
CS5643 
03 Solving ordinary differential equations

Steve Marschner 
Cornell University 

Spring 2025



Ordinary differential equation
An equation involving an unknown function and its derivatives 

• but with only one independent variable (typically time)


• general form  for all 


In an initial value problem we know what is happening now  
and want to know the future 
• boundary conditions are all at : 


• goal: find  for all 

• (notice that we need starting values for the derivatives less than the highest one involved)


In this course usually  (but sometimes 1)

f(t, y(t), y′ (t), y′ ′ (t), …, y(k)) = 0 t

t = 0 y(0), y′ (0), …, y(k−1)(0)

y(t) t > 0

k = 2



Systems of ODEs
Typically there are multiple unknown functions 

• e.g. the x and y coordinates of a particle, or of many particles, …


Can think of this as a system of interdependent ODEs… 

…or simply as an ODE with a vector-valued unknown 
•  where  and 


In this setting the solution is a path though  
• an N-dimensional parameterized curve


• solving  tells you how to continue this curve by looking  
at the position, tangent, curvature, etc. at the end

f(t, y(t), ·y(t), ··y(t)) = 0 y : ℝ → ℝN f : … → ℝN

ℝN

f



Some simplifications
Most often we work with ODEs that are solved for the highest derivative: 

• this is called an explicit ODE


• 


• or in the  case: 


Also we can choose to work only with: 
• first-order systems ( )


• autonomous systems (  independent of )

• (next slides)

y(k)(t) = f(t, y(t), …, y(k−1))

k = 2 ··y(t) = f(t, y(t), ·y(t))

k = 1

f t



Reduction to first order
Someone gave me an ODE  in  variables 

I’ll give back a first-order ODE 
• unknown functions , , …,  


equation: 


• this is a single first-order ODE in  variables with the same solution


So at the highest level of abstraction the order doesn’t matter 
• but sometimes can get better results by remembering it started as a higher-order system

y(k)(t) = f(t, y(t), …, y(k−1)) N

y(t) y1(t) yk−1(t) : ℝ → ℝN

·y
·y1
⋮

·yk−2
·yk−1

(t) =

y1
y2
⋮

yk−1

f(t, y, y1, …, yk−1)

(t)

kN



Autonomous vs. non-autonomous
Sometimes you see time as an explicit parameter, 

sometimes not 
•  is “autonomous”


•  is “non-autonomous”


If we want to do math or write code without the , 
we can make a simple conversion: 

• and just relabel the axis to 

·y(t) = f(y(t))
·y(t) = f(t, y(t))

t

τ

fro
m

 J
us

tin
 S

ol
om

on
, N

um
er

ica
l A

lg
or

ith
m

s



Vector field picture
Now that we only have systems of the form  there is a simple 

mental model: 
•  is the path of a point through the state space of the system


• remember  here is after a reduction to first order, so for instance in a Newtonian particle system 
 includes both the position  and the velocity 


•  is a vector field in that state space that tells the particle which way to go

• so the process reduces to advection through a flow field (though in many dimensions)


canonical example: harmonic oscillator in 1D,  

•  or with appropriate choice of units 


• aka  where  is a rotation by –90 degrees

·y(t) = f(y(t))

y(t)

y
y x v

f

m··x = − kx

[
·x
·v] = [ v

−(k/m)x] [
·x
·v] = [ v

−x]
·y = Ry R



Canonical example: harmonic oscillator

e.g. mass on a spring, 
plucked rubber band, 
tuning fork 

1D ODE  




• or with appropriate units:





• aka  where  is a  
rotation by –90 degrees


• solutions are like 

m··x = − kx

[
·x
·v] = [ v

−(k/m)x]

[
·x
·v] = [ v

−x]
·y = Ry R

x(t) = sin t, v(t) = cos t

x

v



Canonical example: exponential decay

E.g. cup of tea cooling off 
or particle slowing in fluid 

1D ODE:  
• solutions are like 

·y = − ky
y(t) = exp(−t)

t

y



Numerical solution methods
Most ODEs don’t have closed form solutions 

so we resort to numerical approximation 
• the only thing we know how to compute is the  in 


Want to compute approximate values of the unknown   
for desired values of  
• to do this we compute  for a series of time steps 


- from where we know  (canonically at )


- to where we want  (e.g. at the time of each animation frame)

• compute each step from the results of previous steps 

using a local approximation to 

• different local approximations lead to different time stepping algorithms, known as numerical 

integration methods or ODE solvers or just “integrators” or “solvers.”

f ·y(t) = f(y(t))

y(t)
t

y(tk)
y t = 0

y

y



Setup for simple integration methods
Start with a constant step size  

• time steps are equally spaced, 


• if we start at  then  and the number of steps to reach time  is 


We want some equation we can solve to approximate  
 assuming we know  

• in practice we don’t know  exactly; we just have the approximation from the previous step


• I will use  for the approximation we computed at step  and  for the actual value


• the goal of our method is to ensure  so that the points  are a good 
approximation to the solution function 


• an important question: how to quantify how accurately  approximates 

h
tk+1 = tk + h

t0 = 0 tk = kh T T/h

y(tk+1) y(tk)
y(tk)

yk k y(tk)

yk ≈ y(tk) (tk, yk)
y(t)

yk y(tk)



Euler’s integrators
Most integrators can be derived from a Taylor expansion 

• after all it’s the first tool we reach for when we want a local approximation


E.g. let’s expand  around : 



• evaluate at  and substitute the ODE 





• leading to the timestep equation  known as “Euler’s method” or “forward Euler”


This is a first order accurate, explicit integration method 
• “explicit” because the timestep equation is already solved for ; it is an explicit formula


• “first order accurate” because the error is proportional to  

y t = tk
y(t) = y(tk) + ·y(tk)(t − tk) + O((t − tk)2)

tk+1 = tk + h ·y(t) = f(y(t))

y(tk+1) = y(tk) + hf(y(tk)) + O(h2)

yk+1 = yk + hf(yk)

yk+1

h2



Euler’s integrators
Alternatively we could expand  around : 




• evaluate at  and substitute the ODE 





• leading to the timestep equation  known as “backward Euler’s method”


This is a first order accurate, implicit integration method 
• “implicit” because the timestep equation needs to be solved to find 


• “first order accurate” because the error is still proportional to  

y t = tk+1
y(t) = y(tk+1) + ·y(tk+1)(t − tk+1) + O((t − tk+1)2)

tk = tk+1 − h ·y(t) = f(y(t))

y(tk) = y(tk+1) − hf(y(tk+1)) + O(h2)

yk+1 = yk + hf(yk+1)

yk+1

h2



How does your error shrink?
If things are working at all, we can get any accuracy we need by decreasing  

• that is, 


we compare integrators’ accuracy in  
terms of asymptotic rate of convergence 
• recall big-O notation  as   

means there are constants  and  such that 



• we can use the same idea for asymptotics as :  
  as  means there exist  
constants  and  such that  

h
lim
h→0

[yk − y(tk)] = 0

f(x) ∈ O(x2) x → ∞
C x0

x > x0 ⟹ f(x) ≤ Cx2

x → 0
f(x) ∈ O(x2) x → 0

C δ
x < δ ⟹ f(x) ≤ Cx2



How does your error grow?
The error in a time-stepped approximation accumulates 

• in worst case (sadly not so uncommon) all the errors point the same way so the  
error after  steps is  times the error in one step


• to get to time  requires  steps


• so if error in one step is  then error after  steps is 


Nomenclature for integrators works two ways 
• pth order integrator is “accurate to pth order” in one step, meaning the error is 


• pth order integrator has order-p error after a fixed time, meaning the error is 

N N

T N ≈ T/h

O(hp) N O(hp−1)

O(hp+1)

O(hp)



Behavior of Euler integrators

x

v

x

v

forward backward



Behavior of Euler integrators

t

y

t

y

forward backward



Towards higher order
Let’s try expanding around ; call this time  for “midpoint” 

• 


evaluate at  and  to compute the step increment 
•  (try it yourself to see the canceling  term)


…if only we knew !  But we can use Forward Euler to estimate it 

• , so let 


• , so 


• then 


• so let  and  is a second-order estimate of 

t = (tk + tk+1)/2 tm
y(t) = y(tm) + ·y(tm)(t − tm) + 1

2
··y(tm)(t − tm)2 + O((t − tm)3)

tk tk+1
y(tk+1) − y(tk) = h ·y(tm) + O(h3) h2

y(tm)
y(tm) = y(tk) + h

2
·y(tk) + O(h2) ym = yk + h

2 f(yk)

f(y + O(h2)) = f(y) + f′ (y)O(h2) + O(h2) = f(y) + O(h2) f(ym) = ·y(tm) + O(h2)

y(tk+1) = y(tk) + h(f(ym) + O(h2)) + O(h3) = y(tk) + hf(ym) + O(h3)

yk+1 = yk + hf(ym) yk+1 y(tk+1)



Midpoint method
Timestep equations 







This is  
• an explicit integrator


• a two-step integrator (requires two evaluations of )

• accurate to second order


It’s also the first in a family of higher order integrators 
• Runge-Kutta methods achieve order  accuracy with at least  function evaluations

• RK4 is a popular fourth-order scheme, good for smooth problems requiring high accuracy

• animation = not-so-smooth problems requiring low accuracy, hence we rarely go past second order

ym = yk + h
2 f(yk)

yk+1 = yk + hf(ym)

f

p p



x

v



x

v

forward Euler



x

v

backward Euler



x

v

midpoint method



Demo!
accuracy of integration along circular paths 

• Euler vs. midpoint




Integrators for second-order systems
Many useful systems have the form  

• note this equation skips over ; acceleration does not depend on velocity, only position.


Look at what the second step of the midpoint method does 
•  translates to (naming  as )








• if we stagger the grids then we can have these values already!





• this is an explicit method, and it’s second order accurate for both position and velocity

• known as the Leapfrog integrator — elegant but prohibits velocity dependent forces

··x(t) = f(x(t))
·x

yk+1 = yk + hf(ym) ym yk+0.5

xk+1 = xk + hvk+0.5

vk+1 = vk + f(xk+0.5)

xk+1 = xk + hvk+0.5

vk+1.5 = vk+0.5 + hf(xk+1)

updating  only requires , 
and updating  only requires 

x vk+0.5
v xk+0.5



Symplectic Euler’s method (aka. semi-implicit)
Leapfrog is nice but doesn’t work for  

• practical problem: can’t evaluate  without knowing  and  at the same time

• a practical solution: give up the interleaved steps but keep the timestep equations


   this looks just like Forward Euler except for the last +1


• or: use the position update from Forward Euler and the velocity update from Backward Euler

• this integrator shares a very nice property with Leapfrog: each timestep preserves area  

in the  picture (really in position–momentum space)





• this property holds for any Hamiltonian (roughly, energy conserving) system

··x = f(x, v)
f x v

xk+1 = xk + hvk

vk+1 = vk + hf(xk+1)

(x, v)

[xk+1
vk+1] = [ 1 h

−h 1 − h2] [xk
vk]

det = 1



exact forward Euler symplectic Euler

https://www.av8n.com/physics/symplectic-integrator.htm

https://www.av8n.com/physics/symplectic-integrator.htm


x

v



x

v

forward Euler



x

v

backward Euler



x

v

midpoint method



x

v

symplectic Euler



x

v

symplectic Euler

midpoint 
for 10 laps

symplectic Euler 
for 10 laps


