
Basics of rigid body motion
for computer animation
Steve Marschner
CS 5643 Spring 2025
Cornell University

Many objects don’t deform very much in everyday settings—a hammer, a brick, a ceramic bowl, a block
of wood. Of course these objects do deform, but the deformations are small and happen on short
timescales so that we don’t see them, and it’s often a useful approximation to model such objects as
rigid, meaning that the only motions they undergo are rotations and translations. Objects that move
rigidly are known as rigid bodies, and computing the motion of rigid bodies is in some ways easier and
in other ways harder than deformable bodies.

On the plus side, the motion of a rigid body can be described with far fewer degrees of freedom: we’ll
see that a 3D rigid body only needs 6 DoF to describe its motion, whereas a deformable body of course
needs a whole mesh with lots of vertex DoFs. Also, deformable objects that have high stiffness require
implicit integrators or small timesteps to simulate stably. On the other hand, rigid bodies communicate
the effects of collisions instantaneously across the whole object, which makes it hard to get away with
reasoning locally about collision and contact when rigid bodies are involved.

In these notes we’ll develop the basic math for simulating rigid bodies in 2D, with occasional forays into
3D. This includes resolving instantaneous collisions, but we will leave robust methods for resting
contact to later notes.

Kinematics

Everything we have simulated so far has been in terms of particle motion: even the most sophisticated
deformable object is still represented as a collection of masses at its vertices, and the simulation is all
about computing forces on those vertices. Rigid bodies depart from this way of doing things.

A particle has only a position; a rigid body has both a position and an orientation. Just like with
deformable objects, you can think of the state of a rigid body as a mapping from a point in a rest
space to a point in the scene; in this case the rest space is called “body space” and the mapping is a
rigid motion

	 where is a rotation and is a position in the scene.

The time-varying rotation and position together describe the body’s motion. In 2D a rotation has only
one degree of freedom—it can be described by a single angle—and in 3D there are three DoFs, for

rb
r

r = R(t)rb + x(t) R x

instance three Euler angles (we’ll come back to how best to actually represent the rotation in code). So
in total a 2D rigid body has 3 DoF and a 3D rigid body has 6 DoF.

To describe the velocity of a particle, we wrote down its velocity, which is the time derivative of the
position. To write down the velocity of a rigid body we also need the time derivative of the rotation.
What does that mean, the derivative of a rotation? The rotation is a linear transformation, which can
be written out as a square matrix, so one good way to think about the derivative of a rotation is as the
derivative of the rotation matrix.

To expand on this a bit, think of a fixed body-space point that is just rotating:

	

If we take the time derivative of we get

	 (is constant since the point is not moving in body space)

So the rotation is a linear transformation that maps a body-space point to that point’s position in
world space, and its derivative is a linear transformation that maps a body-space point to that point’s
velocity in world space.

Rotation matrices are orthogonal: . This makes them quite special: this orthogonality
amounts to 6 constraints on 9 entries in the 3D case or 3 constraints on 4 entries in the 2D case, leaving
the 3 or 1 DoF discussed above. The derivative of the rotation is similarly constrained, and we can show
how with a clever algebraic manipulation: take the time derivative of the product .

	

This says that is an antisymmetric matrix. A similar argument shows that is also
antisymmetric.

An antisymmetric (or skew symmetric) matrix is simply a matrix with the property that ,
which implies a few things:

• If you look at the entries of , (hence the name antisymmetric).

• Considered as a linear transformation, transforms a vector to a vector that is perpendicular to .
You can see this because , being a scalar, is equal to its transpose .
Since , it must be zero, so is orthogonal to .

A familiar operation that produces a vector orthogonal to its input is the cross product, and it turns out
that antisymmetric matrices in 2D and 3D do the same thing as cross products. In particular, for any
antisymmetric matrix there is a vector that has the property for all . In 3D this
vector might point in any direction, and in 2D this vector is a z-axis vector that is orthogonal to the x-y
plane. We write to mean “ is the antisymmetric matrix that implements taking the cross
product of with a vector” and we call the axial vector of .

rb

r(t) = R(t)rb

r

·r(t) = ·R(t)rb + R(t) ·rb = ·R(t)rb rb

R ·R

RRT = RT R = I

RRT

d
d t

(RRT) = ·RRT + R ·RT

0 = ·RRT + (·RRT)T

·RRT = − (·RRT)T

·RRT RT ·R

A = − AT

A aij = − aji

A x x
x ⋅ Ax = xT Ax xT AT x = − xT Ax

x ⋅ Ax = − x ⋅ Ax x Ax

A ω Ax = ω × x x

A = ω× A
ω ω A

Bringing this fact back to the topic of rotations, we can write the matrix using its axial vector
which we name and call the angular velocity. Then

	

This is handy because in code we can keep track of the angular velocity vector , and then we can
compute whenever we need it. Any vector produces a valid (meaning a way that can change
while staying a rotation), and every valid can be produced in this way.

So to keep track of the velocity of a rigid body we need two things:

• a vector which describes how the body’s position in world space is changing with time: it is the
world velocity of the origin of the body’s local coordinates.

• a vector for which , which describes how the body’s orientation in world space is
changing with time: it is the angular velocity of the body, expressed in world space.

With these two pieces of information in hand we can compute the velocity of a point on the body. If we
know the point’s body coordinates , then its world space velocity expands to

	

On the other hand, if we know the point’s world space coordinates then and we can
compute the velocity as

	

The body’s linear velocity contributes the same to the velocities of all points on the body, but the
angular velocity adds a contribution that is proportional to the distance of a point from the body’s
center.

So the kinematic state of a rigid body has four parts: , , , and . These four quantities define where
the body is and where it is going, and they are the basis for writing the equations of motion in the next
section.

Aside on cross products in 3D and 2D
The cross product is familiar as an operation on 3D vectors: it has two vector operands and and
returns a vector that points along the line orthogonal to both of the operands. The length is

, and the direction is chosen so that , , and form a right-handed triad.

In a 2D simulation, the vectors , , and all lie in a plane, call it the x-y plane. The vector is
perpendicular to the plane, pointing along the z axis. This invites us to use 2D vectors to represent the
in-plane quantities and scalars to represent out-of-plane vectors like . You can think of this as just an
optimization where we don’t store numbers we know are always zero, or as a kind of type system with
two kinds of quantities. But in any case in practice it means there are two kinds of cross products to
code up: one that takes two vectors and returns a scalar

·RRT

ω

ω× = ·RRT

·R = ω×R

ω·R ω ·R R·R

v = ·x

ω ·R = ω×R

rb

r = x + Rrb
·r = ·x + ·Rrb

= v + ω×Rrb = v + ω × (Rrb)

r Rrb = r − x

·r = v + ω × (r − x)

v

x R v ω

u v
w = u × v

∥w∥ = ∥u∥∥v∥ sin(u, v) u v w

x r v ω

ω

	 — the signed area of the parallelogram spanned by and

and one that takes a scalar and a vector and returns a vector

	 — the vector rotated 90 degrees counterclockwise and scaled by

In both cases the formulas are just specializations of the usual 3D ones.

In these notes I’ll use non-bold as a cue that I am talking about the 2D case and the equations may
not be expected to generalize to 3D.

Kinematics in code
In a rigid body simulator we need an efficient way to write down the state. , , and are all pretty
straightforward: in 3D they are all 3-vectors, and in 2D and are 2-vectors and can be represented
as a scalar. But is a little more awkward because there is not such a neat way to write it down
uniquely as a set of numbers.

In 2D we have

	

where and are the sine and cosine of an angle. One reasonable option is to write down the angle, but
it’s a little unsatisfying that the representation is not unique (angles differing by describe the same
orientation), and it’s practically troublesome that if we just let an object spin for a long time its angle
will grow to a large number so that the accuracy of its floating point representation eventually
degrades. Also, we will have to compute trigonometric functions all the time whenever we need to
apply to anything.

These problems all have fine workarounds, but another option is to store the pair as a 2D unit
vector and ensure that it stays normalized as it evolves. Then the matrix entries are right there, they are
always in the range , and the representation is unique. The downside is redundancy: whenever
we update we need to normalize it. But this is cheaper arithmetic than trig functions.

Since is the first column of , it is simple to compute its time derivative:

	

So the position update in an Euler integrator looks like

	

In 3D there is not a satisfactory way to write down the rotation in terms of angles, and the best solution
is to use a quaternion. We won’t delve into the details here but in 3D, where , , and are vectors
with 3 components and is a quaternion with 4 components, the derivative of is

	 — where the multiplication is a quaternion product.

w = u × v = uxvy − uyvx u v

w = u × v = (−uvy, uvx) v u

ω

x v ω
x v ω

R

R = [c −s
s c]

s c
2πk

R

q = (s, c)

[−1,1]
q

q R

·q = ω× q = ω × q

xk+1 = xk + hvk

qk+1 = normalize(qk + h ω × qk)

x v ω
q q

·q = 1
2 ωq

The redundancy of representing the rotation with a 4D quaternion is exactly analogous to representing
the 2D orientation with a 2D unit vector, and comes with the same need to keep the quaternion
normalized. The corresponding Euler position update looks like this:

	

Momentum and angular momentum

To describe the dynamics of a rigid body we need to know about the body’s mass and how it is
distributed over the body’s volume or area, which can be described by a mass density in body
space. The body’s mass distribution leads to some quantities that are useful for describing motion. The
simplest is the total mass

	

The mass gives us the relationship between translational velocity and translational kinetic energy:

	 — where we have named , which is linear momentum, .

Let's dig a little more into how the kinetic energy of the body comes from the kinetic energy of the
body’s mass. Let’s also do this in 2D to start. A small area of the body has a mass of and a
kinetic energy of

	 — so is the area density of kinetic energy in the body.

In this case is constant so when we integrate to get the total kinetic energy we get

	

This was a roundabout way of deriving something that was maybe obvious: when all the mass is
moving in the same direction we can just add up the mass to get the scale factor between velocity and
momentum.

Now let’s think about what happens with a rotational motion. Suppose the body is rotating about the
origin with angular velocity . (Since I am in the 2D case I’m thinking of as a scalar.) Now the
velocity depends on the point, but we can still compute the total kinetic energy by integrating over the
body:

xk+1 = xk + hvk

qk+1 = normalize(qk +
h
2

ωqk)

ρ(rb)

m = ∫B
ρ(x) d x

Ek = 1
2 mv2 = 1

2 v ⋅ mv = 1
2 v ⋅ p mv p

d A ρ(r) d A

1
2

ρ(r)v2(r) d A 0.5ρ(r)v2(r)

v(r)

Ek =
1
2 ∫ ρ(r)v2(r) d A

= (1
2 ∫ ρ(r) d A) v2(r)

=
1
2

mv2 where m = ∫ ρ(r) d A

ω ω

	 and

	

This scale factor is called the moment of inertia. It’s a measurement of mass weighted by squared
distance from the body’s center of mass. We can write this in a few ways again, all very analogous to
the case of linear kinetic energy above:

	 — where we have named , which is angular momentum, .

Just for completeness, the center of mass can be defined similarly to the moment of inertia, but without
the square and with a mass normalization.

	 — and remember our convention that in body coordinates.

Rotational kinetic energy and angular momentum in 3D (can skip for A2!)
In 3D, the moment of inertia depends on the axis of rotation. In this case the velocity of a point
depends on both the rotation speed and its distance from the axis: . Another way of
writing this is:

	

Using this to compute the kinetic energy for a body with angular velocity leads to

	

Writing this in terms of the rotation speed ,

	

Comparing this to the 2D case we can see that the moment of inertia for a rotation around the axis is
. The matrix is called the inertia tensor and it’s a symmetric matrix that tells you the moment of

v(r) = ω × r ∥v(r)∥ = ω∥r∥

Ek =
1
2 ∫ ρ(r)v2(r) d A

=
1
2 ∫ ρ(r)ω2r2 d A

=
1
2

Iω2 where I = ∫ ρ(r)r2 d A

I

Ek = 1
2 Iω2 = 1

2 ω ⋅ Iω = 1
2 ω ⋅ L Iω L

rc =
1
m ∫ ρ(r)r d A rc = 0

v(r)
v(r)2 = (ω × r)2

v(r)2 = (ω × r)2 = ∥ω∥2∥r∥2 − (ω ⋅ r)2 Lagrange's identity
= (ωT ω)(rT r) − (ωT r)(ωT r)
= ωT(rT r) ω − ωT(rrT) ωT

ω

Ek =
1
2 ∫ ρ(r)v(r)2d V

=
1
2 ∫ ρ(r)(ωT(rT r) ω − ωT(rrT) ωT) d V

=
1
2

ωT (∫ ρ(r)(rT r − rrT)d V) ω

=
1
2

ωT I ω

∥ω∥

Ek = 1
2 ω̂T Iω̂ ⋅ ∥ω∥2

ω̂
ω̂T Iω̂ I

inertia of the body around any rotation axis. We can factor the energy as the product of velocity and
momentum in this case too:

	 — the vector is the angular momentum, called

In 3D, like in 2D, a body’s angular momentum is conserved (in world coordinates) if no external forces
act on it. But unlike in 2D, because rotating the body changes (in world coordinates), this does not
necessarily mean that its angular velocity, rotation axis, or rotation speed remains constant.

Force and torque

The motion of a rigid body is affected by forces applied to the body; the effect of such forces is more
complicated than for particles because we have to consider the effect of force not only on velocity but
also on angular velocity.

The effect of an applied force on the center-of-mass velocity is not affected by a body’s ability to rotate;
regardless of what happens with angular velocity, force and acceleration are still related in the same
familiar way:

	 — the external force equals the rate of change of the body’s momentum

The effect of an applied force on angular velocity is less simple, because the effect depends on where the
force is applied relative to the point around which rotation is measured (in our case this is always the
center of mass). Consider the three 2D cases illustrated here:

In all three cases the same horizontal force is applied at a point , but when is above the rotation
center, the force makes the angular velocity decrease (i.e. more clockwise); when the force is applied in
line with the center, it does not affect the angular velocity; and when below the rotation center, the
force makes the angular velocity increase (i.e. more counterclockwise). The effect is proportional to the
distance of the point from the line through the center parallel to the direction of the force, and
quantitatively we can express it simply:

	 — this is for 2D only, note the scalar and

Ek = 1
2 ω ⋅ Iω = 1

2 ω ⋅ L Iω L

I

fext = m ·v = ·p

f r r

r

I ·ω = r′￼× f I ω

Here is the vector from the rotation center to the point . The product is called the
torque and denoted . So the 2D equations of motion for a rigid body are

	

Equations of motion for 3D (can skip for A2)
In 3D the momentum equations generalize:

	

For this reason, in 3D simulations it’s simplest to use as the state variable, rather than — and then,
for consistency, to also use in place of . You could do the same in 2D simulations also, although it
seems to be typical to stick with velocity in that case.

If you use as your state variable, you can still compute whenever you need it. Note that
when you do this, since is in world coordinates and you know in body coordinates, you need to
compute , but you can precompute since it is constant over time.

Impulses and torque impulses
When dealing with collisions of particles we found it useful to use the idea of an impulse: a force that is
applied over a short time interval so that we only can see the effect of the product of force and time,
which is an impulse. If we apply a constant force over a time , it produces a change in momentum:

	 — where is the name we give to the impulse

In the same way, if we apply a constant torque over a time , it produces a change in angular
momentum:

	 — is the torque impulse which doesn’t get its own symbol

A subtle point here is that this idea of an impulse delivering a constant torque over a time interval
depends on the time interval being short relative to the body’s rotation speed, so that can be
considered constant.

These rules will be useful for collision resolution:

	

r′￼= r − x r r′￼× f
τ

fext = m ·v = ·p
τext = I ·ω = ·L

fext = ·p
τext = ·L

L ω
p v

L ω = I−1L
L Ib

RI−1
b RT L I−1

b

Δt

fΔt = ·pΔt = Δp = j j fΔt

Δt

τΔt = ·LΔt = ΔL = r′￼× j r′￼× j

r′￼

j = Δp = mΔv in any dimension
r′￼× j = ΔL in 2D or 3D
r′￼× j = ΔL = IΔω in 2D only

Collisions between rigid bodies

Finally I want to work out the impulse that results from a collision between two rigid bodies at a single
point, which lets us make animations of rigid bodies bouncing off of things and will later be the core of
a method for dealing with systems of contacts between many bodies.

Let’s start by reviewing contacts between pairs of spherical particles. Suppose we have a pair of
colliding spheres A and B, with velocities and and relative velocity along the normal direction (i.e.
along the line between the centers) given by

	

We resolved the collision by applying impulses to particle A and to particle B, which led to

	

where superscript minus means “before the collision” and superscript plus means “after the collision.”
The normal component of the difference is

	 .

To determine the impulse magnitude we used a simple heuristic (the “restitution hypothesis”) that the
post-contact normal velocity is opposite the pre-contact normal velocity but scaled down to account for
energy loss in the collision:

	

There is nothing particularly fundamental about this equation; it is just a heuristic model for how
energy gets stored as elastic deformation and then returned to kinetic energy during the collision.
Substituting,

	

where .

Standing back from this simple derivation we can see three steps:

1. Write the normal velocity in terms of the object velocities.

2. Write the objects’ new velocities in terms of the collision impulse.

3. Use the restitution hypothesis to solve for the collision impulse.

Let’s play out the same program for a pair of rigid bodies. The same steps will work, and we’ll just need
some extra terms to account for rotation in each step. I’ll write out everything in 2D, but nothing here

va vb

vn = n ⋅ (va − vb)

γ n̂ −γ n̂

v+
a = v−

a + m−1
a γ n̂

v+
b = v−

b − m−1
b γ n̂

v+
n = n̂ ⋅ (v+

a − v+
b) = v−

n + (m−1
a + m−1

b)γ

γ

v+
n = − crv−

n

−crv−
n = v−

n + (m−1
a + m−1

b) γ

(m−1
a + m−1

b) γ = − (1 + cr)v−
n

γ = − (1 + cr)meffv−
n

meff = (m−1
a + m−1

b)−1

really changes in 3D: the angular velocity will be a vector but the cross products all just go through the
same way.

Step 1: Suppose we have two bodies A and B that are in contact; the first thing we need is equations to
compute the relative normal velocity at the collision from the system state. In this case the relevant
system state includes the linear velocities and and the angular velocities and , and we’ll also
need to know the contact point and the contact normal , which by convention points from B towards
A. The velocities of the two colliding points are:

	 where

	 where

so the normal component of the relative velocity is

	 .

Step 2 in the program is to write the objects’ new velocities and in terms of the collision impulse,
and compute the post-collision relative velocity in the normal direction. Our collision impulse will be

 for A and for B, so following the previous section:

	

	

The new normal-direction relative velocity is:

	

where we have given the inverse of the quantity in parentheses the name for effective mass.

Now we know what normal velocity will result from a collision impulse of magnitude . The last step is
to use this with the restitution hypothesis to decide what value should have:

	

This formula looks the same as for particles; all the difference has been bundled inside the effective
mass.

So to deal with isolated collisions between two objects, we can do the following:

1. Detect the collision and determine the collision point and normal .

va vb ωa ωb
r n̂

va + ωa × ra ra = r − xa

vb + ωb × rb rb = r − xb

vn = n̂ ⋅ (va − vb + ωa × ra − ωb × rb)
v+

a v+
b

γ n̂ −γ n̂

Δva = m−1
a γ n̂ Δωa = I−1

a ra × γ n̂

Δvb = − m−1
b γ n̂ Δωb = − I−1

b rb × γ n̂

v+
n = n̂ ⋅ (v+

a − v+
b + ω+

a × ra − ω+
b × rb)

= n̂ ⋅ ((v−
a + Δva) − (v−

b + Δvb) + (ω−
a + Δωa) × ra − (ω−

b + Δωb) × rb)
= v−

n + n̂ ⋅ (Δva − Δvb + Δωa × ra − Δωb × rb)
= n̂ ⋅ (m−1

a γ n̂ + m−1
b γ n̂ + I−1

a (ra × γ n̂) × ra + I−1
b (rb × γ n̂) × rb)

= v−
n + (m−1

a + m−1
b + I−1

a n̂ ⋅ (ra × n̂) × ra + I−1
b n̂ ⋅ (rb × n̂) × rb) γ

= v−
n + m−1

eff γ

meff

γ
γ

−crv−
n = v+

n = v−
n + m−1

eff γ
γ = − (1 + cr)meffv−

n

x n̂

2. Compute the relative collision offsets and .

3. Compute and then .

4. Compute the new velocities and .

That’s all there is to it! In the next lecture we’ll talk about how to deal with many simultaneous
collisions.

ra = r − xa rb = r − xb

meff γ

v+
a = v−

a + m−1
a γ n̂ v+

b = v−
b − m−1

b γ n̂

	Kinematics
	Momentum and angular momentum
	Force and torque
	Collisions between rigid bodies

