o5643
03 Solving ordinary differential equations

Steve Marschner
Cornell University
Spring 2025

Ordinary differential equation

An equation involving an unknown function and its derivatives

+ but with only one independent variable (typically time)

. general form f(t, y(t), y'(£), y"(?), ...,y®) = 0 for all ¢

In an initial value problem we know what is happening now
and want to know the future

. boundary conditions are all at ¢ = 0: y(0), y(0), ..., y*~D(0)
- goal: find y(¢) forall t > 0O

- (notice that we need starting values for the derivatives less than the highest one involved)

In this course usually £ = 2 (but sometimes 1)

Systems of ODES

Typically there are multiple unknown functions

- e.g. the x and y coordinates of a particle, or of many particles, ...

Can think of this as a system of interdependent ODEs...

...or simply as an ODE with a vector-valued unknown
- (¢, y(©), (1), ¥(t)) = 0wherey : R - R¥andf: ... - RY

N

In this setting the solution is a path though |

- an N-dimensional parameterized curve

- solving 1 tells you how to continue this curve by looking
at the position, tangent, curvature, etc. at the end

'13(%)

Some simplifications

Most often we work with ODEs that are solved for the highest derivative:
- this is called an explicit ODE

-y = £ y(@), ...y
- orinthe k = 2 case: y(¢) = 1(¢, y(1), y(?))

Also we can choose to work only with:
- first-order systems (k = 1)

- autonomous systems (I independent of)

- (next slides)

Reduction to first orger

Someone gave me an ODE yX(¢) = f(¢, y(¢), ..., y*~ 1) in N variables

I’ll give back a first-order ODE
. unknown functions y(?), y,(?), ..., y;_;(®) : R - R"

- Z‘J VIS
y . A (B < £l x4, 56)
Yi \b) |
equation: | (7)) = : (1) \J,
Yi-2 V-1 [X(t) v(e) SQ}
yk_1 f(z, Y>Yi -..,yk_l) v (+) /'\Hb XH’) Y)

- this is a single first-order ODE in kNN variables with the same solution

So at the highest level of abstraction the order doesn’t matter

- but sometimes can get better results by remembering it started as a higher-order system

AUtoNOMOUS VS. NON-autoNnoMous

Y
A /A
) A A A/ A A 4
Sometimes you see time as an explicit parameter, (s
sometimes not — .
- y(1) = 1(y(?)) is “autonomous” 2
\\\\\\\\\\\\
- y(1) = f(¢, y(¢)) is “non-autonomous” NN NN NN NN
) SN N N N N R NN
]] Time-independent
If we want to do math or write code without the 7,
we can make a simple conversion: A
A S S S - = —
) T (“ A I T — —
M(*l’\-— YT’I +— — — — = > N N\
C f-:_’;.f?"-’;:// = NN
.(’H" (T (+) , N o — — =X \\\:t N>
oNE - [’;_ ‘[)IY / T T \\\\“‘\?\ NN \\\Q .
J > NN \\\\\> AN \\\E*
. . M~ N \\\%“b\ ~
- and just relabel the axisto 7 4N NN N N N N

Time-dependent

from Justin Solomon, Numerical Algorithms

Vector field picture

Now that we only have systems of the form y(7) = f(y(7)) there is a simple
mental model:

- y(7) is the path of a point through the state space of the system

- remember y here is after a reduction to first order, so for instance in a Newtonian particle system
y includes both the position X and the velocity v

- fis a vector field in that state space that tells the particle which way to go

+ S0 the process reduces to advection through a flow field (though in many dimensions)

canonical example: harmonic oscillator in 1D, mX = — kx

X_| ith ate choice of units || = | ”
5] = | = (k/mx| OF With appropriate choice of units | | = | _

- aka 'y = Ry where R is a rotation by —-90 degrees

Canonical example

e.g. mass on a spring,
plucked rubber band,
tuning fork

1D ODE mX = — kx
] = |-

+or with appropriate units:

x| _ [V
vl |—X
- akay = Ry where R is a

rotation by —90 degrees

- solutions are like
x(t) = sint, v(t) = cost

nNarmonic osclllator

,
P R i
R B e,
S //f»ZZi(
= NN PIIPU
///// /}/5:12\ SO T T -
Ry
RARRNNNNS = s !
\\ A0 \\‘?L\ o /’,/// / A—an—
NS T
NSNS T |
\‘l\“\\:«/‘/// // pasT
S A

T A AN T
/NS
\ P -
T, SRR
eI /I NN\ NS
R I TR
RN
\\\\\\\\ | ////////
- \\\\H / - Ll /,,//«/N//
> \\\\u\x\ | /,//u////
0 2 RN
O /R LR
D \«\ \\\\\, /:/«/«/4/4/4/
O U NN
— gy \\\ S //////
5 g | ,//////N/
m_Hu ey S AN,
C
®,
o)
>
> = 7
© 2 T
[SR-Y- ;
m ﬂlumv - M
X 83 Y oe
O Sw |5
— 29 |l 3
L= QS I =
C 5o 0O =2
c 85 g !
W LL -
O

Numerical solution metnods

Most ODEs don’t have closed form solutions
so we resort to numerical approximation

- the only thing we know how to compute is the fin y(7) = 1(y(?))

Want to compute approximate values of the unknown y(7)
for desired values of ¢

- to do this we compute y(#,) for a series of time steps
- from where we know y (canonically at = 0)
- to where we want y (e.g. at the time of each animation frame)

+ compute each step from the results of previous steps
using a local approximation to'y

- different local approximations lead to different time stepping algorithms, known as numerical
integration methods or ODE solvers or just “integrators” or “solvers.”

Setup for simple integration methods

Start with a constant step size /

- time steps are equally spaced, #;,, | =, + h
- if we start at 7, = 0 then 1, = kh and the number of steps to reach time T'is T/h

We want some equation we can solve to approximate
y(#,,.;) assuming we know Y(7;)

- in practice we don’t know y(#,) exactly; we just have the approximation from the previous step
- 1 will use y,, for the approximation we computed at step k and y(¢,) for the actual value

- the goal of our method is to ensure y, = y(#,) so that the points (¢, y,) are a good
approximation to the solution function y(7)

- an important question: how to quantify how accurately y, approximates y(#,)

—uler's Integrators

Most integrators can be derived from a Taylor expansion

- after all it’s the first tool we reach for when we want a local approximation

E.g. let’'s expand y around 7 = /;:
y(©) = y(1) + ¥t — 1) + Ot — 1)%)
. evaluate at 7, . ; = 1, + h and substitute the ODE y(¢) = f(y(?))
Y(tesr) = ¥() + hf(y(1) + O(h?)

- leading to the timestep equation y,.,, =y, + hf(y,) known as “Euler’s method” or “forward Euler”

This is a first order accurate, explicit integration method

- “explicit” because the timestep equation is already solved for y,_ ;; it is an explicit formula

- “first order accurate” because the error is proportional to h?

—uler's Integrators

Alternatively we could expand y around 7 = 7;_ ;:
YO = y(tri) + Yl) — 1) + Ot — 11,)7)
- evaluate at f, = 1, | — h and substitute the ODE y(¢) = f(y(?))
(1) = Y(tiy) — hE(y(5,) + O(h?)

- leading to the timestep equation y,. | = y; + hf(y., ;) known as “backward Euler’s method”

This is a first order accurate, implicit integration method

- “implicit” because the timestep equation needs to be solved to find y, 4

- “first order accurate” because the error is still proportional to h?

How does your error shrink’”

If things are working at all, we can get any accuracy we need by decreasing /

. thatis, lim [y, —y(z)] =0

h—0 y e (Cx*
we compare integrators’ accuracy in e £
terms of asymptotic rate of convergence | > PP
. recall big-O notation f(x) € O(x*) as x = o o KO
means there are constants C and x,, such that ~—Cxt

x>xy, = f(x) < Cx* |

- we can use the same idea for asymptotics as x — 0: e 7L(v<)
f(x) € O(x*) as x — 0 means there exist
constants C and o such that

x <6 = flx) < Cx? o s X —

HOw dOes your error grow'?

The error In a time-stepped approximation accumulates

+In worst case (sadly not so uncommon) all the errors point the same way so the
error after N steps is N times the error in one step

- to get to time T requires N =~ T/h steps

. s0 if error in one step is O(hP) then error after N steps is O(hP~!)

Nomenclature for integrators works two ways

- pth order integrator is “accurate to pth order” in one step, meaning the error is O(hp+1)

- pth order integrator has order-p error after a fixed time, meaning the error is O(h?)

I — \ ! q
l l '] P 4 o ,

o h A jh T

Sehavior of euler iIntegrators

X

forward backward

grators

Behavior of Euler inte

backward

forward

[lowards nigher order

Let’s try expanding around 1 = (¢, + £, {)/2; call this time ¢, for “midpoint”
‘ y(t) — Y(tm) + Y(tm)(t T tm) + %y(tm)(t T tm)2 + 0((t T tm)g)

evaluate at 7, and 7, | to compute the step increment

- Y(tho) —¥(5) = hy(z,) + O(h3) (try it yourself to see the canceling h? term)

...if only we knew y(¢7,)! But we can use Forward Euler to estimate it
L Y(t,) = Yt + 2¥(t) + O(h?), solety,, =y + +H(y))
- f(y + O(h?)) = f(y) + £(y)O(h*) + O(h*) = £(y) + O(h*), so f(y,,) = ¥(z,) + O(h*)
- then y(1,,1) = y() + h(f(yy) + O(h?)) + O(h°) = y(t) + hf(y,,) + O(h°)

- solety,.; =y, + hf(y,) and y,_, is a second-order estimate of y(#,.)

NMidpoint methoo

Timestep equations
Yo = ¥ + 50
Yer1 = Yi + 1y,

This is

+an explicit integrator

- a two-step integrator (requires two evaluations of)

- accurate to second order

It’s also the first in a family of higher order integrators

- Runge-Kutta methods achieve order p accuracy with at least p function evaluations

- RK4 is a popular fourth-order scheme, good for smooth problems requiring high accuracy

- animation = not-so-smooth problems requiring low accuracy, hence we rarely go past second order

forward Euler

backward Euler

midpoint method

Demol

accuracy of integration along circular paths

+ Euler vs. midpoint

INntegrators for second-order systems

Many useful systems have the form X(¢) = {(x(7))

- note this equation skips over X; acceleration does not depend on velocity, only position.

Look at what the second step of the midpoint method does

© Yii1 = Yi + hf(y,,) translates to (naming y,, as ¥;. ¢ 5)
Xpi1 = Xp T MV 05 updating X only requires YHO’S’
Vi =V, +1(X.05) and updating v only requires X, 5

- If we stagger the grids then we can have these values already!
Xpi1 = Xp + 1V 05

Vit15 = Viros T (X)
- this is an explicit method, and it’s second order accurate for both position and velocity

- known as the Leapfrog integrator — elegant but prohibits velocity dependent forces

symplectic Euler's method (aka. semi-implicit)

Leapfrog is nice but doesn’t work for X = (X, v)
- practical problem: can’t evaluate I without knowing X and v at the same time

- a practical solution: give up the interleaved steps but keep the timestep equations

X1 = Xg + hvy
this looks just like Forward Euler except for the last +1
Vig1 = Vi + (X4)
- or: use the position update from Forward Euler and the velocity update from Backward Euler

- this integrator shares a very nice property with Leapfrog: each timestep preserves area
in the (X, v) picture (really in position-momentum space)

= 2 B

- this property holds for any Hamiltonian (roughly, energy conserving) system

Momentum

Momentum

-4 -3 -2 -1 0 1 2 3 4
Position

forward Euler

https://www.av8n.com/physics/symplectic-integrator.htm

Momentum

Position

symplectic Euler

https://www.av8n.com/physics/symplectic-integrator.htm

forward Euler

backward Euler

midpoint method

symplectic Euler

symplectic Euler

for 10 laps

midpoint
for 10 laps

symplectic Euler

