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In previous lectures we worked out how to resolve isolated collisions between particles or between 
rigid bodies.  These methods are great as long as contacts stay separated in time.  But once we have 
simultaneous contacts, either because they are so close in time that it is too expensive to keep resolving 
them sequentially or because we have resting contacts that persist over time, we need to be smarter 
about how contacts interact with one another. 

Spherical particles without friction 

Let’s start where we started with contact resolution, with contacts between pairs of spherical particles.  
Recall that we derived a collision impulse for a pair of colliding spheres A and B, using the simple 
heuristic (the “restitution hypothesis”) that the post-contact normal velocity is opposite the pre-contact 
normal velocity but scaled down to account for energy loss in the collision: 

	  where  

I am calling this collision “collision 1” and numbered the velocity and normal appropriately, since there 
will soon be more collisions to worry about.  We resolved the collision by applying impulses  to 
particle A and  to particle B, which led to  

	  

and 

	            (1) 

where .  But what if these particles also are involved in other simultaneous 
collisions?  Then their velocities are also affected by the impulses related to these other collisions and 
this derivation doesn’t account for this so the results will be wrong. 
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Resolving a collision in the context of a second collision 
Let’s start with one other collision.  Suppose particle B also is in contact with particle C, and let’s 
further imagine someone has told us the impulse that is applied to B by this collision (call it collision 2).   
We just have to work out the impulse for collision 1 between A and B. 

The impulse  contributes to the final velocity of B: 

	  

and if we propagate this change through the other equations above we get 

	  

That is, the impulse calculation is the same except we add a correction for the effect of the other 
impulse on B’s velocity in the  direction. 

If there were many other collisions involving B, we could add them to get , and we could do the same 
for A, and use the equation 

	  

	 where  and  

where  is  if X is the first body in collision  (so that  points towards A) and  if X is the second 
body in collision . 

This is great if we know all the other impulses, but of course in practice we start of not knowing any of 
the impulses.  A simple idea that turns out to work is to iterate this process: 

	 compute prospective velocities of all objects for this time step 
	 find all collisions, initialize all s to zero 
	 while not converged: 
	       for  in range(number of collisions): 
	             compute  using the current values for all other , clamping to  
	 apply all impulses to update velocities of all objects 

One problem is that this collision response scheme can’t recover from an overlap between stationary 
objects.  It will dutifully compute an impulse just sufficient to bring the normal velocity to zero, but that 
leaves the overlap the same as it was.  Small errors can accumulate over time steps and lead to objects 
sinking slowly into other objects.  To fix this, you can add a nudge by adding a little velocity to the goal 
that is proportional to the overlap: 
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where  is the overlap depth of collision 1 and  is a coefficient that controls the strength of this 
correction; setting it too high can cause instability.  This will tend to lead to exponential decay towards 
zero overlap. 

Why does it work? 
This iterative method to resolve simultaneous collisions seems plausible, and it works pretty well in 
practice, but can we say something more reassuring about this algorithm — say a proof that it 
converges? 

It turns out that we can package exactly what we have been doing into a problem about matrices.  It’s a 
little more abstract but it’s worth the effort to understand it! 

If we stand back from the process we have been using, it looks like this: 

1. Write the new and old normal velocities as a function of the new and old object velocities. 

2. Write the objects’ new velocities as a function of their old velocities and the collision impulses. 

3. Use the restitution hypothesis to write an equation that can be solved for the collision impulses. 

So far we have been writing down these equations one object at a time, but using matrix-vector 
arithmetic we can write them all together as one big system. 

For step 1, If we look at the equation that computes the relative velocity in the direction of the collision 
normal for collision 1, called  above, from the particle velocities it looks like 

	  

Here both the row vector  and the column vector  are of length  (for a 2D system) where  is the 
total number of particles. The hidden entries of  are zero, and  is simply a list of all the velocities in 
the system.  The  and  are positioned in  so that they multiply with  and  to produce the 
formula we want.  If we have several collisions to worry about, we can compute them all at once by 
stacking similar vectors for several collisions into a  matrix  that has one row for each of the k 
collisions in the system.  Then  where  is a vector gathering the normal velocities for all the 
collisions. 

The name  stands for “Jacobian” — it is the derivative of the mapping from the particle velocities we 
keep in the system state to the normal-direction relative velocities we need to reason about collisions. 

This formula works both before and after the collision: 

	  

For step 2, the formulas we used to compute the post-collision velocities were 
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If you look at this for a minute you’ll see the same vector  hidden in there.  If we write down the 
effect of impulse 1 on all the velocities in the system we get 

	  

	  

where  is the mass matrix of the system, which just has the masses of the particles on the diagonal: 

	  

Again we can use the matrix multiplication machinery to handle all the collisions at once: 

	  

Here k is the number of collisions and  is a k-vector that has the magnitudes of the collision impulses 
in its entries.  So that summarizes the effect of all the simultaneous collision impulses on all the 
velocities in the system. 

For step 3, it’s now a simple algebraic substitution to write the pre-and post-collision normal velocities: 

	  

Our restitution hypothesis applies to all the collisions so it reads , which expands to 

	      (2) 

This is a square  linear system that can be solved for !  This is great because it implies we have a 
single, easy-to-find solution, as long as this matrix does not turn out to be singular.  (Spoiler alert: it will 
turn out not to be quite this simple.) 
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Let’s try this out for a case where collisions are independent.  Suppose we have a situation with two 
pairs of particles colliding separately.  Then there are four velocities in the system and  is a  
matrix, which I’ll write in four columns containing 2D vectors. 

Since  is diagonal, the solution to this system (2) is easy to compute: 

	  

This is no surprise, since it matches what we earlier derived in (1). 

The diagonal structure of  reflects the fact that the two contacts in this example involve non-
overlapping pairs of objects.  If some objects are in contact with multiple other objects, then off-
diagonal entries will appear in this matrix.  Since it takes a little larger example to illustrate this, I’ll 
switch to mainly illustrating only the sparsity structure of these matrices (i.e. which entries are 
nonzero).  Below is an example with 7 objects plus some fixed walls.  Note that an object that is 
involved in collisions i and j is responsible for contributions to the (i, j) entry of .  Objects 
involved in only one collision contribute only to the diagonal entries, and an object involved in n 
collision contributes to  entries in this matrix.  In this example, the boundaries are treated as 
collisions involving only one object.  Since , the system matrix is symmetric. 

To solve this system we could use any linear solver, though we will want to choose one that is efficient 
for relatively large, sparse matrices; this tends to push us towards iterative methods for solving the 
system. 
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There is one problem with this formulation so far.  Suppose we have a situation like the one shown 
here: 

There are two bodies at rest and in contact, and A experiences a force that pulls it away from B.  If we 
go ahead and solve for the collision impulse we will get a value , which dutifully ensures that the 
relative normal velocity remains zero but inappropriately pulls B along with A.  For an isolated collision 
like this we can solve the problem by first computing  and then clamping it to ensure .  But in a 
more complicated setting this will not work.  Here is an example with two collisions: 
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If we compute  and , then set ,  by itself will no longer produce the correct relative velocity 
for collision 1.  This  constraint needs to be part of the system, not something we impose after 
solving it.  So to restate the problem we actually want to solve: we want to find  such that ; 
each row of this equation says that the normal velocity for one collision has the value given by the 
restitution hypothesis.  But actually it’s OK to for one of the velocities  to be too positive, as long as 
the corresponding impulse  is zero.  We can state this formally by saying we want to solve two 
complementary inequalities:  

	    and      and    

That is, the excess normal velocity must be 
nonnegative; the impulse must be nonnegative; but 
they can’t both be positive, at least one has to be 
zero.  This means each contact has two “modes:” 
when  then the whole system of impulses has 
to ensure that ; on the other 
hand, when  then .  It’s not 
allowed for both to be positive at once, because 
then impulses could push arbitrarily hard, 
producing too much energy.  It’s not allowed for 
impulses to be negative because contact forces 
can’t pull objects together.  It’s not allowed for 
post-collision velocities to be below the target 
because that would lose energy that is supposed to 
be kept, or if the post-collision velocity is negative 
that means objects will become (more) overlapping. 

This type of problem is called a “linear complementarity problem” or LCP because it has two quantities 
that are related linearly, and the solution is defined by complementary constraints.  This idea is both 
very intuitive and at the same time frustratingly tricky to express intuitively; LCPs are also both simple 
to formulate and at the same time sometimes tricky to solve numerically.  The following picture can be 
helpful: 
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A regular linear system  could be thought of as a pair of constraints on the unknown vector  
and the residual .  One is  and the other is .  In the LCP the second constraint is 
illustrated by the L-shaped set in the figure.  Even though it’s formally written with inequalities this is 
not an inequality constraint; it’s just an odd-shaped equality constraint. 

Now we need a method for solving this problem.  There are a number of methods available, and one of 
the simplest is a small tweak to the Gauss-Seidel algorithm, which is a basic iterative method for 
solving linear equations. 

The Gauss-Seidel algorithm considers the equations, or rows, of a linear system in sequence.  It solves 
the th equation for the th variable, acting as if the other variables are known: 

	  

So one step of Gauss-Seidel uses this formula, using the most recently updated values of .  One 
iteration of G-S is a full pass through all the variables in sequence, with each one computed using the 
newest values of all the previous ones.  The G-S algorithm is guaranteed to converge for symmetric, 
positive-definite matrices, which ours is if there are no redundant collisions (and the algorithm tends to 
tolerate redundancies well). 

When we apply this method with , , and , it expands to: 

	  

where we are naming the two objects in collision  as A and B, and as before,  is +1 if X is the first 
object in collision , –1 if X is the second object in collision , and 0 if X is not involved in collision .  
This is exactly the same procedure we came up with above by reasoning about the velocities and 
impulses affecting the two objects in a collision, which is reassuring! 

To solve an LCP instead of a normal linear system, you can use a variant called “Projected Gauss-Seidel” 
which can be used to solve linear systems with constraints by simply clamping each newly computed 
value to the nearest feasible value.  In our setting this simply means clamping impulses to zero at each 
step. 

So what was the point of doing all this with the matrices when we arrived at the same algorithm before 
by just thinking about the problem? 

1. It gives us the theoretical results about the Projected Gauss-Seidel algorithm to stand on in 
believing that our method actually converges to a meaningful solution. 
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2. It is maybe a bit less error-prone since it encodes a lot of the complexity of the formulas into the 
machinery of matrix multiplication, and this will be even more helpful when we get to the rigid 
body case. 

3. It lets you read papers about contact processing, which are usually written in this language. 

Rigid bodies 

For rigid bodies, we derived the equations for a pair of 
colliding bodies back in the rigid body lecture notes.  The 
steps were writing the collision’s normal velocity in terms 
of the body velocities and collision geometry: 

	 , 

writing the objects’ new velocities in terms of the collision 
impulse: 

	         

	        , 

and solving for the impulse magnitude: 

	  

	 . 

Here I have introduced the index  for all the quantities pertaining to the collision between A and B, in 
preparation for generalizing things to account for other collisions.  It’s still implied that A and B are the 
names of the objects involved in collision , but we only have to write down the details of one collision 
at a time so this will be OK. 

If A and B are also involved in other collisions, and we assume the impulses for those other collisions 
are already known, then we just have to modify the change-of-velocity formulas to include these other 
impulses: 

	         

	         

The effect of these changes on the relative velocity looks like 
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where  and  and likewise for B. 

When we propagate these on into the computation of the post-collision normal velocity we get 

	  

and solving for  (remembering that all the  involved in the last term are assumed known): 

	  

This is more complex than in the particle case, but it’s quite analogous.  We can readily chase down all 
the terms in this formula into things we can easily evaluate if we know all the collisions in the system.  

This equation is to resolve collision  assuming we have already resolved all collisions  where .  But 
the iteration we used for particles also applies in this case.  Generalizing it a bit we get: 

	 compute prospective velocities and angular velocities of all bodies for this time step 
	 find all collisions, set all  to zero 
	 while not converged: 
	       for  in range(number of collisions): 
	             compute  using the current values for all other , clamping to  
	 apply all impulses to update velocities and angular velocities of all bodies 

As with particles we will want an overlap-repair impulse that pushes overlapping objects gently apart, 
so that errors don’t persist and accumulate over time: 

	  

where  is the penetration depth of collision , measured so that overlapping objects produce positive 
depths. 

As with the particles, this iteration can be interpreted as a Projected Gauss-Seidel iteration applied to 
solve a linear complementarity problem, and as such it is guaranteed to converge, in theory, under 
suitable conditions.  In practice this iteration will work pretty well for reasonably friendly collision 
situations. Some things that count as unfriendly include heavy objects stacked on top of light ones and 
tall stacks or deep piles of objects.  The characteristic artifact of non-convergence is objects sinking into 
one another fast enough that the overlap-repair impulse can’t keep them well separated. 

Many refinements to this method exist and methods in this general family are the basis of collision 
response in most production rigid body simulators. 
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A bit about implementation 
When implementing iterative collision response, there are a number of considerations that come up and 
some implementation choices can make things simpler and faster. 

One issue is with computing the sums over related collisions that are required to form  for particles or 
 and  for rigid bodies.  Computing these for collision  requires finding all the collisions 

that involve the objects involved in collision , and if you do this by searching all collisions then the 
collision response will be quadratic in the number of collisions which will be too slow when objects pile 
up. One option is to build a data structure that lets you find the related collisions; you can think of the 
collision system as a graph with objects as nodes and collisions as edges and use your favorite data 
structure to navigate this graph. But this turns out to be unnecessary, because the effects on each object 
are quite related. 

If we look at the quantity that needs to be computed for particles, it looks like 

	  where  

But the s for the same object in different collisions only differ by which collision is left out of the sum.  
We could rewrite it as 

	  

Expanding the difference above noting that  and , 

	  

Now that  is a sum is over all collisions we can compute it ahead of time and just store  for each 
object X.  When it is time to compute the impulse for collision  we need to subtract off the current 
impulse for collision : 

	  

So this boils down to: go ahead and let the impulse for collision  be included as an “other collision” 
when computing collision , and then what you get is an update to add to . 

For the G-S iteration to work, after computing the update  and adding it to  it’s important to 
remember to update  and  for the objects A and B involved in a collision by adding  so that 
future impulse computations will be using the the new value of .
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