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Many objects don’t deform very much in everyday settings—a hammer, a brick, a ceramic bowl, a block 
of wood.  Of course these objects do deform, but the deformations are small and happen on short 
timescales so that we don’t see them, and it’s often a useful approximation to model such objects as 
rigid, meaning that the only motions they undergo are rotations and translations.  Objects that move 
rigidly are known as rigid bodies, and computing the motion of rigid bodies is in some ways easier and 
in other ways harder than deformable bodies. 

On the plus side, the motion of a rigid body can be described with far fewer degrees of freedom: we’ll 
see that a 3D rigid body only needs 6 DoF to describe its motion, whereas a deformable body of course 
needs a whole mesh with lots of vertex DoFs. Also, deformable objects that have high stiffness require 
implicit integrators or small timesteps to simulate stably. On the other hand, rigid bodies communicate 
the effects of collisions instantaneously across the whole object, which makes it hard to get away with 
reasoning locally about collision and contact when rigid bodies are involved. 

In these notes we’ll develop the basic math for simulating rigid bodies in 2D, with occasional forays into 
3D.  This includes resolving instantaneous collisions, but we will leave robust methods for resting 
contact to later notes. 

Kinematics 

Everything we have simulated so far has been in terms of particle motion: even the most sophisticated 
deformable object is still represented as a collection of masses at its vertices, and the simulation is all 
about computing forces on those vertices.  Rigid bodies depart from this way of doing things. 

A particle has only a position; a rigid body has both a position and an orientation.  Just like with 
deformable objects, you can think of the state of a rigid body as a mapping from a point  in a rest 
space to a point  in the scene; in this case the rest space is called “body space” and the mapping is a 
rigid motion 

	    where  is a rotation and  is a position in the scene. 

The time-varying rotation and position together describe the body’s motion.  In 2D a rotation has only 
one degree of freedom—it can be described by a single angle—and in 3D there are three DoFs, for 
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instance three Euler angles (we’ll come back to how best to actually represent the rotation in code). So 
in total a 2D rigid body has 3 DoF and a 3D rigid body has 6 DoF. 

To describe the velocity of a particle, we wrote down its velocity, which is the time derivative of the 
position.  To write down the velocity of a rigid body we also need the time derivative of the rotation.  
What does that mean, the derivative of a rotation?  The rotation is a linear transformation, which can 
be written out as a square matrix, so one good way to think about the derivative of a rotation is as the 
derivative of the rotation matrix. 

To expand on this a bit, think of a fixed body-space point  that is just rotating: 

	  

If we take the time derivative of  we get 

	    (  is constant since the point is not moving in body space) 

So the rotation  is a linear transformation that maps a body-space point to that point’s position in 
world space, and its derivative  is a linear transformation that maps a body-space point to that point’s 
velocity in world space. 

Rotation matrices are orthogonal: .  This makes them quite special: this orthogonality 
amounts to 6 constraints on 9 entries in the 3D case or 3 constraints on 4 entries in the 2D case, leaving 
the 3 or 1 DoF discussed above.  The derivative of the rotation is similarly constrained, and we can show 
how with a clever algebraic manipulation: take the time derivative of the product . 

	   

This says that  is an antisymmetric matrix.  A similar argument shows that  is also 
antisymmetric. 

An antisymmetric (or skew symmetric) matrix is simply a matrix with the property that , 
which implies a few things: 

• If you look at the entries of ,  (hence the name antisymmetric). 

• Considered as a linear transformation,  transforms a vector  to a vector that is perpendicular to .  
You can see this because , being a scalar, is equal to its transpose .  
Since , it must be zero, so  is orthogonal to . 

A familiar operation that produces a vector orthogonal to its input is the cross product, and it turns out 
that antisymmetric matrices in 2D and 3D do the same thing as cross products.  In particular, for any 
antisymmetric matrix  there is a vector  that has the property  for all .  In 3D this 
vector might point in any direction, and in 2D this vector is a z-axis vector that is orthogonal to the x-y 
plane.  We write  to mean “  is the antisymmetric matrix that implements taking the cross 
product of  with a vector” and we call  the axial vector of . 
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Bringing this fact back to the topic of rotations, we can write the matrix  using its axial vector 
which we name  and call the angular velocity.  Then 

	  

This is handy because in code we can keep track of the angular velocity vector , and then we can 
compute  whenever we need it.  Any vector  produces a valid  (meaning a way that  can change 
while staying a rotation), and every valid  can be produced in this way. 

So to keep track of the velocity of a rigid body we need two things: 

• a vector  which describes how the body’s position in world space is changing with time: it is the 
world velocity of the origin of the body’s local coordinates. 

• a vector  for which , which describes how the body’s orientation in world space is 
changing with time: it is the angular velocity of the body, expressed in world space. 

With these two pieces of information in hand we can compute the velocity of a point on the body.  If we 
know the point’s body coordinates , then its world space velocity expands to 

	  

On the other hand, if we know the point’s world space coordinates  then  and we can 
compute the velocity as  

	  

The body’s linear velocity  contributes the same to the velocities of all points on the body, but the 
angular velocity adds a contribution that is proportional to the distance of a point from the body’s 
center. 

So the kinematic state of a rigid body has four parts: , , , and .  These four quantities define where 
the body is and where it is going, and they are the basis for writing the equations of motion in the next 
section. 

Aside on cross products in 3D and 2D 
The cross product is familiar as an operation on 3D vectors: it has two vector operands  and  and 
returns a vector  that points along the line orthogonal to both of the operands.  The length is 

, and the direction is chosen so that , , and  form a right-handed triad. 

In a 2D simulation, the vectors , , and  all lie in a plane, call it the x-y plane. The vector  is 
perpendicular to the plane, pointing along the z axis. This invites us to use 2D vectors to represent the 
in-plane quantities and scalars to represent out-of-plane vectors like . You can think of this as just an 
optimization where we don’t store numbers we know are always zero, or as a kind of type system with 
two kinds of quantities.  But in any case in practice it means there are two kinds of cross products to 
code up: one that takes two vectors and returns a scalar 
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	      — the signed area of the parallelogram spanned by  and  

and one that takes a scalar and a vector and returns a vector 

	     — the vector  rotated 90 degrees counterclockwise and scaled by  

In both cases the formulas are just specializations of the usual 3D ones. 

In these notes I’ll use non-bold  as a cue that I am talking about the 2D case and the equations may 
not be expected to generalize to 3D. 

Kinematics in code 
In a rigid body simulator we need an efficient way to write down the state.  , , and  are all pretty 
straightforward: in 3D they are all 3-vectors, and in 2D  and  are 2-vectors and  can be represented 
as a scalar.  But  is a little more awkward because there is not such a neat way to write it down 
uniquely as a set of numbers. 

In 2D we have 

	    

where  and  are the sine and cosine of an angle. One reasonable option is to write down the angle, but 
it’s a little unsatisfying that the representation is not unique (angles differing by  describe the same 
orientation), and it’s practically troublesome that if we just let an object spin for a long time its angle 
will grow to a large number so that the accuracy of its floating point representation eventually 
degrades. Also, we will have to compute trigonometric functions all the time whenever we need to 
apply  to anything.  

These problems all have fine workarounds, but another option is to store the pair  as a 2D unit 
vector and ensure that it stays normalized as it evolves. Then the matrix entries are right there, they are 
always in the range , and the representation is unique. The downside is redundancy: whenever 
we update  we need to normalize it. But this is cheaper arithmetic than trig functions. 

Since  is the first column of , it is simple to compute its time derivative: 

	  

So the position update in an Euler integrator looks like 

	  

In 3D there is not a satisfactory way to write down the rotation in terms of angles, and the best solution 
is to use a quaternion. We won’t delve into the details here but in 3D, where , , and  are vectors 
with 3 components and  is a quaternion with 4 components, the derivative of  is 

	     — where the multiplication is a quaternion product. 
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The redundancy of representing the rotation with a 4D quaternion is exactly analogous to representing 
the 2D orientation with a 2D unit vector, and comes with the same need to keep the quaternion 
normalized. The corresponding Euler position update looks like this: 

	  

Momentum and angular momentum 

To describe the dynamics of a rigid body we need to know about the body’s mass and how it is 
distributed over the body’s volume or area, which can be described by a mass density  in body 
space.  The body’s mass distribution leads to some quantities that are useful for describing motion.  The 
simplest is the total mass 

	  

The mass gives us the relationship between translational velocity and translational kinetic energy: 

	    — where we have named , which is linear momentum, . 

Let's dig a little more into how the kinetic energy of the body comes from the kinetic energy of the 
body’s mass.  Let’s also do this in 2D to start. A small area  of the body has a mass of  and a 
kinetic energy of 

	   — so  is the area density of kinetic energy in the body. 

In this case  is constant so when we integrate to get the total kinetic energy we get 

	  

This was a roundabout way of deriving something that was maybe obvious: when all the mass is 
moving in the same direction we can just add up the mass to get the scale factor between velocity and 
momentum. 

Now let’s think about what happens with a rotational motion.  Suppose the body is rotating about the 
origin with angular velocity .  (Since I am in the 2D case I’m thinking of  as a scalar.)  Now the 
velocity depends on the point, but we can still compute the total kinetic energy by integrating over the 
body: 
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	  and  

	  

This scale factor  is called the moment of inertia.  It’s a measurement of mass weighted by squared 
distance from the body’s center of mass.  We can write this in a few ways again, all very analogous to 
the case of linear kinetic energy above: 

	    — where we have named , which is angular momentum, . 

Just for completeness, the center of mass can be defined similarly to the moment of inertia, but without 
the square and with a mass normalization. 

	     — and remember our convention that  in body coordinates. 

Rotational kinetic energy and angular momentum in 3D (can skip for A2!) 
In 3D, the moment of inertia depends on the axis of rotation. In this case the velocity  of a point 
depends on both the rotation speed and its distance from the axis: .  Another way of 
writing this is: 

	  

Using this to compute the kinetic energy for a body with angular velocity  leads to 

	  

Writing this in terms of the rotation speed , 

	  

Comparing this to the 2D case we can see that the moment of inertia for a rotation around the axis  is 
.  The matrix  is called the inertia tensor and it’s a symmetric matrix that tells you the moment of 
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inertia of the body around any rotation axis.  We can factor the energy as the product of velocity and 
momentum in this case too: 

	     — the vector  is the angular momentum, called  

In 3D, like in 2D, a body’s angular momentum is conserved (in world coordinates) if no external forces 
act on it.  But unlike in 2D, because rotating the body changes  (in world coordinates), this does not 
necessarily mean that its angular velocity, rotation axis, or rotation speed remains constant. 

Force and torque 

The motion of a rigid body is affected by forces applied to the body; the effect of such forces is more 
complicated than for particles because we have to consider the effect of force not only on velocity but 
also on angular velocity. 

The effect of an applied force on the center-of-mass velocity is not affected by a body’s ability to rotate; 
regardless of what happens with angular velocity, force and acceleration are still related in the same 
familiar way: 

	       — the external force equals the rate of change of the body’s momentum 

The effect of an applied force on angular velocity is less simple, because the effect depends on where the 
force is applied relative to the point around which rotation is measured (in our case this is always the 
center of mass).  Consider the three 2D cases illustrated here: 

In all three cases the same horizontal force  is applied at a point , but when  is above the rotation 
center, the force makes the angular velocity decrease (i.e. more clockwise); when the force is applied in 
line with the center, it does not affect the angular velocity; and when  below the rotation center, the 
force makes the angular velocity increase (i.e. more counterclockwise).  The effect is proportional to the 
distance of the point from the line through the center parallel to the direction of the force, and 
quantitatively we can express it simply: 

	      — this is for 2D only, note the scalar  and  
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Here  is the vector from the rotation center to the point .  The product  is called the 
torque and denoted .  So the 2D equations of motion for a rigid body are 

	  

Equations of motion for 3D (can skip for A2) 
In 3D the momentum equations generalize: 

	  

For this reason, in 3D simulations it’s simplest to use  as the state variable, rather than  — and then, 
for consistency, to also use  in place of .  You could do the same in 2D simulations also, although it 
seems to be typical to stick with velocity in that case. 

If you use  as your state variable, you can still compute  whenever you need it.  Note that 
when you do this, since  is in world coordinates and you know  in body coordinates, you need to 
compute , but you can precompute  since it is constant over time. 

Impulses and torque impulses 
When dealing with collisions of particles we found it useful to use the idea of an impulse: a force that is 
applied over a short time interval so that we only can see the effect of the product of force and time, 
which is an impulse.  If we apply a constant force over a time , it produces a change in momentum: 

	     — where  is the name we give to the impulse  

In the same way, if we apply a constant torque over a time , it produces a change in angular 
momentum: 

	      —   is the torque impulse which doesn’t get its own symbol 

A subtle point here is that this idea of an impulse delivering a constant torque over a time interval 
depends on the time interval being short relative to the body’s rotation speed, so that  can be 
considered constant. 

These rules will be useful for collision resolution: 
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Collisions between rigid bodies 

Finally I want to work out the impulse that results from a collision between two rigid bodies at a single 
point, which lets us make animations of rigid bodies bouncing off of things and will later be the core of 
a method for dealing with systems of contacts between many bodies. 

Let’s start by reviewing contacts between pairs of spherical particles. Suppose we have a pair of 
colliding spheres A and B, with velocities  and  and relative velocity along the normal direction (i.e. 
along the line between the centers) given by  

	  

We resolved the collision by applying impulses  to particle A and  to particle B, which led to  

	  

where superscript minus means “before the collision” and superscript plus means “after the collision.” 
The normal component of the difference is 

	 . 

To determine the impulse magnitude  we used a simple heuristic (the “restitution hypothesis”) that the 
post-contact normal velocity is opposite the pre-contact normal velocity but scaled down to account for 
energy loss in the collision: 

	  

There is nothing particularly fundamental about this equation; it is just a heuristic model for how 
energy gets stored as elastic deformation and then returned to kinetic energy during the collision.  
Substituting, 

	             

where . 

Standing back from this simple derivation we can see three steps: 

1. Write the normal velocity in terms of the object velocities. 

2. Write the objects’ new velocities in terms of the collision impulse. 

3. Use the restitution hypothesis to solve for the collision impulse. 

Let’s play out the same program for a pair of rigid bodies. The same steps will work, and we’ll just need 
some extra terms to account for rotation in each step. I’ll write out everything in 2D, but nothing here 
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really changes in 3D: the angular velocity will be a vector but the cross products all just go through the 
same way. 

Step 1: Suppose we have two bodies A and B that are in contact; the first thing we need is equations to 
compute the relative normal velocity at the collision from the system state.  In this case the relevant 
system state includes the linear velocities  and  and the angular velocities  and , and we’ll also 
need to know the contact point  and the contact normal , which by convention points from B towards 
A. The velocities of the two colliding points are: 

	      where  

	      where  

so the normal component of the relative velocity is 

	 . 

Step 2 in the program is to write the objects’ new velocities  and  in terms of the collision impulse, 
and compute the post-collision relative velocity in the normal direction. Our collision impulse will be 

 for A and  for B, so following the previous section: 

	         

	         

The new normal-direction relative velocity is: 

	  

where we have given the inverse of the quantity in parentheses the name  for effective mass. 

Now we know what normal velocity will result from a collision impulse of magnitude .  The last step is 
to use this with the restitution hypothesis to decide what value  should have: 

	  

This formula looks the same as for particles; all the difference has been bundled inside the effective 
mass. 

So to deal with isolated collisions between two objects, we can do the following: 

1. Detect the collision and determine the collision point  and normal . 
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2. Compute the relative collision offsets   and . 

3. Compute  and then . 

4. Compute the new velocities  and . 

That’s all there is to it!  In the next lecture we’ll talk about how to deal with many simultaneous 
collisions. 
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