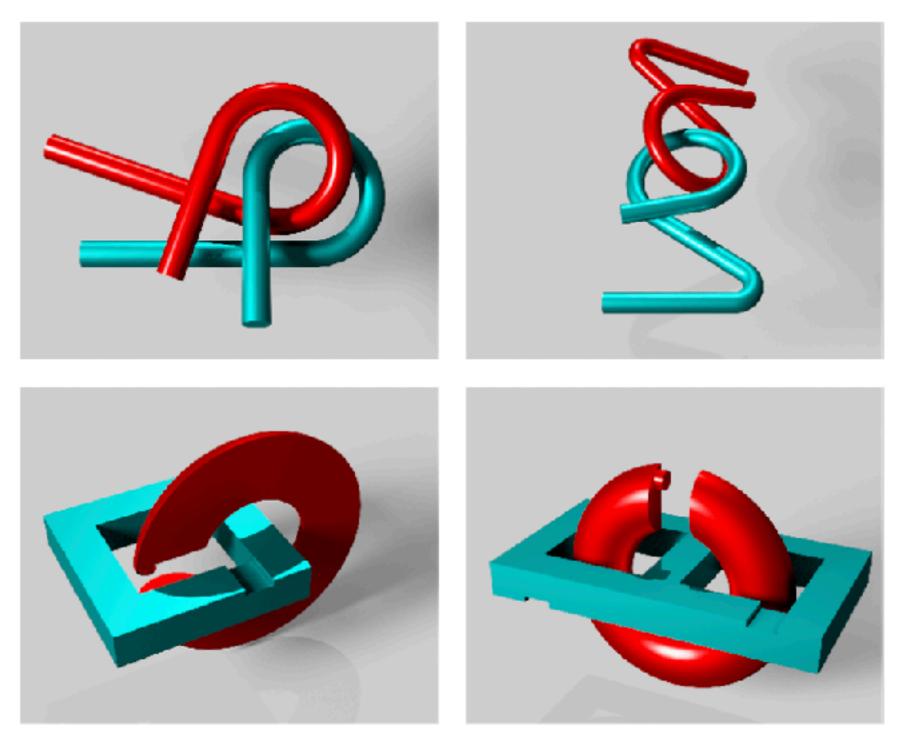
Collision detection

Goal: determine if two objects collide during a particular movement

- example: path planning for robotics or puzzles
- need to verify a particular motion path can execute with no collisions



https://robodk.com/blog/motion-planning-trend/

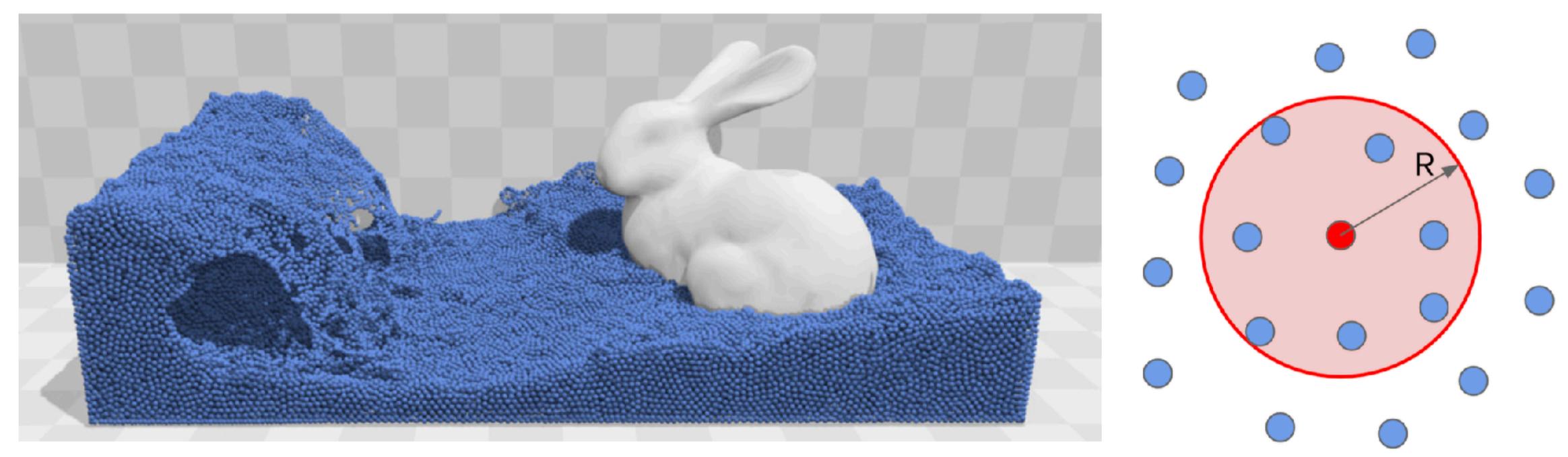


https://xinyazhang.gitlab.io/puzzletunneldiscovery/

Proximity queries

Goal: detect when two objects approach within a threshold

- example: particle based fluid simulation
- \cdot each particle needs to interact with all particles closer than distance R

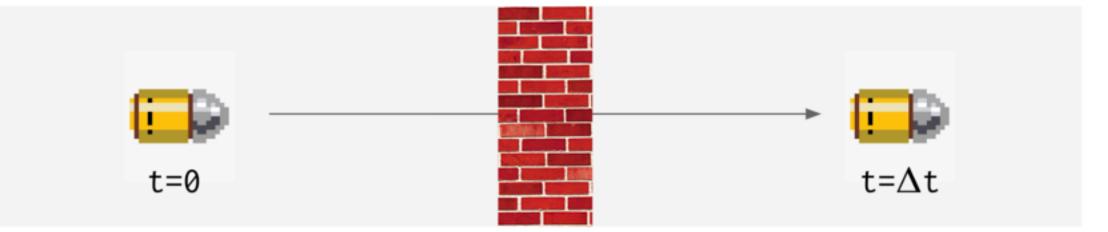


Position Based Fluids [Macklin and Mueller 2013]

Continuous vs. instantaneous collision detection

Version 1: "Are these two objects colliding right now?"

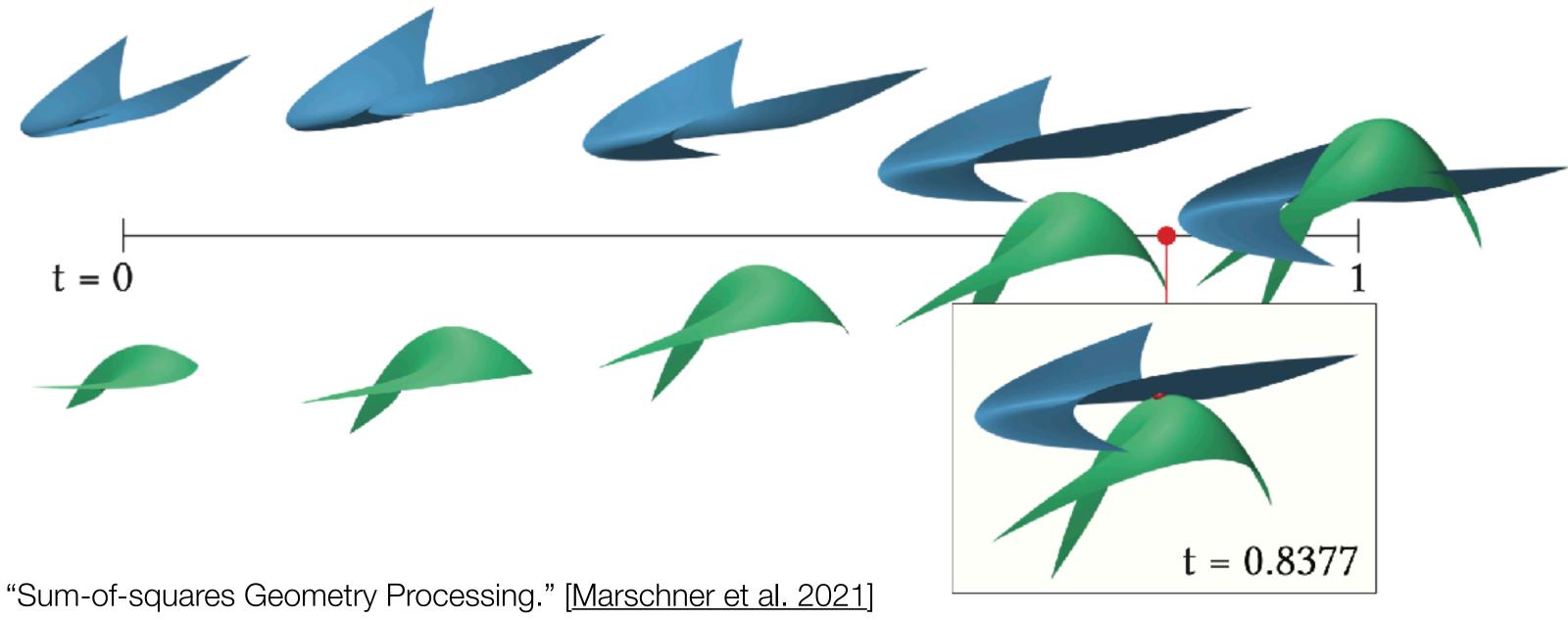
- instantaneous collision detection
- · can miss collisions if you check once per frame



Version 2: "If and when do these two moving objects collide?"

image borrowed from Doug James

- continuous collision detection (CCD)
- · can guarantee you don't miss collisions



Collision detection overview

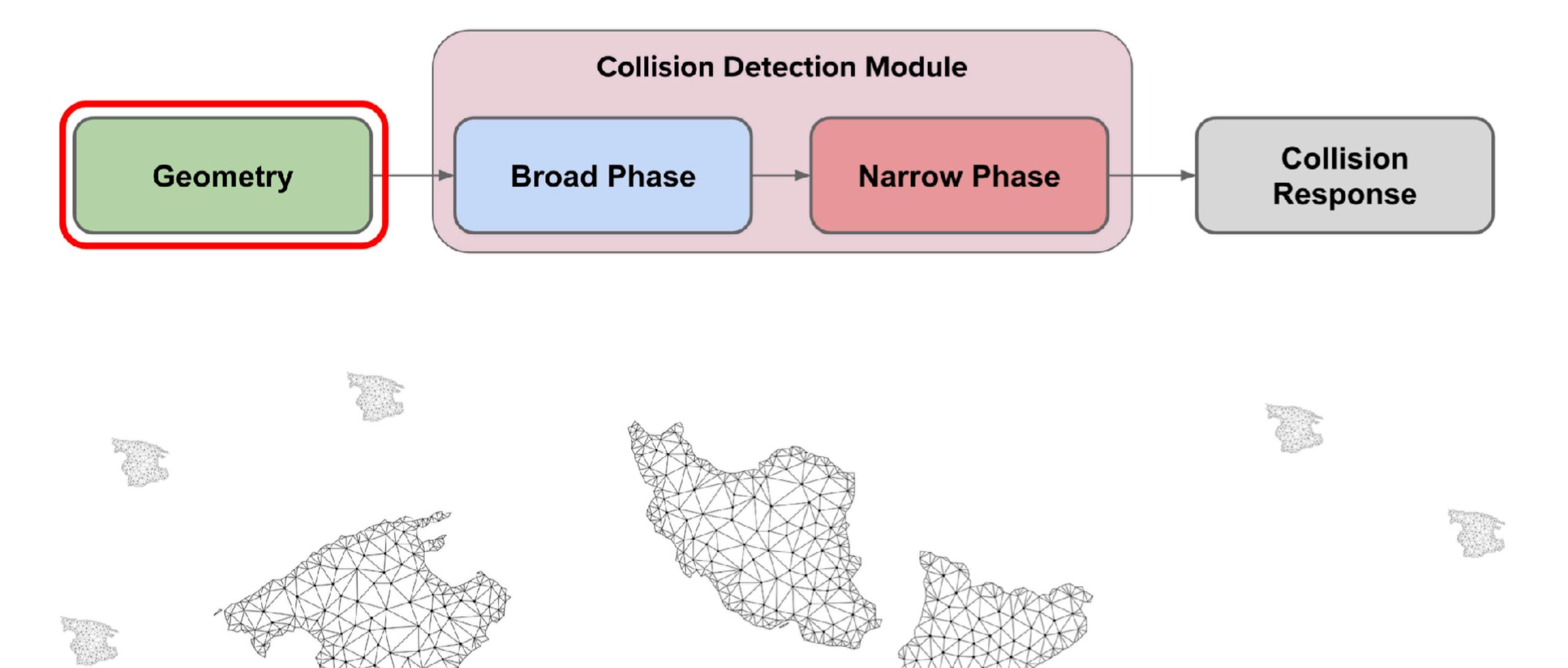
Narrow phase collision detection

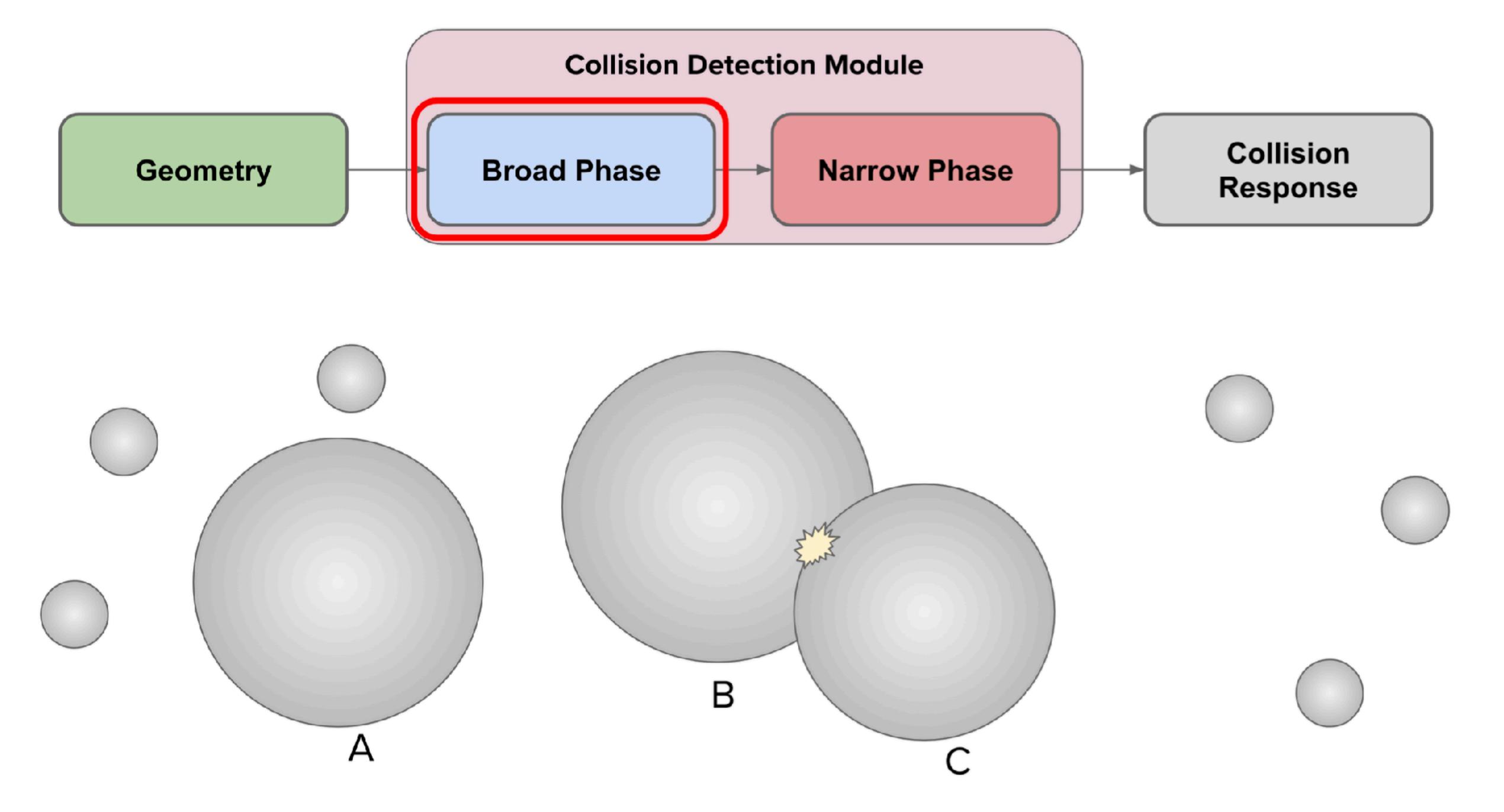
- detects collisions between individual primitives
- produces definitive answers depending on the goals
 - yes/no for collision or proximity
 - time of collision
 - k nearest neighbors
- specific methods depend on primitive type (particles, lines, triangles, etc.)

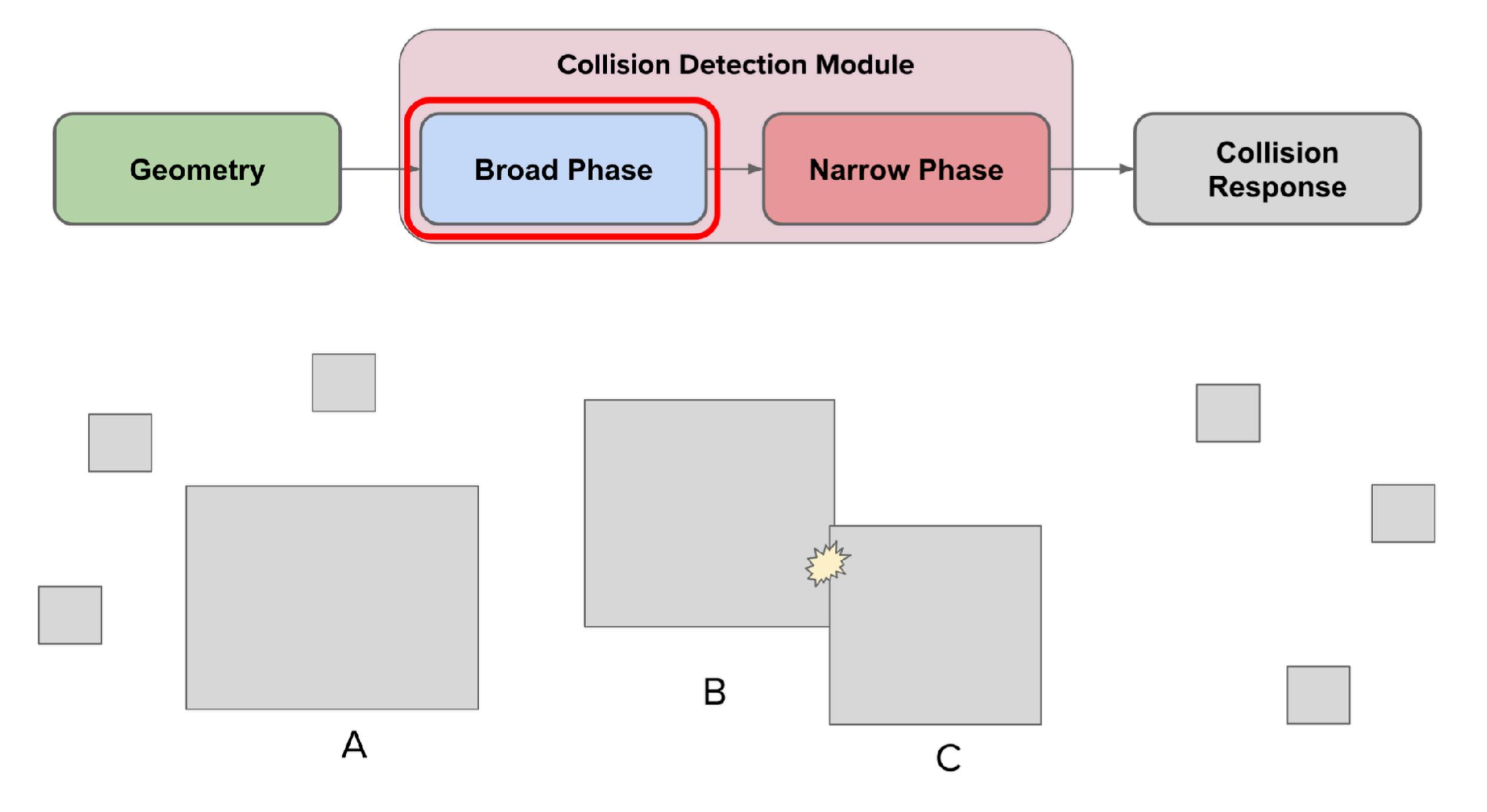
Broad phase collision detection

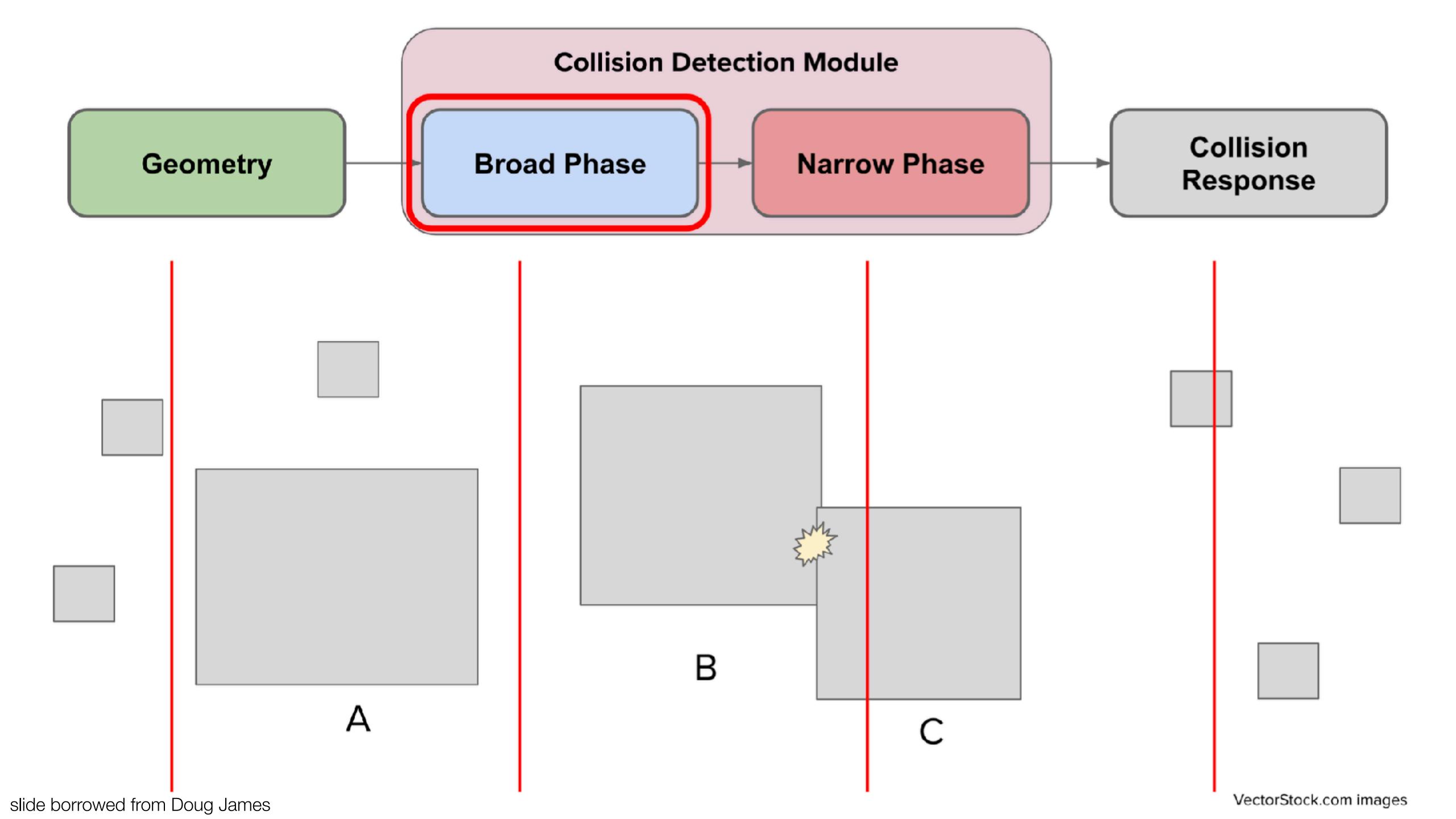
- conservatively eliminates potential collisions
- reduces the set of narrow-phase tests required
- uses various spatial data structures for efficiency
- · specific methods depend on data structure (trees, grids, lists, etc.)

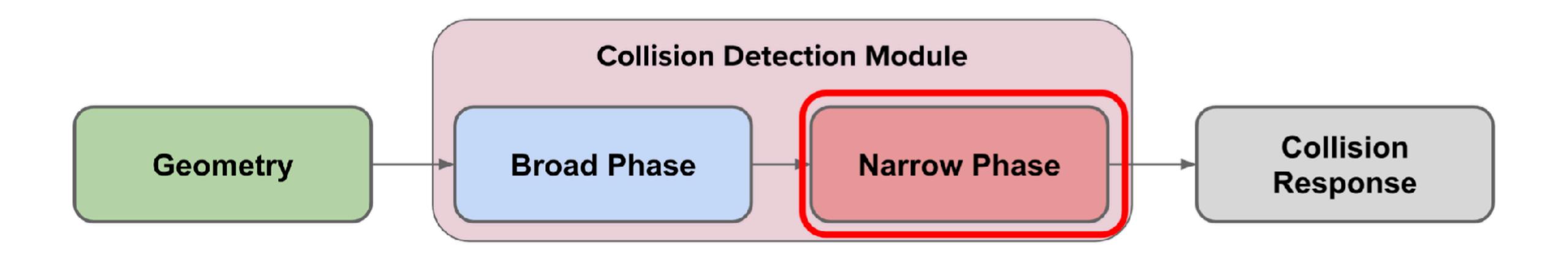
note: there's some disagreement between sources about where the boundary between "broad' and "narrow" goes...

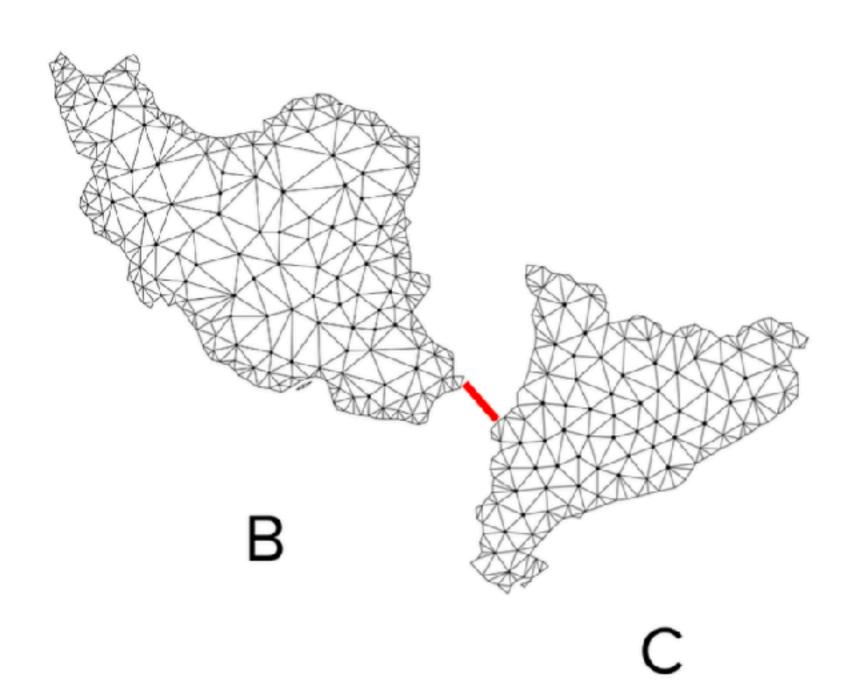








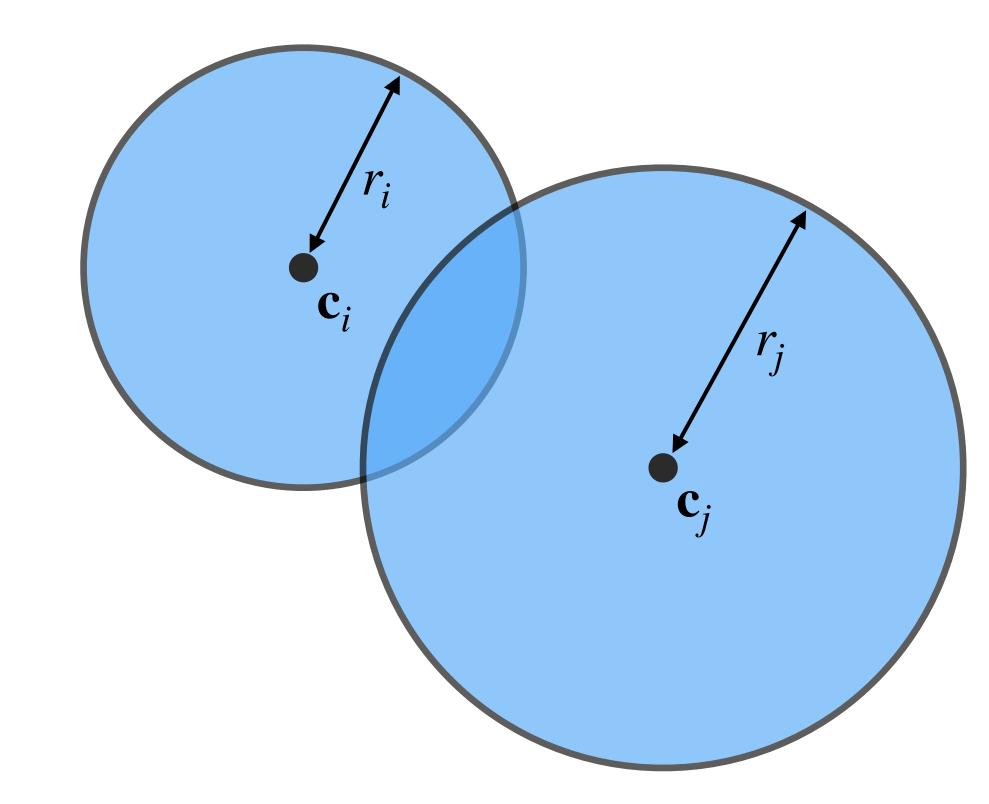




Simple narrow-phase example

Colliding spheres

- example for now, will return to more interesting cases
- spheres or circles intersect if $\|\mathbf{c}_i \mathbf{c}_j\|^2 < (r_i + r_j)^2$



Broad phase algorithm #0

Brute force loop over all pairs

• problem: $O(N^2)$

```
for i in range(N):
   for j in range(N):
       CheckCollision(i, j)
```

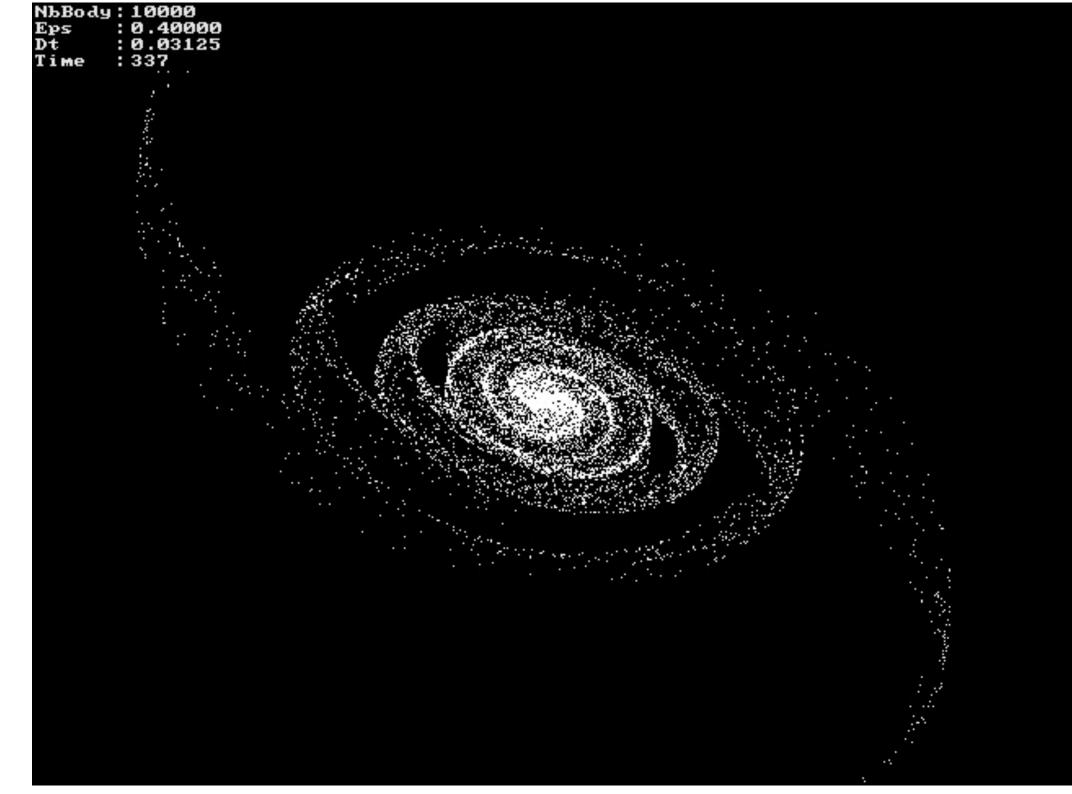
Avoiding N^2

Sometimes there really are N^2 interactions

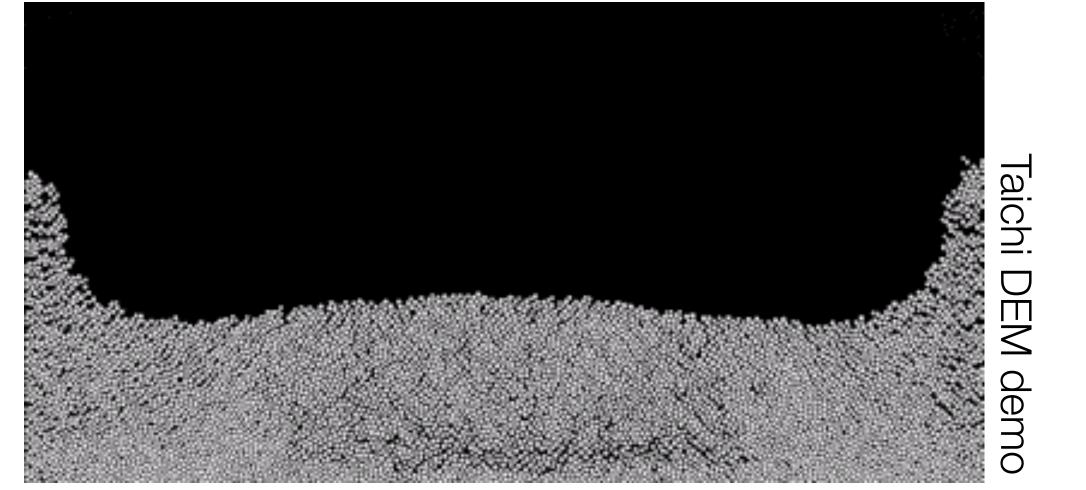
- have to deal with it
- reduce to O(N) or $O(N \log N)$ by hierarchically approximating distant interactions
 - Fast Multipole Method (FMM)
 - Barnes-Hut approximation

In simulations usually only neighboring objects interact

- actual number of contacts is probably O(N) for N objects
- goal is to efficiently search for "active contacts"



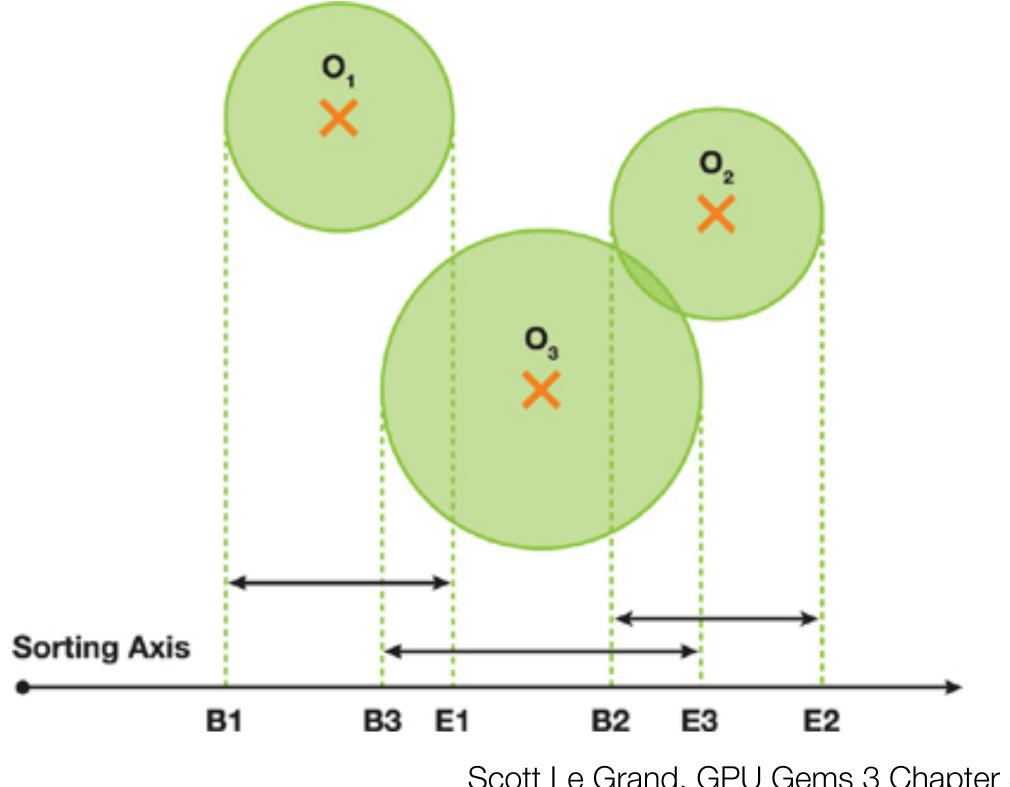
InsideHPC



Collision detection by sort / sweep

Older idea: sort and sweep

- choose an axis (call it x) and project objects onto it
- put the min (begin) and max (end) x coordinates for each object into a big list
- sort the list
- traverse the list
 - begin object i -> add object i to active set check object *i* against active set
 - end object i -> remove object i from active set



Scott Le Grand, GPU Gems 3 Chapter 32

Problems

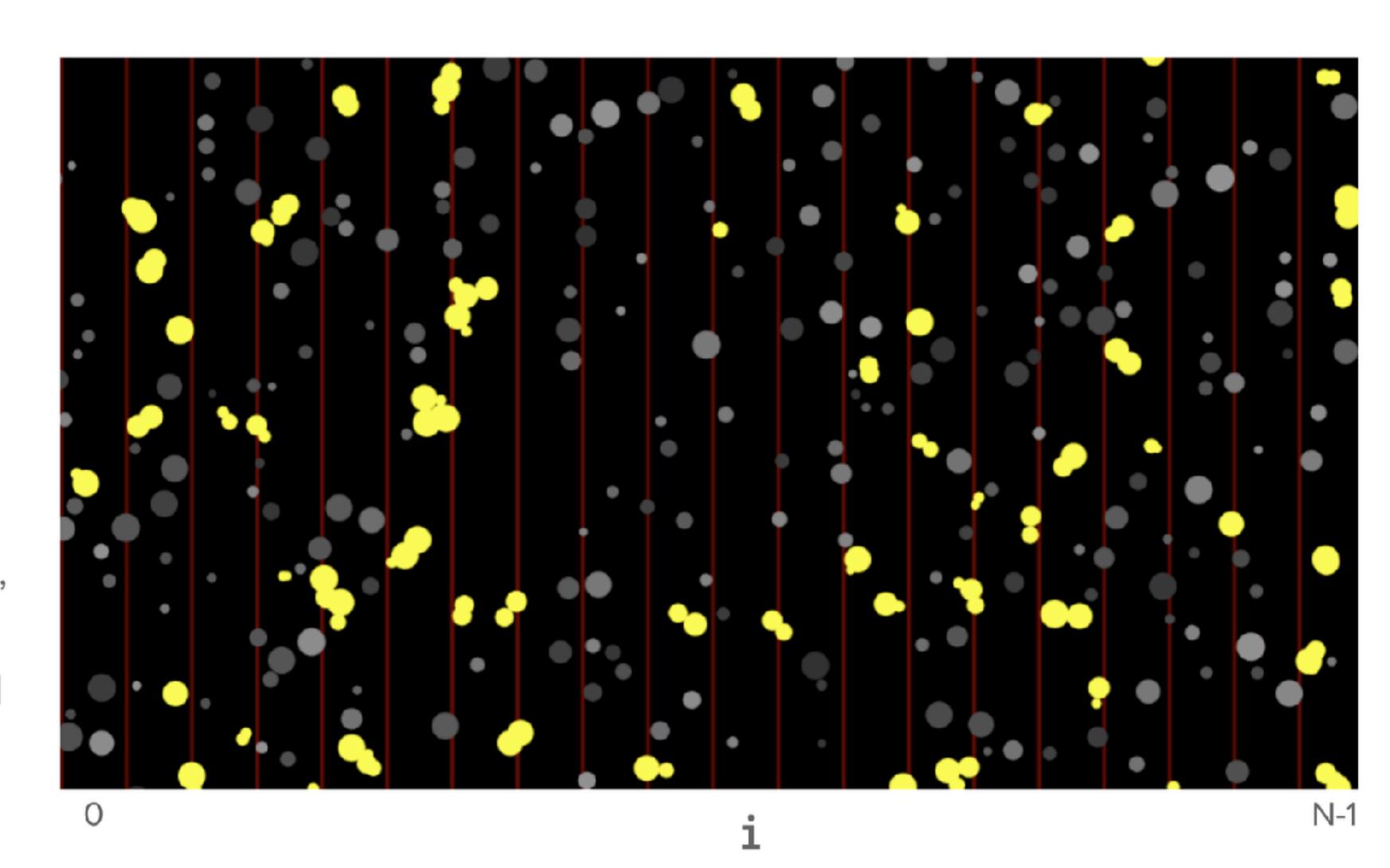
- sorting is not so parallel friendly
- · what is the worst case for this? what is the time complexity for uniformly distributed objects?

Regular grid broad phase: 1D subdivision

Construction:

- Divide space into N bins of equal width, h
- Add each object to each bin that its bounding volume overlaps:
 - Use 1D overlap test

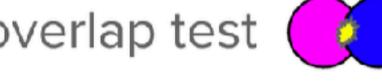
Cell Index, i: Given coordinate x, find containing cell index(x) using Math.floor(x/h) clamped to [0,N-1].



Regular grid broad phase: 1D subdivision

Overlap Testing:

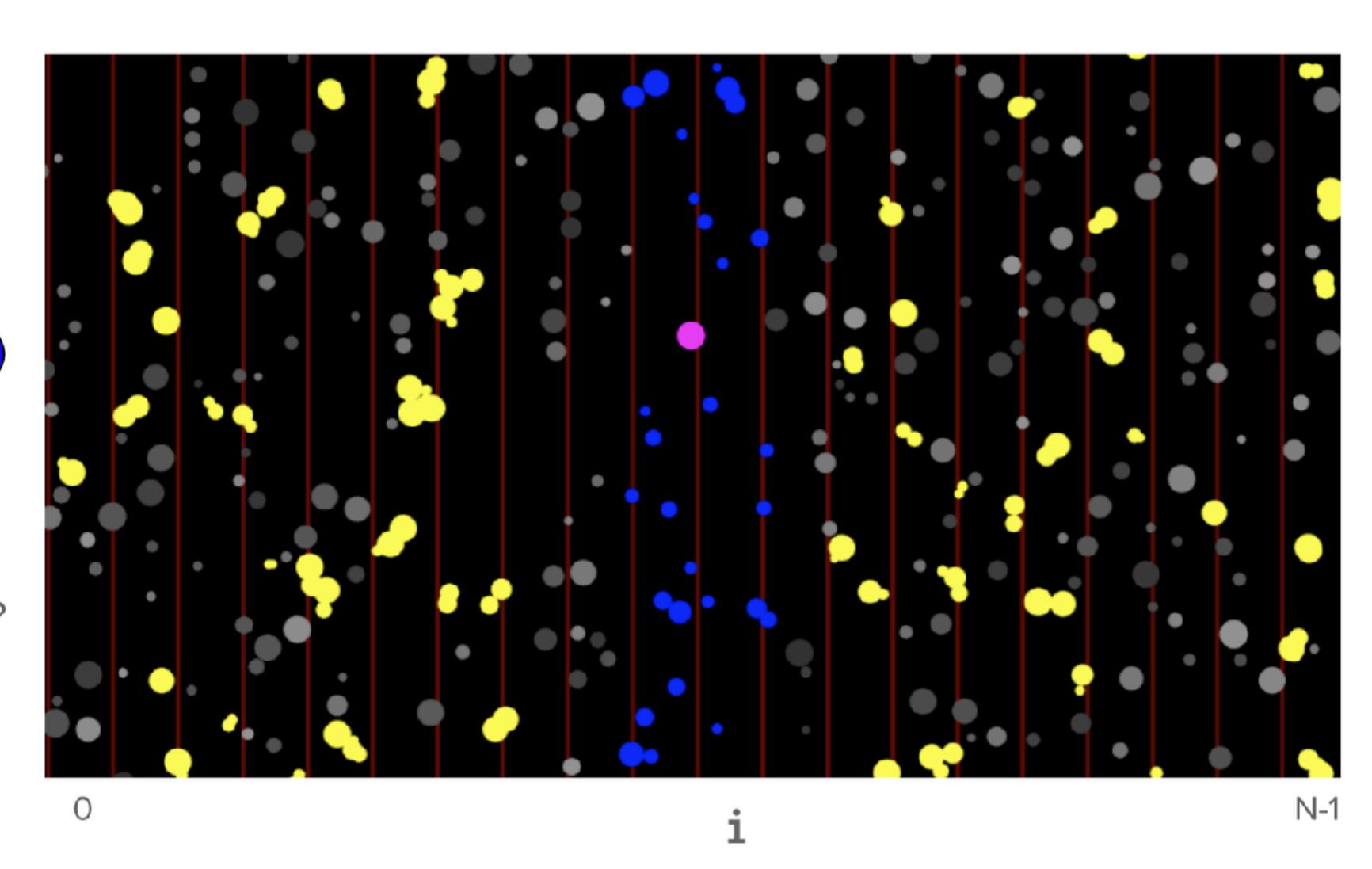
- Given test bound
- Find overlapping cells, and for each bound
 - Do overlap test



Return overlapping results as a set.

Q: Can duplicate overlaps occur?

Weakness of 1D subdivision?

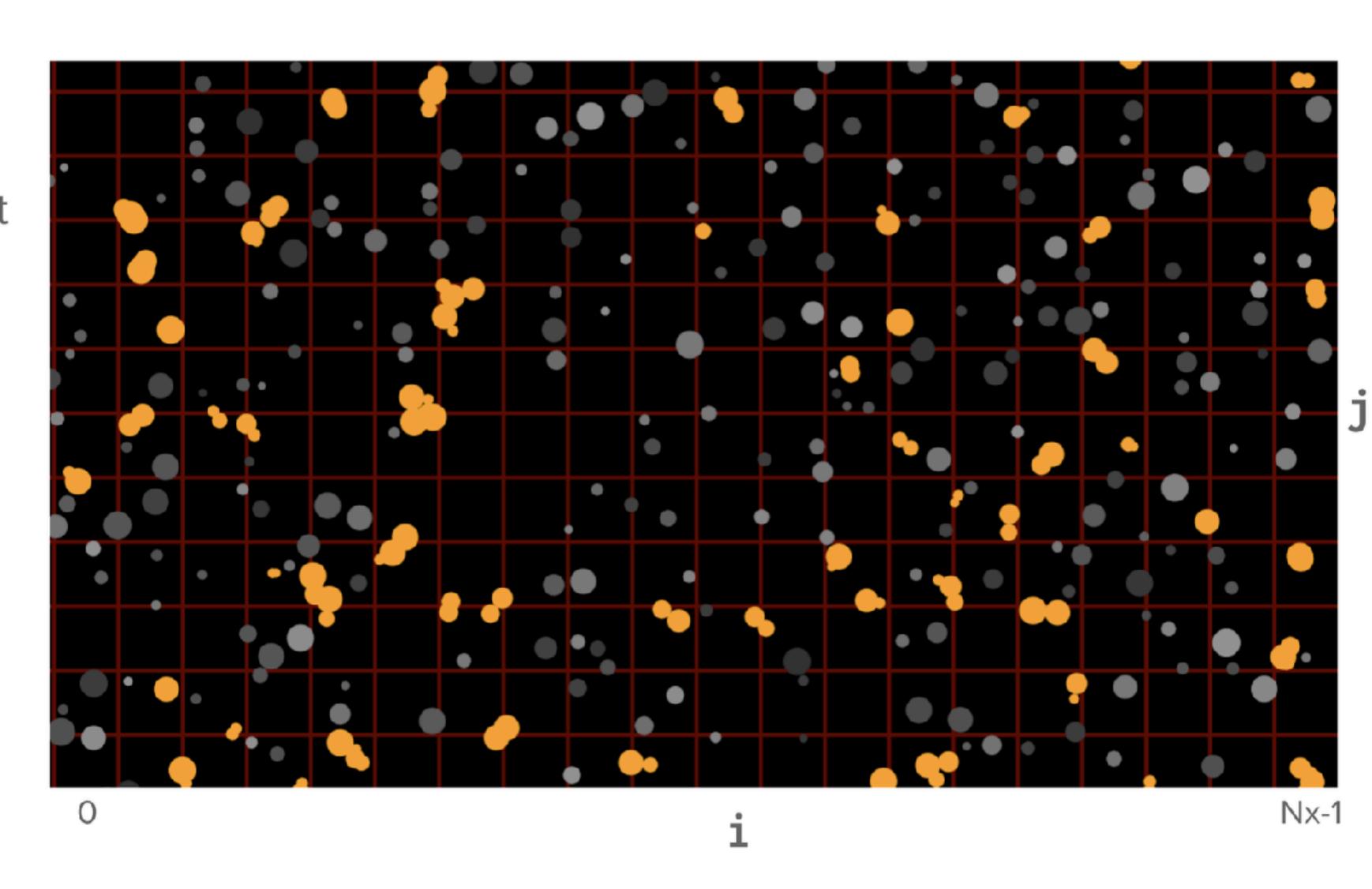


Regular grid broad phase: 2D subdivision

Construction:

- Divide space into
 Nx-by-Ny bins of constant
 width, h (or hx & hy)
- Add each object to each bin that its bounding volume overlaps:
 - Use 1D overlap tests

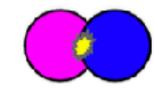
Cell Index (i,j): Given coords x & y, $i = floor(x/h_x)$ clamped to [0,Nx-1], $J = floor(y/h_y)$ clamped to [0,Ny-1].



Regular grid broad phase: 2D subdivision

Overlap Testing:

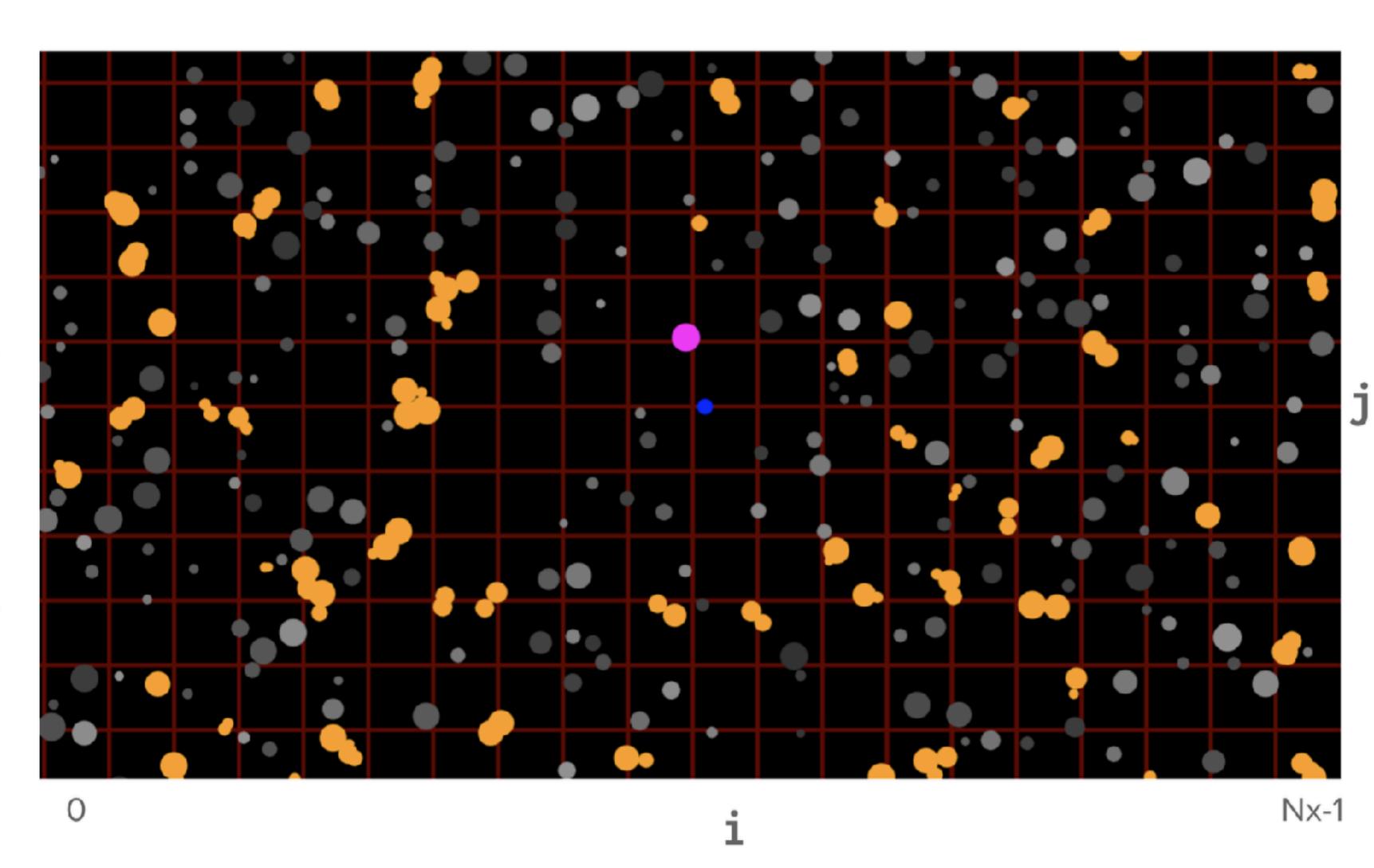
- Given test bound
- Find overlapping cells, and for each bound
 - Do overlap test



 Return overlapping results as a set.

Q: Can duplicate overlaps occur?

Weakness of 2D subdivision?



2D spatial subdivision

Advantages [demo]

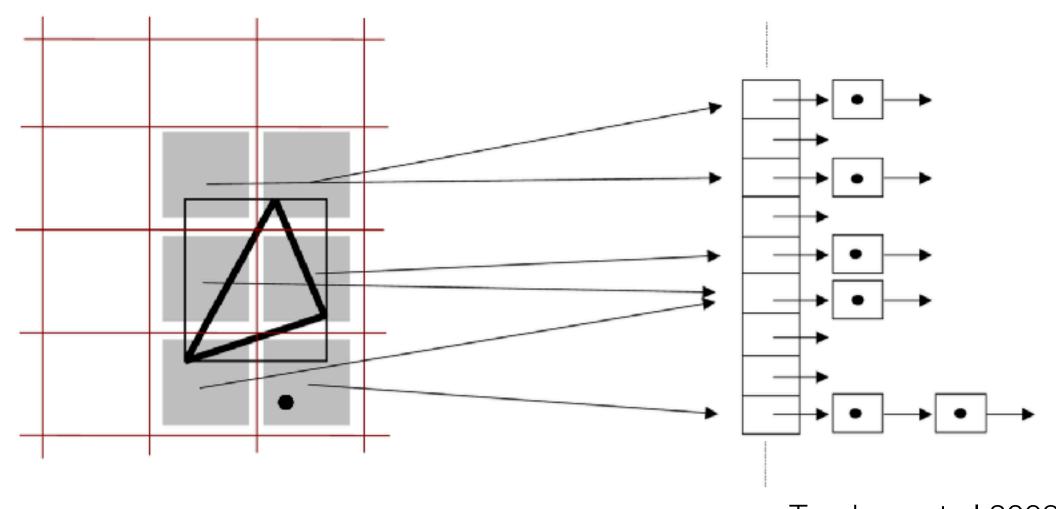
· often quite efficient; fairly simple to implement; reasonably parallel-friendly

Disadvantages

- large tables of possibly mostly empty particle lists; need to set grid dimensions up front
- what are the cases where it gets slow?

Variations

- spatial hashing: rather than grid[x,y],
 use table[hash(x,y)] for a suitable hash function
 - allows effectively unlimited grid; hash collisions just lead to some extra collision tests
- quadtrees, octrees: allow balancing cell occupancy when objects are nonuniformly distributed

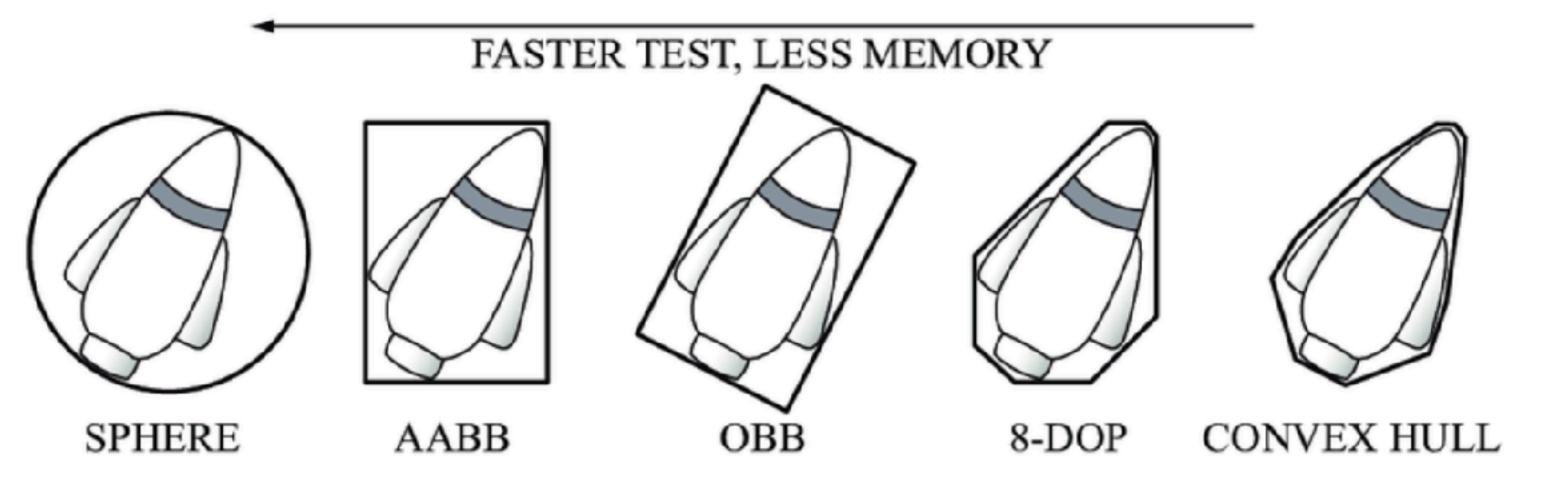


Teschner et al 2003

Bounding volumes

Simple idea to speed up collision checks

 first find a volume that contains (bounds) each object



BETTER BOUND, BETTER CULLING

[Ericsson 2004]

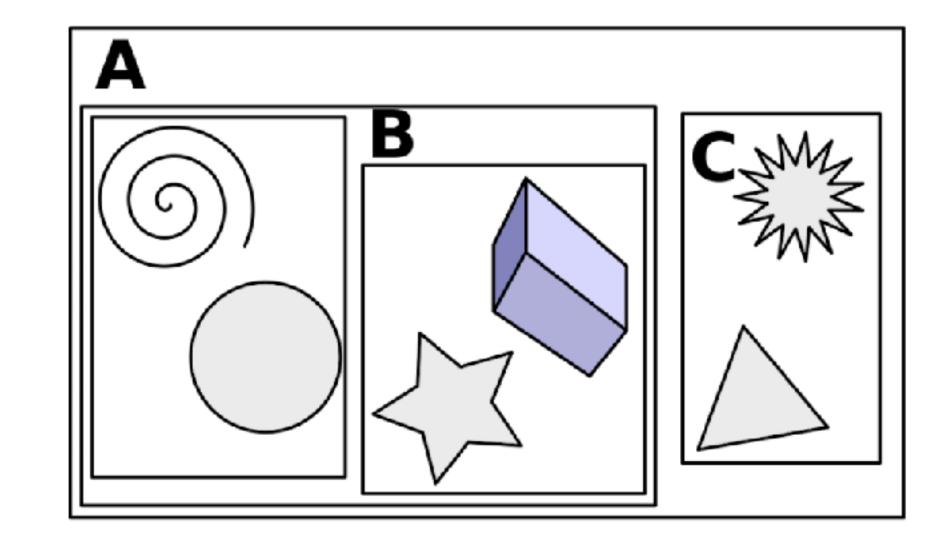
- then when you want to test two objects for collision, first check whether their bounding volumes intersect
- no BV intersection → no collision, guaranteed!
- BV intersection \rightarrow no guarantee, need to check for collisions
- for efficiency of intersection testing, BVs are always convex

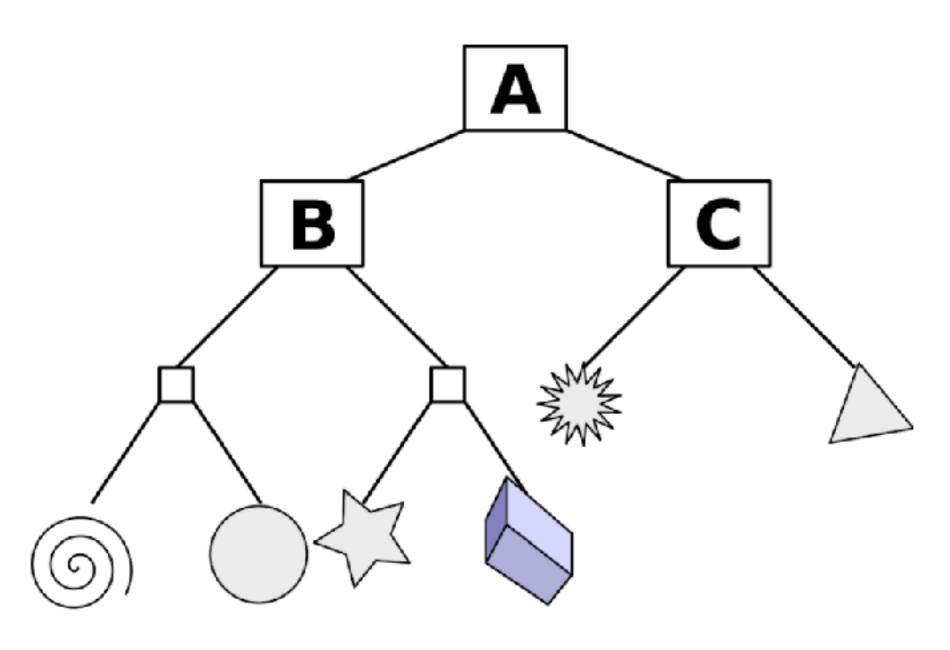
Bounding volume hierarchies

Similar to those used for ray intersection

- can use any sort of bounding volume (BV)
- for any collision test, if the BV does not collide then the entire subtree can be skipped
- algorithms differ depending on query type
- to test against a simple obstacle for which a fast test is available, a simple traversal does the trick:

```
overlap(node, obstacle):
  if overlap_bv(node.bounds, obstacle):
     if node.is_leaf():
       return overlap_geom(node.geom, obstacle)
     else
       return overlap(node.left, obstacle) or
           overlap(node.right, obstacle)
     return false
```

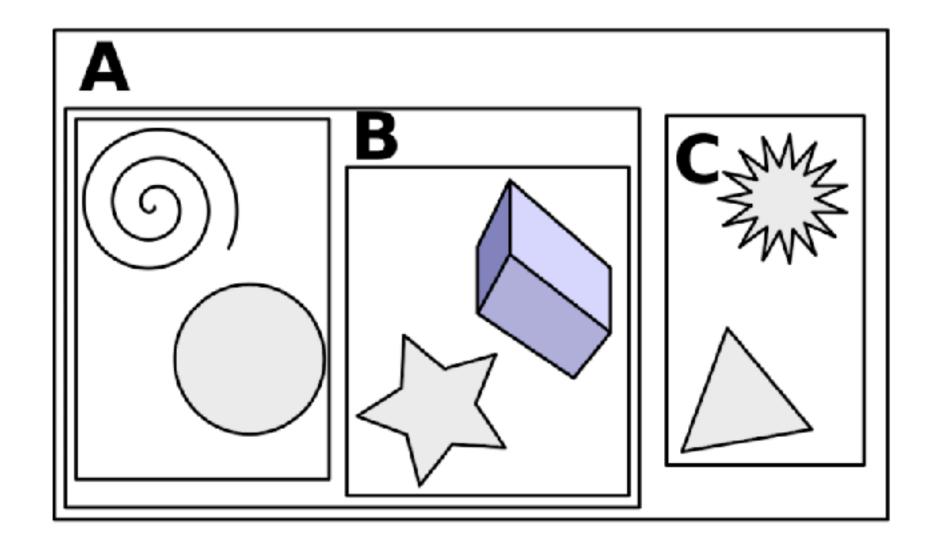


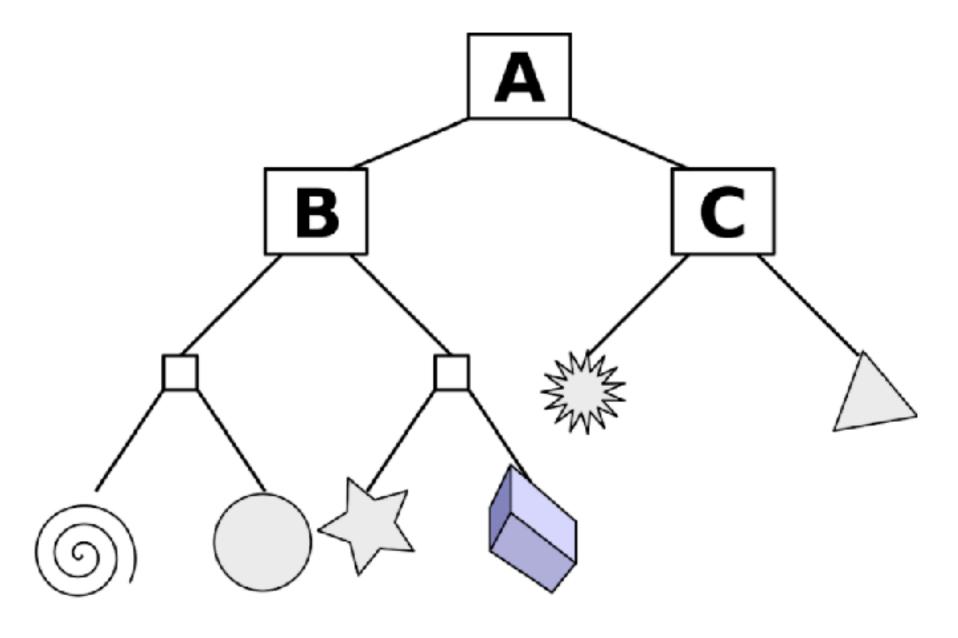


Bounding volume hierarchies

 to test against another complex object with its own BVH hierarchy, traverse trees in tandem:

```
overlap(node1, node2):
if overlap_bv(node1.bounds, node2.bounds):
   if nodel.is_leaf() and node2.is_leaf():
     return overlap_geom(nodel.geom, node2.geom)
   if nodel.is_leaf():
     return overlap(node1, node2.left) or
      overlap(node1, node2.right)
   if node2.is_leaf():
     return overlap(nodel.left, node2) or
      overlap(nodel.right, node2)
   if node2.long_axis() > node1.long_axis():
     return overlap(node1, node2.left) or
      overlap(node1, node2.right)
   else
     return overlap(nodel.left, node2) or
      overlap(nodel.right, node2)
return false
```

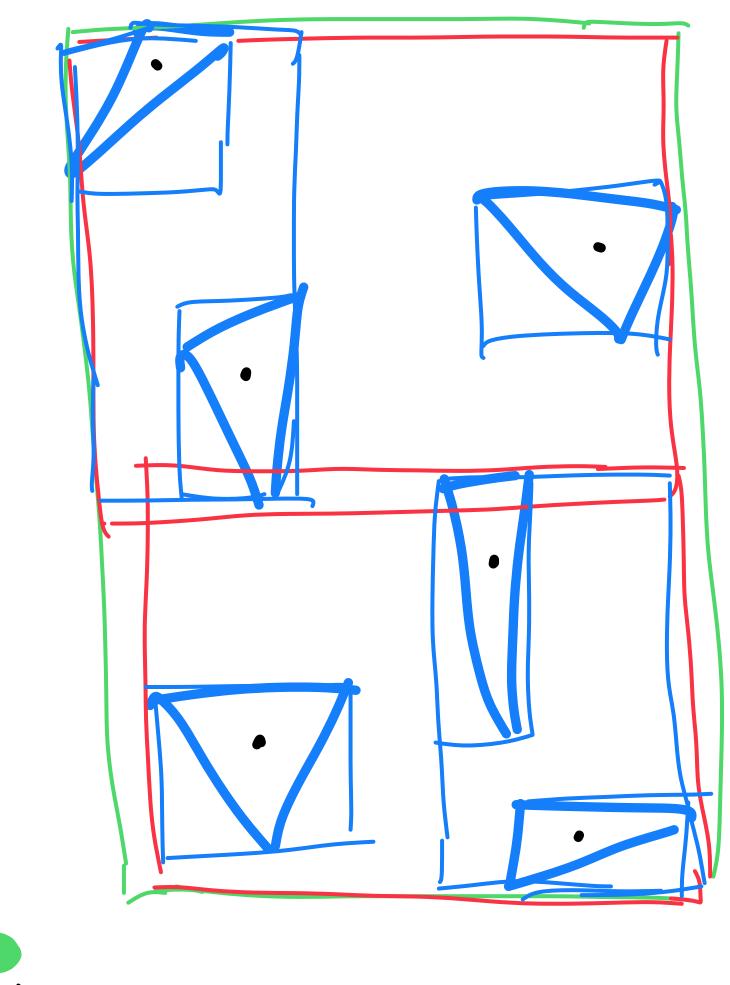


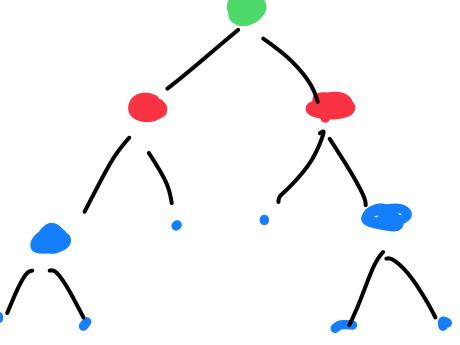


Building BVHs

Simplest way: top down splitting

- fit BV to all the geometry you have
- split geometry into two equal sized subsets
 - simple strategy: median split
 - choose axis along which to split (typically the longest BV axis)
 - split at median of projections of object centroids onto that axis
- recursively process the two halves

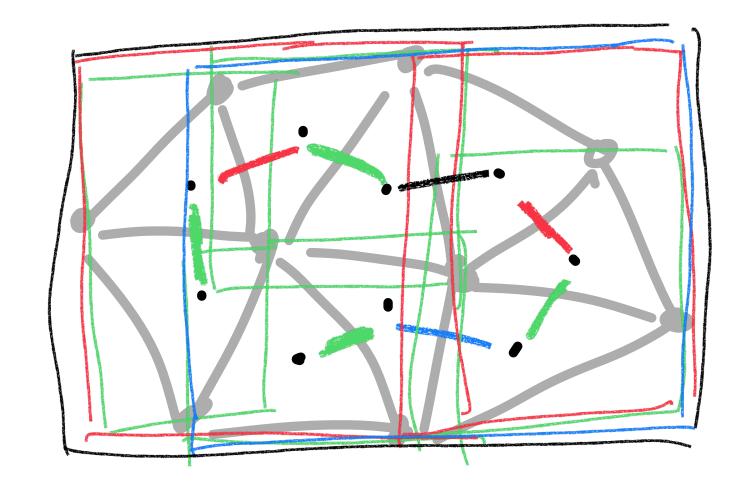


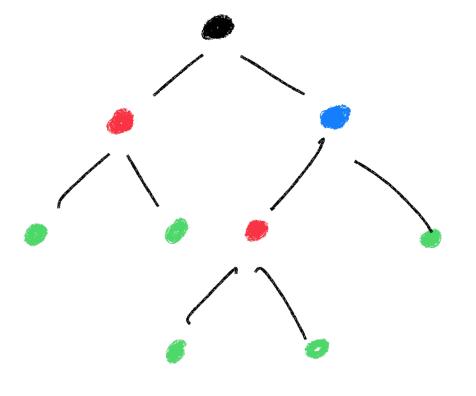


Building BVHs

Splitting according to mesh connectivity

- might want nodes to contain contiguous parts of objects
- · leads to a bottom-up approach
 - build an adjacency graph of all primitives
 - repeatedly choose an edge with lowest "cost" and merge the two nodes
 - cost might be the volume of the resulting node or the height of the resulting subtree
- popular for deformables, produces trees likely to re-fit well (next slide)

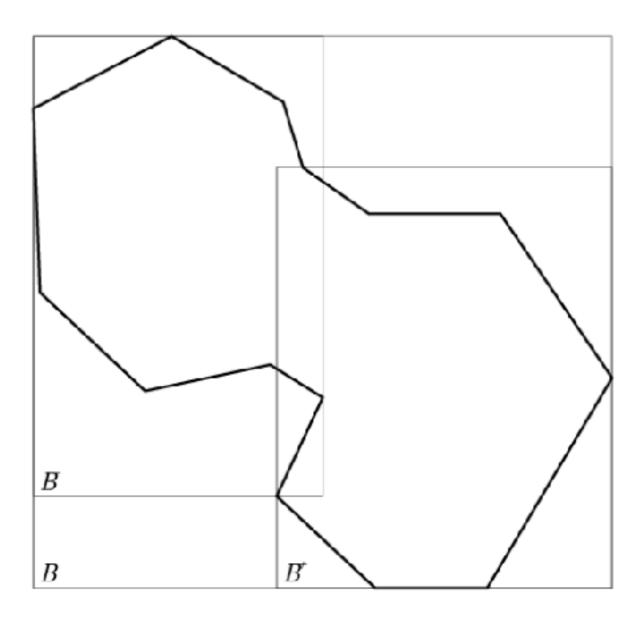


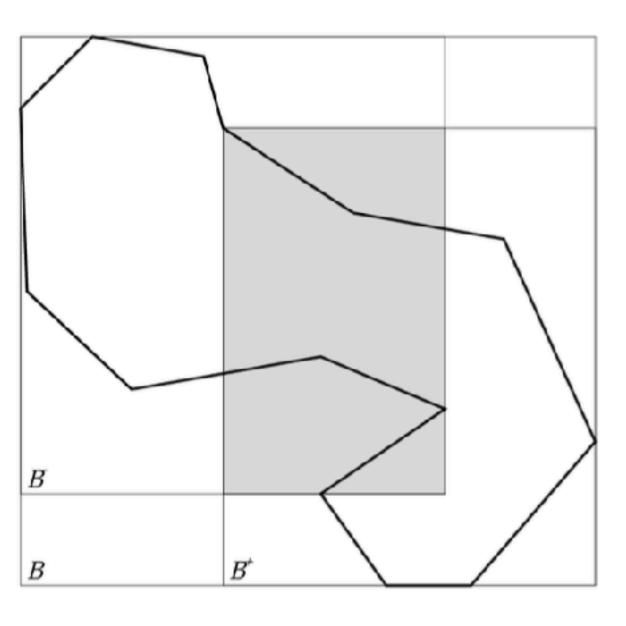


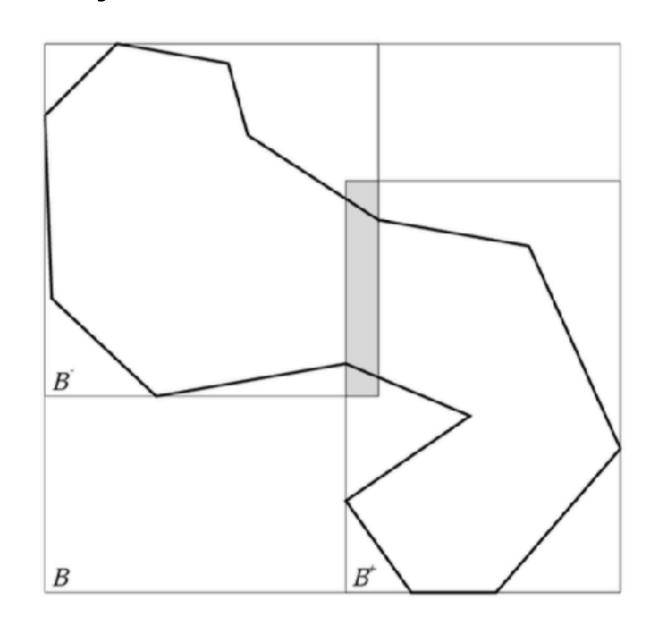
Updating BVH for deforming geometry

Geometry is different each frame—what to do?

- constructing a new tree from scratch every frame is expensive
- alternative: keep tree structure and re-fit bounds
 - simple bottom-up algorithm with reasonable memory access pattern
 - efficient for BVs that can efficiently bound their children
 - downside: can lead to increased overlap; mesh connectivity ameliorates this







[Gottschalk et al. 1996]

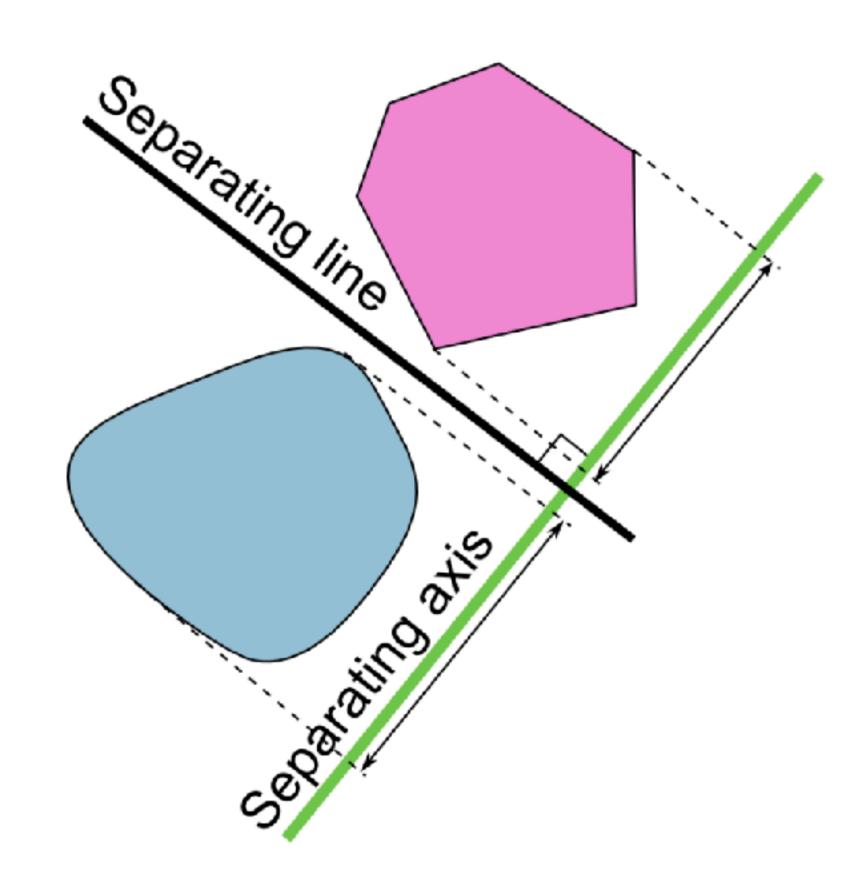
Finding collisions between convex polyhedra

An efficient strategy for fast BV intersection

- if the projections of two objects onto some axis are disjoint, the objects do not intersect and the axis is a separating axis
- if the objects do not intersect, a separating axis must exist
- for convex polygons in 2D or polyhedra in 3D, if there is no intersection then checking a finite list of potential separating axes suffices

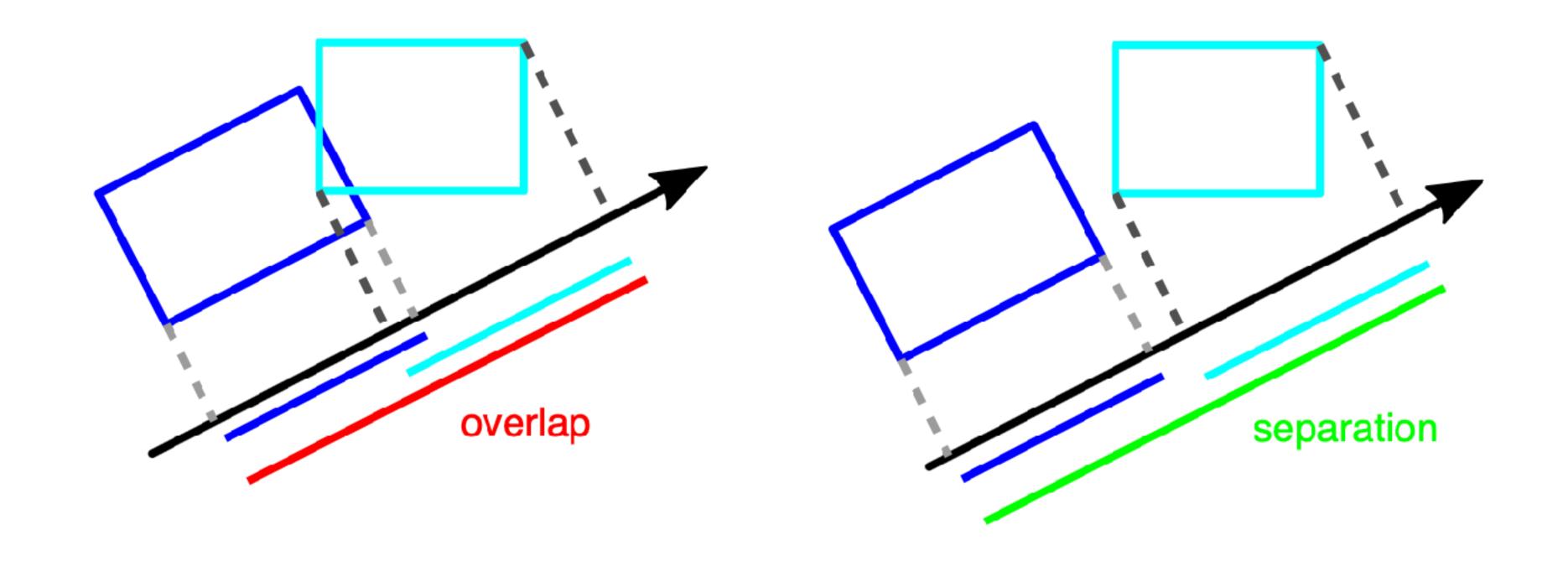
Examples

- 2 familiar tests for AABBs in 2D
- 4 tests for OBBs in 2D (4 distinct face normals)
- 15 tests for OBBs in 3D (6 face normals + 9 edge/edge normals)



https://en.wikipedia.org/wiki/Hyperplane_separation_theorem

E.g. separating axis approach for OBBs in 2D



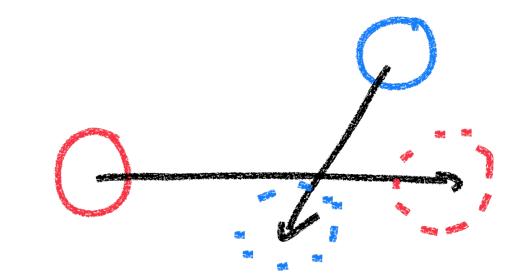
Continuous collision detection (CCD)

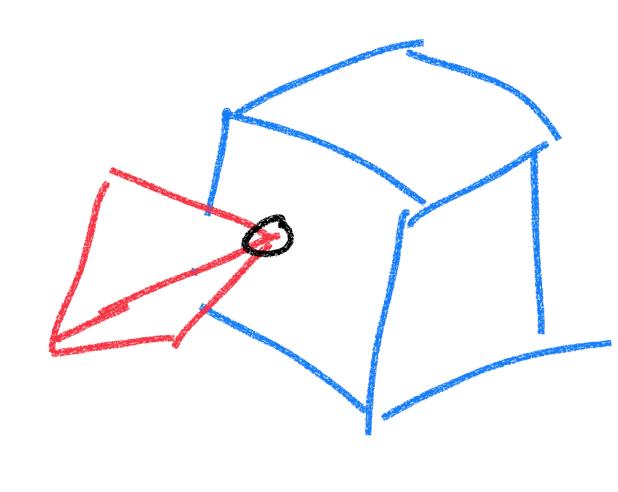
Given two moving primitives:

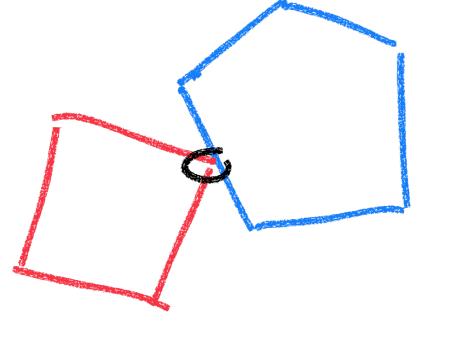
- do they collide in this time step?
- · ...and if so, when and where?

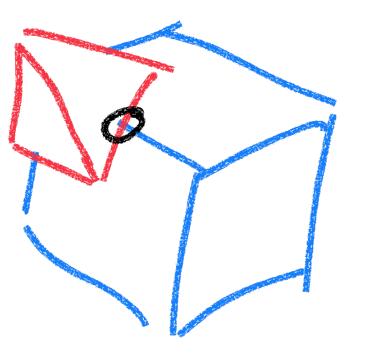
Common simplifications:

- · limit to circles, spheres, triangles, line segments
- only allow for linear motion of vertices
- only consider non-degenerate cases
 - in 3D: vertex-face and edge-edge
 - in 2D: vertex-edge
- degenerate cases can be handled as an extreme case of one of these





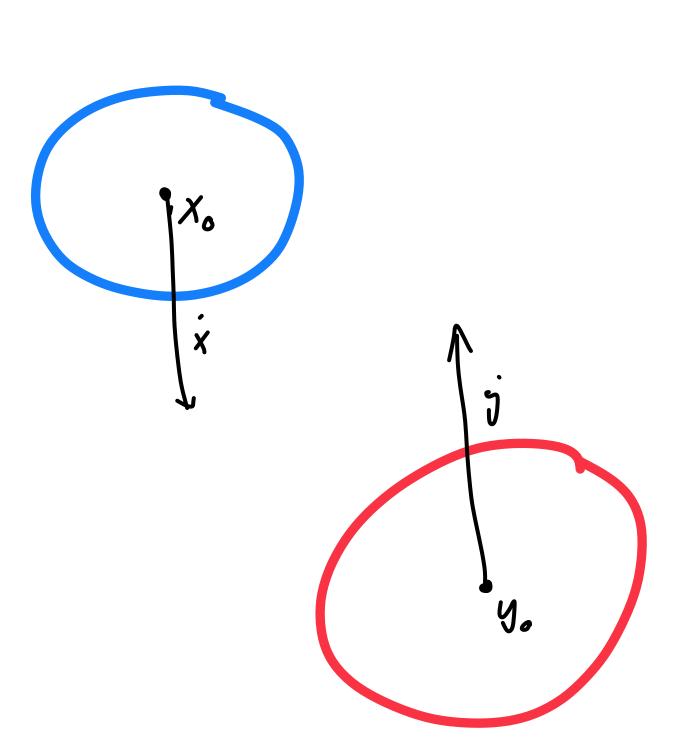




CCD for spheres

Given \mathbf{x}_0 , $\dot{\mathbf{x}}$, \mathbf{y}_0 , $\dot{\mathbf{y}}$, r_x , r_y

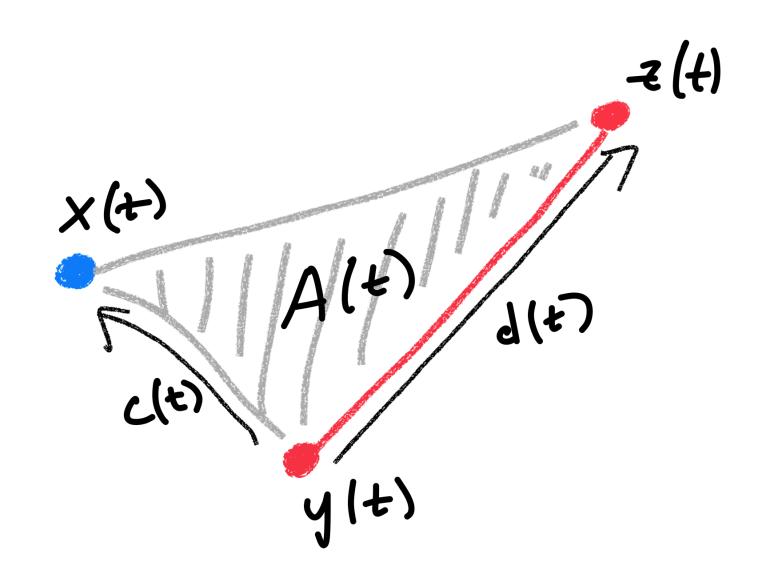
- is there a time $t \in (0,h]$ where the centers are at a distance $r_x + r_y$?
- positions are $\mathbf{x}(t) = \mathbf{x}_0 + t\dot{\mathbf{x}}$ and $\mathbf{y}(t) = \mathbf{y}_0 + t\dot{\mathbf{y}}$
- · let $\mathbf{d}_0 = \mathbf{x}_0 \mathbf{y}_0$; $\dot{\mathbf{d}} = \dot{\mathbf{x}} \dot{\mathbf{y}}$; $R = r_x + r_y$
- difference is $\mathbf{d}(t) = \mathbf{d}_0 + t\dot{\mathbf{d}}$
- collision when $\|\mathbf{d}(t)\| = R$ or $(\mathbf{d}_0 + t\dot{\mathbf{d}}) \cdot (\mathbf{d}_0 + t\dot{\mathbf{d}}) = R^2$
- quadratic: $(\dot{\mathbf{d}} \cdot \dot{\mathbf{d}})t^2 + 2(\mathbf{d}_0 \cdot \dot{\mathbf{d}})t + (\mathbf{d}_0 \cdot \mathbf{d}_0 R^2) = 0$
- there is a collision iff there is a root in (0,h]
- smallest root in (0,h] is the collision time
- · (déjà vu ... remember ray-sphere intersection?)



CCD for line segments

The only nondegenerate case is vertex-edge

- vertex $\mathbf{x}(t)$ and edge endpoints $\mathbf{y}(t)$ and $\mathbf{z}(t)$
- given: \mathbf{x}_0 , \mathbf{y}_0 , \mathbf{z}_0 , $\dot{\mathbf{x}}$, $\dot{\mathbf{y}}$, $\dot{\mathbf{z}}$
- collision occurs when $\{\mathbf x(t), \mathbf y(t), \mathbf z(t)\}$ are collinear and $\mathbf x$ is between $\mathbf y$ and $\mathbf z$
- simple collinearity test: area of triangle is zero
- triangle edges $\mathbf{c}(t) = \mathbf{x}(t) \mathbf{y}(t) = \mathbf{c}_0 + t\dot{\mathbf{c}}$ and $\mathbf{d}(t) = \mathbf{z}(t) - \mathbf{y}(t) = \mathbf{d}_0 + t\dot{\mathbf{d}}$
- area $2A(t) = \mathbf{c}(t) \wedge \mathbf{d}(t)$, set to zero
- quadratic $(\dot{\mathbf{c}} \wedge \dot{\mathbf{d}})t^2 + (\mathbf{c}_0 \wedge \dot{\mathbf{d}} + \dot{\mathbf{c}} \wedge \mathbf{d}_0)t + (\mathbf{c}_0 \wedge \mathbf{d}_0) = 0$
- smallest root in (0,h] for which x is between y and z (if any) is the collision time



$$\mathbf{v} \wedge \mathbf{w} = (\mathbf{v} \times \mathbf{w})_z$$
$$= v_x w_y - v_y w_x$$

Robust quadratic formula

We all learned the quadratic formula in high school

What they didn't tell us

- · there are two equally reasonable quadratic formulas
- each one is inaccurate for certain cases (e.g. a or c near zero)

 $t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

$$t = \frac{2c}{-b \mp \sqrt{b^2 - 4ac}}$$

if you just type in the familiar formula, you will sometimes get inaccurate collisions!

More stable procedure:

- compute $D=b^2-4ac$; if D<0 there are no roots
- . compute $r = -\frac{1}{2} \left(b + \text{sign}(b) \sqrt{D} \right)$ (no subtraction, no cancellation!)
- roots are $t_1 = \frac{r}{a}$ and $t_2 = \frac{c}{r}$ (exercise: show that these are equal when D=0)
- · (see Numerical Recipes or other intro numerics textbooks)

CCD for triangle meshes

Here we have both edge-edge and point-face collisions

Analogous approach to 2D works

- both cases are actually the same (weird!)
- collision happens when the 4 involved vertices are coplanar, aka.
 volume of tetrahedron is zero
- points $\mathbf{w}(t)$, $\mathbf{x}(t)$, $\mathbf{y}(t)$, $\mathbf{z}(t)$, velocities $\dot{\mathbf{w}}(t)$, ..., $\dot{\mathbf{z}}(t)$
- think about tetrahedron edges $\mathbf{a} = \mathbf{x} \mathbf{w}$, $\mathbf{b} = \mathbf{y} \mathbf{w}$, $\mathbf{c} = \mathbf{z} \mathbf{w}$
- $6V(t) = \det \begin{bmatrix} \mathbf{a}(t) & \mathbf{b}(t) & \mathbf{c}(t) \end{bmatrix} = \mathbf{a}(t) \cdot (\mathbf{b}(t) \times \mathbf{c}(t)) = 0$
- this is a cubic equation in t; collision time is the smallest root in [0,h) for which the objects actually collide (vertex inside triangle, or line intersection inside edges)